SOME SUMS FORMULAE FOR PRODUCTS OF TERMS OF PELL, PELLLUCAS AND MODIFIED PELL SEQUENCES

Serpil HALICI
Sakarya Üni., Sciences and Arts Faculty, Dept. of Math., Esentepe Campus, Sakarya. shalici@ssakarya.edu.tr
Özet

Pell, Pell-Lucas ve Modified Pell dizilerinin terimleri için bazı toplam formüllerini elde ettik. Ayrıca, bu toplamların bu dizilerin terimlerine göre yazılabileceğini de gösterdik.

Abstract

We derive some sums formulae for certain products of terms of the Pell, Pell-Lucas and modified Pell sequences. Also, we show that these sums can be rewritten in terms of these sequences.

Keywords : Pell Sequences, Binet Formulae, Recurrence Relations.
AMS Subject Classification: 11B37, 11B39.

1. INTRODUCTION

The Fibonacci and Lucas sequences can be considered as interesting classes of numbers. Applications of the Fibonacci and Lucas numbers provide a wide area to researchers. Also, Pell numbers and Pell identities have been the subject of many studies, see for instance [1, 2, 3]. For ≥ 2, the Pell $\left\{P_{n}\right\}$, Pell-Lucas $\left\{Q_{n}\right\}$ and modified Pell sequences $\left\{q_{n}\right\}$ are given by the following recurrence relations:
$P_{n}=2 P_{n-1}+P_{n-2}, \quad P_{0}=0, \quad P_{1}=1$,
$Q_{n}=2 Q_{n-1}+Q_{n-2}, \quad Q_{0}=2, \quad Q_{1}=2$,
$q_{n}=2 q_{n-1}+q_{n-2}, \quad q_{0}=1, \quad q=1$.

The Binet formulae for these sequences are
$P_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, Q_{n}=\alpha^{n}+\beta^{n}, q_{n}=\frac{\alpha^{n}+\beta^{n}}{\alpha+\beta}$,
where α and β are the roots of the characteristic equation for these sequences. For $n=1,2,3, \ldots$
$\left\{P_{n}\right\}=\{1,2,5,12,29,70,169,408,985, \ldots\}$,
$\left\{Q_{n}\right\}=\{2,6,14,34,82,198,478,1154, \ldots\}$,
$\left\{q_{n}\right\}=\{1,3,7,17,41,99,239,577, \ldots\}$
can be written. Horadam in [1, 2] gave some identities concerning with these numbers. Some of them are

$$
P_{2 n+1}=P_{n}^{2}+P_{n+1}^{2}, \quad Q_{n}=2 q_{n}
$$

SAÜ. Fen Bilimleri Dergisi, 15. Cilt, 2. Sayı, s.151-155, 2011

Some Sums Formulae for Products of Terms of Pell, Pell-Lucas and Modified Pell Sequences
S. HALICI
where P_{n} and Q_{n} are the $n t h$ Pell and Pell-Lucas numbers, respectively. Also, in [3] authors gave some equations involving the Pell numbers as
$2 P_{n-1} P_{n}=P_{n+1}^{2}-P_{n-1}^{2}-2 P_{n+1} P_{n}$,
$P_{1}^{2}+P_{2}^{2}+\cdots+P_{n}^{2}=\frac{P_{n+1} P_{n}}{2}$.

The purpose of this paper is to derive some relationships among these numbers and obtain closed formulas for their sums. By Binet formulas for these sequences, we easily get the following equations;
$P_{n} Q_{m}=P_{n+m}+(-1)^{m} P_{n-m}, m, n \in \mathbb{Z}$,
$P_{2 n}=P_{n} Q_{n}, \quad P_{2 n+1}=P_{n} Q_{n+1}+(-1)^{n}$,
$P_{n}=\frac{Q_{n+1}+Q_{n-1}}{8}, \quad P_{n}^{2}=\frac{Q_{2 n}+2(-1)^{n+1}}{8}$,
$Q_{n}^{2}=2\left(q_{2 n}+(-1)^{n}\right)=\left(Q_{2 n}+2(-1)^{n}\right) q_{n}^{2}=$
$\frac{1}{2}\left(q_{2 n}+(-1)^{n}\right)$,
$P_{n} P_{n+1}=\frac{1}{4}\left(q_{2 n+1}+(-1)^{n+1}\right)$,
$P_{2 n+1}=\frac{1}{2}\left(P_{n} Q_{n+1}+Q_{n} P_{n+1}\right)$,
$Q_{2 n+1}=\frac{1}{2}\left(8 P_{n} P_{n+1}+Q_{n} Q_{n+1}\right)$,
$P_{n} P_{n+k}=\frac{1}{8}\left(Q_{2 n+k}+(-1)^{n+1}\right) Q_{k}$,
$P_{n} P_{n+1}=\frac{1}{8}\left(Q_{2 n+1}+2(-1)^{n+1}\right)$,
$P_{n} P_{n+k}=\frac{1}{4}\left(q_{2 n+k}+(-1)^{n+1}\right) q_{k}$,
$Q_{n} Q_{n+1}-Q_{2 n+1}=2(-1)^{n}$,
$P_{n} Q_{n+1}-P_{n+1} Q_{n}=2(-1)^{n+1}$,
$2 q_{n}^{2}-q_{2 n}=(-1)^{n}$,

$$
\begin{aligned}
& 2 q_{n} q_{n+1}-q_{2 n+1}=(-1)^{n}, \\
& P_{n} q_{n+1}+P_{n+1} q_{n}=P_{2 n+1}, \\
& P_{n} q_{n+1}-P_{n+1} q_{n}=(-1)^{n+1} .
\end{aligned}
$$

2. SOME SUMS FORMULAE FOR PELL, PELL-

LUCAS AND MODIFIED PELL SEQUENCES

Now, we will give the following sums formulas by using the equations given in the section one.

Proposition 1. If P_{n} and Q_{n} are the $n t h$ Pell and PellLucas numbers, respectively, then we have

$$
\sum_{k=1}^{n} P_{k} Q_{k}=\frac{P_{2 n+1}-1}{2}
$$

Proof. If we write the sum $\sum_{k=1}^{n}\left(P_{k}+Q_{k}\right)^{2}$ in the following form,
$\sum_{k=1}^{n}\left(P_{k}+Q_{k}\right)^{2}=\frac{\left(P_{n}+Q_{n}\right)\left(P_{n+1}+Q_{n+1}\right)}{2}-\left(P_{1}+Q_{1}\right)$, then, we can write
$\sum_{k=1}^{n}\left(P_{k}+Q_{k}\right)^{2}=\frac{P_{n} P_{n+1}+P_{n} Q_{n+1}+P_{n+1} Q_{n}+Q_{n+1} Q_{n}}{2}-3$,
$\sum_{k=1}^{n}\left(P_{k}+Q_{k}\right)^{2}=\frac{1}{2}\left[\frac{1}{8} Q_{2 n+1}-\frac{(-1)^{n}}{4}+2 P_{2 n+1}+Q_{2 n+1}+\right.$ $\left.2(-1)^{n}\right]-3$,
$\sum_{k=1}^{n}\left(P_{k}+Q_{k}\right)^{2}=P_{2 n+1}+\frac{9}{16} Q_{2 n+1}+\frac{7}{8}(-1)^{n}-3$.

On the other hand, we can write
$\sum_{k=1}^{n}\left(P_{k}+Q_{k}\right)^{2}=\sum_{k=1}^{n}\left(P_{k}\right)^{2}+2 \sum_{k=1}^{n} P_{k} Q_{k}+$ $\sum_{k=1}^{n}\left(Q_{k}\right)^{2}$,
$\sum_{k=1}^{n}\left(P_{k}+Q_{k}\right)^{2}=$
$\frac{P_{n} P_{n+1}}{2}+2 \sum_{k=1}^{n} P_{k} Q_{k}+\frac{Q_{2 n+1}+2(-1)^{n}-4}{2}$

SAÜ. Fen Bilimleri Dergisi, 15. Cilt, 2. Sayı, s.151-155, 2011

$$
\begin{aligned}
P_{2 n+1}+\frac{9}{16} Q_{2 n+1} & +\frac{7}{8}(-1)^{n}-3 \\
& =2 \sum_{k=1}^{n} P_{k} Q_{k} \\
& +\frac{9 Q_{2 n+1}+14(-1)^{n}-32}{16}
\end{aligned}
$$

By the certain arrangements, we get
$\sum_{k=1}^{n} P_{k} Q_{k}=\frac{P_{2 n+1}-1}{2}$.

Thus, the proof of the proposition is completed. QED.

Corollary 1. Let P_{n} and q_{n} are the $n t h$ Pell and Modified Pell numbers, respectively. Then, for all positive integers n
$\sum_{k=1}^{n} P_{k} q_{k}=\frac{P_{2 n+1}-1}{4}$,
$\sum_{k=1}^{n} P_{k}^{2}=\frac{q_{2 n+1}+(-1)^{n+1}}{8}$,
$\sum_{k=1}^{n} P_{k} P_{k+1}=\frac{q_{2 n}-2+(-1)^{n}}{8}$,
$\sum_{k=1}^{n} P_{k}^{2}=\frac{Q_{2 n+1}+2(-1)^{n+1}}{16}$.

Proposition 2. If P_{n}, Q_{n} are the $n t h$ Pell and Pell-Lucas numbers, then we have
$\sum_{k=1}^{n} P_{i} P_{i+k}=\frac{1}{16}\left(Q_{2 n+k+1}-Q_{k+1}\right)$; if n is even.
$\sum_{k=1}^{n} P_{i} P_{i+k}=\frac{1}{16}\left(Q_{2 n+k+1}-Q_{k-1}\right) ;$ if n is odd.

Proof. Using the equation $P_{n} P_{n+k}=\frac{1}{8}\left(Q_{2 n+k}+\right.$ $\left.(-1)^{n+1}\right) Q_{k}$,

Some Sums Formulae for Products of Terms of Pell, Pell-Lucas and Modified Pell Sequences
S. HALICI

$$
\begin{gathered}
P_{1} P_{k+1}=\frac{1}{8}\left(Q_{k+2}+Q_{k}\right) \\
P_{2} P_{k+2}=\frac{1}{8}\left(Q_{k+4}-Q_{k}\right) \\
P_{3} P_{k+3}=\frac{1}{8}\left(Q_{k+6}+Q_{k}\right) \\
\vdots \\
P_{n} P_{n+k}=\frac{1}{8}\left(Q_{2 n+k}+(-1)^{n+1} Q_{k}\right)
\end{gathered}
$$

Then, we obtain that

$$
\begin{aligned}
P_{1} P_{k+1}+P_{2} P_{k+2} & +\cdots+P_{n} P_{n+k} \\
& =\frac{1}{8}\left(Q_{k+2}+Q_{k+4}+\cdots+Q_{2 n+k}+\delta\right)
\end{aligned}
$$

where $\delta=\left\{\begin{array}{rl}Q_{k} & \text { if } n \text { is even }, \\ 0 & \text { if } n \text { is odd }\end{array}\right.$.

Notice that there are two different cases according to the choose of k. That is, k is an odd integer number such that $k=2 p-1, p \in \mathrm{Z}$, then
$\sum_{i=1}^{n} P_{i} P_{i+k}=\frac{1}{8}\left(Q_{2 p+1}+Q_{2 p+3}+\cdots+Q_{2 n+2 p-1}+\delta\right)$,
$\sum_{i=1}^{n} P_{i} P_{i+k}=\frac{1}{8}\left(\sum_{i=1}^{n+p-1} Q_{2 i+1}-\sum_{i=1}^{p-1} Q_{2 i+1}+\delta\right)$
$\sum_{i=1}^{n} P_{i} P_{i+k}=\frac{1}{8}\left(\frac{Q_{2 n+2 p}-6}{2}-\frac{Q_{2 p}-6}{2}+\delta\right)$
$\sum_{i=1}^{n} P_{i} P_{i+k}=\frac{1}{16}\left(Q_{2 n+k+1}-Q_{k+1}+2 \delta\right)$

SAÜ. Fen Bilimleri Dergisi, 15. Cilt, 2. Sayı, s.151-155, 2011
can be obtained. And then, we consider k is an even integer number such that $k=2 p, p \in \mathrm{Z}$. Thus,
$\sum_{i=1}^{n} P_{i} P_{i+k}=\frac{1}{8}\left(Q_{2 p+2}+Q_{2 p+4}+\cdots+Q_{2 n+2 p}+\delta\right)$,
$\sum_{i=1}^{n} P_{i} P_{i+k}=\frac{1}{8}\left(\sum_{i=1}^{n+p} Q_{2 i}-\sum_{i=1}^{p} Q_{2 i}+\delta\right)$,
$\sum_{i=1}^{n} P_{i} P_{i+k}=\frac{1}{8}\left(\frac{Q_{2 n+2 p+1}-2}{2}-\frac{Q_{2 p+1}-2}{2}+\delta\right)$,
$\sum_{i=1}^{n} P_{i} P_{i+k}=\frac{1}{16}\left(Q_{2 n+k+1}-Q_{k+1}+2 \delta\right)$.
Thus, the proof is completed. QED.

Moreover, we can get some sums for Modified Pell numbers;

If n is a even number, then we can write
$\sum_{i=1}^{n} P_{i} P_{i+k}=\frac{1}{8}\left(q_{2 n+k+1}-q_{k+1}\right) ;$

If n is a odd number, then we can write
$\sum_{i=1}^{n} P_{i} P_{i+k}=\frac{1}{8}\left(q_{2 n+k+1}-q_{k-1}\right)$.

Proposition 3. If Q_{n} is the $n^{\text {th }}$ Pell-Lucas number, then we have
$Q_{n+1} Q_{n-1}-Q_{2 n}=6(-1)^{n+1}$.

Proof. For $1,2,3, \ldots, n-1$ we write the following equation;

Some Sums Formulae for Products of Terms of Pell, Pell-Lucas and Modified Pell Sequences
 S. HALICI

we can get

$$
\begin{aligned}
\sum_{k=1}^{n-1} P_{k} P_{k+1}= & \frac{\left(\frac{\mathrm{Q}_{\mathrm{n}+1}+\mathrm{Q}_{\mathrm{n}}}{4}\right)^{2}+\left(\frac{\mathrm{Q}_{\mathrm{n}-1}+\mathrm{Q}_{\mathrm{n}}}{4}\right)^{2}}{4} \\
& +\frac{-\left(\frac{\mathrm{Q}_{\mathrm{n}+1}+\mathrm{Q}_{\mathrm{n}}}{4}\right)\left(\frac{\mathrm{Q}_{\mathrm{n}-1}+\mathrm{Q}_{\mathrm{n}}}{4}\right)-1}{2}
\end{aligned}
$$

Here, if we use $\mathrm{Q}_{\mathrm{n}}{ }^{2}=\mathrm{Q}_{2 \mathrm{n}}+2(-1)^{n}$, then we have
$\sum_{k=1}^{n-1} P_{k} P_{k+1}$
$=\frac{Q_{2 n+2}+Q_{2 n-2}-2 Q_{n+1} Q_{n-1}+4(-1)^{n+1}-16}{64}$.

On the other hand, we know that $\sum_{k=1}^{n-1} P_{k} P_{k+1}=$ $\frac{\mathrm{Q}_{2 \mathrm{n}}-4+2(-1)^{n}}{64}$.

If we equal the right sides of the last two equations, then we have
$Q_{n+1} Q_{n-1}-Q_{2 n}=6(-1)^{n+1}$.

Thus, the proof is completed. So, the next corollary can be given without proof.

Corollary 2. If q_{n} is the nth modified Pell number, then we have
$q_{2 n+2}+q_{2 n-2}-4\left(q_{2 n}+q_{n+1} q_{n-1}\right)=6(-1)^{n}$.

REFERENCES

[1] Horadam, A. F., Applications of Modified Pell Numbers to Representations, Ulam Quarterly, 3(1), (1994), 34-53.

SAÜ. Fen Bilimleri Dergisi, 15. Cilt, 2. Sayı, s.151-155, 2011

Some Sums Formulae for Products of Terms of Pell, Pell-Lucas and Modified Pell Sequences S. HALICI

[4] Vajda, S., Fibonacci and Lucas numbers and the Golden section: Theory and Applications, Ellies Horwood Ltd., (1989).
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, AWiley-Intersection Publication, 2001.

