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ABSTRACT 

Current threats against typical computer systems demonstrate a need for 
forensic analysis of memory-resident data in addition to the conventional static 
analysis common today.  Certain attacks and types of malware exist solely in 
memory and leave little or no evidentiary information on nonvolatile stores 
such as a hard disk drive.  The desire to preserve system state at the time of 
response may even warrant memory acquisition independent of perceived 
threats and the ability to analyze the acquired duplicate.   
Tools capable of duplicating various types of volatile data stores are becoming 
widely available.  Once the data store has been duplicated, current forensic 
procedures have no method for extrapolating further useful information from 
the duplicate.  This paper is focused on providing the groundwork for 
performing forensic investigations on the data that is typically stored in a 
volatile data store, such as system RAM. 
It is intended that, when combined with good acquisition techniques, it will be 
shown that it is possible to obtain more post incident response information 
along with less impact to potential evidence when compared to typical incident 
response procedures.   
Keywords: Digital Forensics, Volatility, RAM, Windows Forensics, Computer 
Memory, Acquisition 

1. INTRODUCTION 
A common incident response step taken early in the process is to ‘pull the 
plug’ from a powered on machine (Secret Service, 2002).  Practitioners 
recognized that performing a ‘clean’ shutdown could further change the state 
of the system.  However ‘pulling the plug’ also has its own drawbacks on later 
analysis.  One such drawback is the lack of ability to identify and examine the 
execution state of the machine at the time of seizure. 
Some tools  allow the acquisition of the contents of ‘raw’ RAM from a running 
system (Shipley & Reeve, 2006).  Thus far, the analysis of a RAM image using 
commercial tools has been limited to small special-use devices such as PDA’s 
or various cellular phones.  For most forensic cases seen today, traditional 
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post-mortem techniques may be sufficient for the United States court process, 
but for cases involving an active adversary or completely memory resident 
threat (such as some viruses and worms), analysis of volatile data stores will 
not only be recommended, but will be required.  
Regardless of the effectiveness and completeness of the methods and 
mechanisms used for the acquisition of volatile data stores, procedures need to 
be created to perform media analysis akin to those in use today for traditional 
media.   
This paper focuses on the analysis of the different portions of RAM used by 
mainstream operating systems in order to adapt current response 
methodologies to promote further preservation of the state of a suspect system.  
It is intended that, given a complete RAM capture, the amount of information 
available after the initial response be equal to or greater than the information 
that could have been obtained using current incident response procedures.  
Furthermore, the acquisition of RAM would have imposed less negative impact 
to the preservation of evidence. 

2. BACKGROUND 
Currently, after an incident, captured memory (if available) is analyzed using 
techniques that would be considered crude if used for traditional file system 
level forensics.  A simple hex view or strings (Fedora Core 4, 2006) analysis 
may be used by an investigator to simply glance at a subset of data looking for 
something that might provide some direction (Stover & Dickerson, 2005). 
Experiments run in conjunction with this project showed that, on average, a 
cleanly install and booted contemporary Windows based workstation with 512 
MB of RAM would produce largely unusable strings output.  Unusable does 
not suggest that a string such as "dollar" was found, but it was not pertinent 
because this was not a counterfeiting suspect.  Unusable indicates that, while 
technically printable, most of the strings extracted have no inherent meaning, 
such as "EWCcedh".  The ratio of the amount of information obtained from the 
data is very low.  The situation is only worsened if only a hex view analysis is 
performed without the aid of a tool such as strings. 
Recently the research community has made some forward progress in RAM 
forensics.  The 2005 Digital Forensic Research Workshop (DFRWS) challenge 
served as a launch pad for academic research (DFRWS, 2007).  Unfortunately, 
the challenge produced no open tools and little insight into the methodologies.  
A few topically related projects have become openly available, among them are 
Procloc (Vidas, 2007), IR/CF Tools (Carvey, 2007), WMFT (Burdach, 2007), 
and Ptfinder (Schuster, 2007). 

3. COMPARISON TO TRADITIONAL METHODS 
The analysis of volatile stores and traditional postmortem forensics vary 
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greatly.  Regardless of the medium, traditional forensics typically involves the 
postmortem media analysis of a file system.   

3.1 Lack of Structure 
Though it is common to speak of analyzing a particular workstation or personal 
computer, the analysis is very often focused on a file system.  Even ‘advanced 
techniques’ focus on clarifying or adding to the file system that is being 
examined.   
Popular industry products can perform automated actions such as recovering 
folders, finding partitions, undeleting items, etc.  All of these actions work 
toward the goal of having an "evidence container" in which to perform 
analysis.  All further analysis is done within this container.   
Consider a word processor document that contains an embedded digital picture.  
Contemporary tools allow an analyst to quickly view all digital pictures on the 
media, including the embedded picture.  This picture does not in itself exist as 
a file, but as a portion of a file; however the picture by itself may be considered 
as evidence.  Even the "bit-for-bit" duplicates of hard disks are parsed and data 
that was not contained within the suspect file system on the original disk is 
added to the evidence container in the analysis software (such as certain 
‘deleted’ files).  These types of files are added to the container as additional 
‘items.’  Thus traditional analysis depends very heavily on the understanding 
of the file system that was used on the suspect system, and the file system is 
the primary focus of analysis. 
Volatile data stores typically have no file system abstraction layer and the data 
within is managed directly by the operating system.  For this reason, tools that 
focus on the analysis of file systems are not able to cope with volatile stores 
well.  When considering a volatile data store such as Random Access Memory 
(RAM), factors other than the file system become main focuses:  the operating 
system type and version in use, the configuration of that operating system and 
possibly other information such as specific hardware in use. 

3.2 Acquisition 
When acquiring a hard disk drive, it is preferred that the drive is not in use at 
the time of acquisition.  Acquisition procedures may even dictate disconnecting 
the drive and using special hardware such as a write-blocking device.  These 
procedures are in place to ensure that the input to the duplication function is 
unvarying and thus establish reproducible duplication results.  When 
considering memory, current acquisition techniques actually involve the use of 
the host system.  Creating the duplicate changes the contents of memory. 
Particular instances of volatile stores will typically vary much more than 
instances of non-volatile stores.  This variance is partly due to the changing 
nature of volatile stores like RAM, which is perceived as a faster, more 
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valuable resource than a non-volatile store to the system and is thus always in 
contention.  This resource contention results in a further inability to acquire a 
complete point in time duplicate of RAM as is possible with nonvolatile stores 
such as a Hard Disk Drive.  While work is being done on developing special 
hardware to facilitate a more pristine copy, this work is not yet readily 
available and when such hardware does exist it will still require pre-incident 
installation (Carrier & Grand, 2004). 
 
Contrary to popular belief, data may still exist in a volatile data store from a 
time prior to the last reboot of the system (Chow et all, 2005) (which actually 
challenges the term ‘volatile’).  While most hardware is capable of "zero-ing" 
or otherwise clearing the contents of RAM at boot, many systems ship with the 
default setting to "quick" mode where no memory testing or clearing is 
performed at all.  It should be pointed out that this capability is usually 
presented at a level much lower than the operating system, typically as a BIOS 
feature.   

4. ANALYSIS 
In order to demonstrate the value of capturing volatile data, it must be shown 
that given a duplicate of a volatile store, that at least as much information must 
be attainable as would have been attainable via typical incident response 
procedures, with as little impact to the state of the volatile store as possible. 
It is prudent to point out that all current methods of volatile data acquisition 
actually alter the state of the volatile data.  For example when duplicating 
RAM, a new process must be created to perform the act of duplication.  The 
creation of this process will alter the state of the RAM. 
While it is ultimately desirable to capture and analyze all portions/types of 
volatile data (i.e. processes, threads, current network connections, open files, 
etc), for demonstrative purposes, it must be shown that it is viable to perform 
post incident analysis of at least one portion.  The analysis must produces at 
least as much information as a comparable live response tool.  Simulation of 
the Windows Task Manager was selected to demonstrate proof of concept.  Or 
for those familiar, PSList.exe as part of the Sysinterals toolkit provides a closer 
approximation. 
As with most Digital Forensics cases, the procured information will be 
interpreted with respect to the unique case (i.e. counterfeiting vs malware 
creation vs identity theft, etc).  It may very well be the case that analysis of all 
the above mentioned portions/types of memory are not worthy of noting in all 
cases.  If the volatile store was acquired in its entirety, running multiple tests or 
performing repeated analysis will not further taint evidence. 



Journal of Digital Forensics, Security and Law, Vol. 2(3) 

49 

4.1 Implementation Goals 
Several criteria easily stand out as being desirable when implementing such a 
tool.  In an attempt to gain acceptance the main focus of the initial tool was to 
not only make it functional, but to encourage use by end-users.  Primary 
criteria included:  

1. Must work on dd-style dumps (preferred) and on Microsoft 
DMP ‘Complete’ style dumps. 

2. Must be simple to use.  

3. Must accurately produce results that would have normally been 
obtained by running commands during incident response. (for 
tool development it must accurately re-produce a pre-response 
observed set of processes) 

4. Must work on multiple versions of Windows (and be adaptable 
to Linux). 

4.2 Brute Force Searching 
When parsing a memory image, the most complete way to search for process 
structures will be to start assuming each byte is the first byte of a process 
structure and validating (or not) the assumption with tests, then to shift one 
byte and repeat the process.  Such a search would be considered a linear brute 
force search. 
Even though each EPROCESS structure contains pointers to other EPROCESS 
structures (Windows maintains a doubly linked list), it is preferable to 
manually locate EPROCESS structures so that the results can include both 
latent processes and potentially, processes attempting concealment from tools 
that enumerate processes (such as the Task Manager utility). 
When considering the increasingly large amounts of RAM available in today’s 
OSs, a linear byte-by-byte search may very well be considered computationally 
impractical.  A search assuming the initial byte must be page aligned would be 
much faster.  While it is not generically safe to assume that all process 
structures will be allocated on a page boundary, it may be safe to assume 
certain other boundaries greater than one (such as an eight byte boundary for 
Windows )(MSDN, 2007).  If a particular OS implements certain boundaries, it 
may be possible to search based on these offsets in order to greatly reduce the 
amount of testing and thus processing. 

4.3 Structures of Interest 
Processes and threads are vital concepts required to be explored in light of the 
objectives.  Even though internal structures are by definition not known in 
closed source products such as Windows, methods such as debugging and 
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reverse engineering can be used to gain insight about these structures.  Some of 
these structures are explored in the following few sections. 
4.3.1 EProcess Structure 
The Windows process structure, EPROCESS, can be enumerated using a 
kernel debugger.  (e.g. using the Windows debugger to enumerate fields by 
issuing a !proccessfields, dt _eprocess or dt nt!_eprocess 
command.)  (Microsoft Corp., 2006) Substructures can also be enumerated in 
this way.  From the information gleamed from the debugger a signature for the 
EPROCESS and subsequent structures can be created.  Other substructures 
such as the Kernel Process KPROCESS (Process Control Block - PCB) can be 
modeled similarly, and some EPROCESS elements, such as the Process 
Environment Block (PEB), are pointers to data that exists elsewhere.  A listing 
and description of EPROCESS members can be found in Microsoft Windows 
Internals  (Russinovich & Solomon, 2006). 
Certain parts of the EPROCESS structure stand out as being easily identifiable.  
Similar to how file remnants and certain deleted files are found in unused 
portions of a file system or disk device, it is possible to find EPROCESS 
structures by locating individual portions of the structure and then testing other 
sections (by offset, since offsets can be discerned from the structure dump) of 
the EPROCESS candidate for validity.  
4.3.2 EProcess substructure Timestamp 
One part of the EPROCESS structure that may be easy for the reader to relate 
with is the timestamp information.  While most readers will be familiar with 
the concept of a timestamp, many may not be familiar with this particular 
implementation.  FILETIME is a Windows defined structure that has existed 
since Windows 3.1 but is also defined in the current .NET framework 2.0.  It is 
a 64 bit value that consists of two data members:  the high order 32 bits are 
dwHighDateTime and the low order 32 bits are dwLowDateTime.  The 64 
bits typically represent a number of 100 nanosecond intervals since January 1, 
1601.  Once the FILETIME portion of an EPROCESS is known, some 
conversion must take place to make this a usable timestamp for investigative 
purposes.  A benefit of decoding a timestamp allows for comparison of disk 
times to process times for rough estimating and correlation (MSDN, 2006).  
Below are two offsets from a Windows XP SP2 EPROCESS structure.  It is 
easy to see the Low and High order sections and in fact the 64 bit math 
required to decode this into a human readable timestamp is fairly 
straightforward.  Depending on the debugger options, the offsets will be 
reported as: 
 
    +0x070 CreateTime   : _LARGE_INTEGER 
    +0x078 ExitTime     : _LARGE_INTEGER 



Journal of Digital Forensics, Security and Law, Vol. 2(3) 

51 

 
or in a more detail with the same tool as: 
    +0x070 CreateTime   : union      
      _LARGE_INTEGER, 4 elements, 0x8 bytes 
      +0x000 LowPart    : Uint4B 
      +0x004 HighPart   : Int4B  
      +0x000 u   : struct  
        __unnamed, 2 elements, 0x8 bytes 
        +0x000 LowPart  : Uint4B 
        +0x004 HighPart : Int4B 
      +0x000 QuadPart   : Int8B 
    +0x078 ExitTime     : union  
       _LARGE_INTEGER, 4 elements, 0x8 bytes 
      +0x000 LowPart    : Uint4B 
      +0x004 HighPart   : Int4B 
      +0x000 u          : struct  
         __unnamed, 2 elements, 0x8 bytes 
        +0x000 LowPart  : Uint4B 
        +0x004 HighPart : Int4B 
      +0x000 QuadPart   : Int8B 
 
4.3.3 EProcess substructure Process Control Block 
The very first portion of the EPROCESS structure is the PCB and at the first 
offset a header can be found. 
 
   +0x000 Pcb  : struct _KPROCESS, 29 elements, 0x6c bytes 
      +0x000 Header  : struct  
            _DISPATCHER_HEADER, 6 elements, 0x10 bytes 
         +0x000 Type             : UChar 
         +0x001 Absolute         : UChar 
         +0x002 Size             : UChar 
         +0x003 Inserted         : UChar 
         +0x004 SignalState      : Int4B 
         +0x008 WaitListHead     : struct  
             _LIST_ENTRY, 2 elements, 0x8 bytes 
            +0x000 Flink            : Ptr32 to 
            +0x004 Blink            : Ptr32 to 
         +0x010 ProfileListHead  : struct  
             _LIST_ENTRY, 2 elements, 0x8 bytes 
            +0x000 Flink            : Ptr32 to 
            +0x004 Blink            : Ptr32 to 
 
The 16 header bytes specify the type of structure that follows.  (The same 
header is used not only by processes and threads but also events, semaphores, 
queues, etc.). (Russinovich & Solomon, 2005)   
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Some processes may seem to share the same or very similar values for 
locations (such as the Process Environment Block).  These addresses are 
typically virtual addresses and the distinction between processes can be shown 
by converting the virtual address to the physical address. 
 
4.3.4 The Dispatch Header 
For each candidate structure a Dispatch Header is assumed, then data members 
of the Header can be checked, offsets to other sections of the EPROCESS or 
ETHREAD can be checked, and values of certain fields can be checked 
because ranges of values for these fields are known (such as date, process 
priority range, existence of a Page Directory Index, or kernel memory address 
which must be mapped above 0x80000000).  
EPROCESS structures can be found in different versions of Windows by 
utilizing different offsets for equivalent portions of the EPROCESS structure.  
For example, a Windows XP SP2 EPROCESS structure contains the Process 
ID (PID) at offset 0x09c, while Windows 2000 SP4 EPROCESS structure 
contains the PID at offset 0x084. 

   
Windows XP SP2 EPROCESS field: 
 +0x09c UniqueProcessId  : Ptr32 to  
 
Windows 2000 SP4 EPROCESS field:     
 +0x084 UniqueProcessId  : Ptr32 Void 
 
Different types of structures, such as a thread, can be located using techniques 
similar to those used for locating processes.  Known offsets can be used to 
validate fields of potential structures. 

4.4 Duplicate Type Compatibility  
Several methods could be used to provide compatibility between the complete 
and dd style memory dumps.  Since the complete style memory dump contains 
a header in addition to the RAW memory data, the complete memory dump 
could be ‘converted’ to a dd style dump by removing the header.  Similarly, 
during processing the header could simply be ignored by skipping to the offset 
pertaining to the first memory location.  This skip will only introduce minimal 
overhead (such as having to subtract out the amount of the skip when reporting 
structure location in RAM).   
Finally, a complete memory dump may actually be processed identically to that 
of a dd style dump as long as the DMP header size is a multiple of the page 
size (or in the case of this particular research, the first location of to the 
contents of the RAM dump falls on the aforementioned 8 byte scan boundary.) 
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It is prudent to point out that the DMP file format is proprietary and the above 
discussion is based on both observation and assumption. 

4.5 Non-Volatile Store Correlation 
Much information either required for or beneficial to the analysis of volatile 
stores will likely only be attainable from the non-volatile stores.  Size and 
format of data structures, method of segmentation and management, even page 
size may depend upon OS version and/or hardware in use.  Even the owner of a 
process is tracked in a process structure as a portion of an access token, which 
would have to be compared with registry entries in order to obtain the 
associated username.  Therefore obtaining information from a non-volatile 
store from the suspect system version (i.e. the version of OS from the hard 
disk) can be quite beneficial for the analysis of the volatile store. 
Even if it is not a technical requirement, having some information typically 
acquired using traditional non-volatile techniques, or in some cases live 
response steps, may serve as an enabler for analysis on acquired volatile data.  
OS type and patch level are among the foremost important factors.   
Other types of information from non-volatile stores may prove to be very 
valuable.  Correlation a RAM duplicate with the pagefile on disk would yield a 
more holistic view of virtual memory.  

5. CONCLUSIONS 
Fully commented implementation program written in PERL employing five 
tests for both process and thread structures for Windows 2000 through 
Windows 2003 Server is less than 1000 lines of code.  The script can fully 
parse a 512 MB RAM image in about 7 minutes when executing on a Pentium 
3m with 1 GB of RAM. 
Potentially every member of the EPROCESS structure could be checked for 
validity using one or more tests per member, and each test could be ranked in 
order to create a heuristic for determining accuracy.  History typically shows 
that more tests should produce more accurate results.  However experiments on 
controlled, baseline RAM duplicates demonstrate high accuracy with as few as 
five implemented tests. 
The implementation confirms that information about the state of a system can 
be found postmortem.  At the very least, Task Manager functionality can be 
simulated by locating EPROCESS structures in a RAM image, and in some 
cases more information is available than Task Manager is capable of reporting 
(such as an "old" process).  Furthermore, good acquisition techniques can 
provide this information with less impact than using similar tools on a live 
system.  Unfortunately, this does not give a responder the ability to alter the 
response based on the state in which the system is found, but does allow the 
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state of the system to be preserved along with the preservation of the non-
volatile stores, and inspected at a later time.  Further preserving system state 
and the capability to re-inspect RAM contents at a later time are both desirable 
abilities, and should warrant the consideration of RAM acquisition as part of 
incidence response. 

6. FUTURE WORK 
The current state of the tool should definitely be considered beta and should 
not be construed as production level.  It could easily be improved or redesigned 
to be more likely to be adopted by mainstream responders.  Desirable features 
may include: automatic detection of the OS from which the RAM was 
acquired, detection of popular dump formats (DMP) versus dd-style RAM 
capture, automated extraction of selected/certain processes memory space, 
pagefile unification, automated store correlation (i.e. registry hives), supporting 
boot switches such as /3G and /PAE, and supporting architectures other that 
i386. 
Similar to how hash lists are used today for known good or known bad files, 
lists or heuristics could be added in order to bring attention to objects that are 
likely to require further research.  In order to find outliers, the set of processes 
found via brute-force could be compared with those found in the linked list that 
is maintained by the OS.  Processes and threads that "don't play by the rules" 
could be flagged as well (i.e. no window title, path, etc) 
The current version of the analysis tool is limited to process related 
information.  The creation of similar tools to obtain other popular incident 
response information (like current network information, open files, etc) should 
be explored.  
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