DETERMINATION OF DIPOLE MOMENT OF OXALIC ACID IN DIFFERENT SOLVENTS

Nalan TEKİN, Mustafa CEBE

Özef - Deneysel diclektrik sabitleri kullanılarak okzalik asit ¢̧̈zeltilerinin $20^{\circ} \mathrm{C}$ de ve farklı çözücülerde hazırlanan çözeltilerinin dipol momentleri belirlenmiştir. Okzalik asitin dipol monenti üzerine çözücülerin etkisi tartışılmıştır. Diğer önemli fiziksel nicelikler olan kırma indisleri, yoğunluklar ve dielektrik sabitleri de belirlenmiştir.

Anahtar Kelimeler - Dipol Moment, Debye Teorisi, Kırma İndisi, Dielektrik Sabiti

Abstract - The dipole moments of the solutions of oxalic acid in different solvents at $20^{\circ} \mathrm{C}$ are obtained by using the experimental dielectric constants. The cffect of the solvent on the dipole moment of oxalic acid is discussed. Other important physical quantities such as refractive index, density and dielectric constant are also determined.

Keywords - Dipole moment; Debye theory; Rcfractive index, Dielectric Constant.

I. INTRODUCTION

Because the dipole moment (μ) gives information about the molecular shape and the electronic change distribution in the molecule, it is therefore very important in characterizing and in elucidation of the molecular structure of various substances [1,2].

It was pointed out by Debye that molecules of the socalled polar molecules, though electrically neutral, possess a non vanishing electric dipole moment even in the absence of applied fields and that the magnitude of the molecular dipole moment could be found from the permittivity (dielectric constant) data [2,3]. The dipole moment can be computed from observation of the permittivity determined from electrical methods (static fields) in the low frequency range.

The study of the dielectric constant is so important that it can provide information about the dipole moments and polarizability and about the behaviour of the molecules under the influence of an external or internal electric field. [4]

We use the Clausius-Mosotti equation for calculation of the dipole moments with a high degree of accuracy $[1,2,5]$. The aim of this paper is to measure some themodynamic and physical properties relevant with the solutions.

II. EXPERIMENTAL

The density of the solutions, which is required to determine other physical properties, was measured at $20^{\circ} \mathrm{C}$ by pycnometric method, the pycnometer volume being between 20 and 25 mL . The temperature of the thermostatic bath was controlled in the range between $0 \pm 0.5^{\circ} \mathrm{C}$ and $50 \pm 0.5^{\circ} \mathrm{C}$.

An Abbe refractometer was used to measure the refractive index at $20 \pm 0.2^{\circ} \mathrm{C}$; the refractometer cell was connected with a temperature-controlled bath. The wavelength is $589.6 \mathrm{~nm}, \mathrm{Na}$ (D-line).

The dielectric constants measurements were carried out using HP 4192 Ab model Empedans Analyzer for solutions of oxalic acid in the frequency 100 kHz at $20^{\circ} \mathrm{C}$ with a home-made liquid cell. A parallel plate geometry with a guard ring was used and the liquid volume required is small (about 1 ml). The cell was calibrated by measuring, after careful cleaning, the capacity under vacuum.

Solutions were prepared using solvents which have different dielectric constants such as methyl alcohol, ethyl alcohol, n-propyl alcohol, iso-propyl alcohol, cyclohexane and toluene. The concentration range of solutions were 2.00×10^{-3} to $1.00 \times 10^{-3} \mathrm{molL}^{-1}$.

III. RESULTS AND DISCUSSION

In this study the physical quantities such as refractive index, density and dielectric coefficient are measured. The physicochemical properties of oxalic acid solutions in different solvents at $20^{\circ} \mathrm{C}$ are shown in Table 1 .

The dielectric constants were calculated by the following equation,

$$
\begin{equation*}
\varepsilon=C / C_{0} \tag{1}
\end{equation*}
$$

Where, C_{0} is capacitance of condenser in vacuum and C is capacitance of solution in condenser.

Dipole moments of molecular systems are calculated by dielectric constant measurement of solutions which were prepared in non-polar solvents. The total molar polarization can be obtained by applying the ClasiusMosotti equation $[1,6]$:

$$
\begin{equation*}
\left.P_{s}=\left(\left(\varepsilon_{s}-I\right) /\left(\varepsilon_{\mathrm{s}}+2\right)\right)\left(\left(M_{1} X_{1}+M_{2} X_{2}\right) / \rho_{\mathrm{s}}\right)\right) \tag{2}
\end{equation*}
$$

Where, X_{2} is mol fraction of solute, $X_{:}$is mol fraction of solvents, M_{1} and M_{2} are molecular weight of solvent and solute, respectively.

$$
\begin{equation*}
P_{s}=P_{1} X_{1}+P_{2} X_{2} \tag{3}
\end{equation*}
$$

There are two molar polarization terms. P_{s} is a functional term which has two parameters. $P_{\mathrm{s}}=f\left(X_{1}, X_{2}\right)$. In this study, solutions in different proportions were prepared, then ε_{s} and ρ_{s} of solutions were determined. The different P_{s} values were plotted against X_{2}. While mole fraction of solute led to zero at limiting position, $P_{s,}$, limit value of molar polarization can also be extrapolated [7].

$$
\begin{equation*}
\lim _{X_{2} \rightarrow 0} P_{s}=P_{2} \tag{4}
\end{equation*}
$$

P_{2}, molar polarization of solute was obtained by using extrapolation equation.
P_{2} of the solutions which were calculated by using Eq. (2) were plotted against X_{2}, mole fractions of solute in the solutions [7]. While mole fraction of solute leads to zero at limiting position, P_{s}, limit value of molar polarization were extrapolated. P_{2} of the solutions are shown in Fig. 1.

Fig. 1. P_{2}, molar polarizations of the oxalic acid solutions in different solvents at $20^{\circ} \mathrm{C}$. The compositions are methy! alcohol (\uparrow), ethyl alcohol ($\mathbf{~}$), n-propyl alcohol (Δ), iso-propyl alcohol x, cyclohexane $(*)$, toluene (\bullet).

From Lorenz-Lorentz equations, R_{2} molar refractivity value of solute was obtained. It is given by;

$$
\begin{equation*}
R_{1,2}=\left(\frac{n^{2}-1}{n^{2}+2}\right)\left(\frac{X_{1} M_{1}+X_{2} M_{2}}{\rho_{s}}\right) \tag{5}
\end{equation*}
$$

where, n is refractive index of the solutions, M_{1} and $M_{\text {, }}$ are molecular weight of solvent and solute, respectively and ρ_{s} is density of the solutions [$8,9,10$]. The different $R_{l, 2}$ values were plotted against X_{l}. While mole fraction of solvent led to one at limiting position, $R_{l, 2}$, limit value of molar refractive can also be extrapolated. R_{2}, molar refractive value of the solute was obtained by using extrapolation equation.

$$
\begin{equation*}
\lim _{x_{1} \rightarrow 0} R_{1,2}=R_{2} \tag{6}
\end{equation*}
$$

R_{2} of the solutions which were calculated by using Eq. (5) were plotted against X_{l}, mole fractions of solvent in the solutions. While mole fraction of solvent leads to zero at limiting position, $R_{s,}$, limit value of molar refractivity were extrapolated. R_{2} of the oxalic acid solutions are shown in Fig. 2.

Table I. Physicochernical properties of oxalic acid solutions in different solvents at $20^{\circ} \mathrm{C}$.

Concentration (molell)	Physicochemical Properties of Oxalic acid		
	$\rho(\mathrm{g} / \mathrm{ml})^{\text {a }}$	$\varepsilon^{\text {a }}$	$\mathrm{n}^{\text {a }}$
Methyl Alcohol			
2.00×10^{-3}	0.7944	53.08	1.3297
1.00×10^{-3}	0.7940	34.83	1.3295
8.00×10^{-4}	0.7935	27.46	1.3295
5.00×10^{-4}	0.7926	25.36	1.3295
3.00×10^{-4}	0.7917	23.15	1.3294
1.00×10^{-4}	0.7913	17.89	1.3294
5.00×10^{-5}	0.7907	17.21	1.3292
1.00×10^{-5}	0.7902	15.73	1.3292
Ethyl Alcohol			
2.00×10^{-3}	0.8116	50.61	1.3631
1.00×10^{-3}	0.8107	44.18	1.3630
8.00×10^{-4}	0.8105	28.89	1.3630
5.00×10^{-4}	0.8104	24.74	1.3629
3.00×10^{-4}	0.8101	21.50	1.3629
1.00×10^{-4}	0.8095	21.06	1.3629
5.00×10^{-5}	0.8090	21.03	1.3628
1.00×10^{-5}	0.8089	16.39	1.3628
n-Propyl Alcohol			
2.00×10^{-3}	0.8180	42.00	1.3844
1.00×10^{-3}	0.8072	41.58	1.3843
8.00×10^{-4}	0.8065	26.06	1.3843
5.00×10^{-4}	0.8063	19.23	1.3842
3.00×10^{-4}	0.8062	13.25	1.3842
1.00×10^{-4}	0.8060	12.21	1.3842
5.00×10^{-5}	0.8053	8.900	1.3840
1.00×10^{-5}	0.8044	8.460	1.3840
Iso-Propyl Alcohol			
2.00×10^{-3}	0.7892	11.84	1.3766
1.00×10^{-3}	0.7883	11.06	1.3765
8.00×10^{-4}	0.7874	10.90	1.3765
5.00×10^{-4}	0.7874	10.81	1.3764
	0.7873	10.26	1.3764
1.00×10^{-4}	0.7865	8.000	1.3763
	0.7865	7.890	1.3763
1.00×10^{-5}	0.7856	7.670	1.3763
Cyclohexane			
2.00×10^{-3}	0.7782	2.100	1.4520
1.00×10^{-3}	0.7780	2.070	1.4519
8.00×10^{-4}	0.7780	2.060	1.4519
5.00×10^{-4}	0.7776	2.050	1.4518
3.00×10^{-4}	0.7768	2.050	1.4518
1.00×10^{-4}	0.7699	2.040	1.4517
5.00×10^{-5}	0.7619	1.980	1.4517
1.00×10^{-5}	0.7605	1.930	1.4516
Toluene			
2.00×10^{-3}	0.9621	2.720	1.5185
1.00×10^{-3}	0.9620	2.700	1.5184
8.00×10^{-4}	0.9602	2.700	1.5183
5.00×10^{-4}	0.9546	2.700	1.5183
3.00×10^{-4}	0.9500	2.690	1.5182
1.00×10^{-4}	0.9493	2.680	1.5181
5.00×10^{-5}	0.9407	2.640	1.5181
1. 00×10^{-5}	0.9368	2.631)	1.5180

Fig. 2. R_{2}, molar refractivity of the oxalic acid solutions in different solvents at $20^{\circ} \mathrm{C}$. The compositions are methyl alcohol (\bullet), ethyl alcohol (\quad), n-propyl alcohol (4), iso-propyl alcohol x , cyclohexane $(*)$, toluene (\bullet)
P_{2} and R_{2} values are reported here. Dipole moment of solute in Debye was calculated by using P_{2} molar polarization and $R 2$ molar refractivity term [7].

$$
\begin{equation*}
\mu=0,0128\left[\left(P_{2}-R_{2}\right) \cdot T\right]^{12} \tag{7}
\end{equation*}
$$

Physical means of 1 Debye is $10^{-18} \mathrm{esybxcm}$. In this study, obtained dipole moment is known as continuous dipole moment. If a molccular system has polar atomic groups and asymmetric geometry, dipole moment of the molecular system can be calculated by above equations.
P_{2} and R_{2} of the oxalic acid solutions which were calculated by using [12] Eq. (2-5) are shown in Table II. The concentrations of the oxalic acid solutions are $2 \times 10^{-3} \mathrm{M}$. Table II. shows the calculated dipole moments of oxalic acid solutions by Eq. (7).

Table 2. Molar polarizability, P_{2}; molar refractivity, R_{2} and dipole moment, μ values of oxalic acid solutions in different solvents at $20^{\circ} \mathrm{C}$.

Solvent	Oxalic acid		
	$\mathrm{P}_{2}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	$\mathrm{R}_{2}\left(\mathrm{~cm}^{3} \mathrm{~mol}^{-1}\right)$	$\mu(\mathrm{D})$
Methyl Alcohol	33.751	32.394	0.2553
Ethyl Alcohol	46.805	28.542	0.9366
n-propyl Alcohol	58.737	29.663	1.1817
Iso-propyl alcohol	53.458	32.740	0.9975
Cyclohexane	30.414	29.328	0.2283
Toluene	29.911	28.622	0.2489

IV. CONCLUSIONS

When the solvents are compared with each other, it can be seen that dipole moments of prepared solutions with n-propyl alcohol are much greater than the other solvents. The result is shown in Table. II. H-bonding can be reveal at this solution. Weak energy interactions caused by the geometric structure of molecular systems are changed and system has asymmetric structure. It is determined that dipole moments of oxalic acidcyclohexane and oxalic acid-toluene systems are lower than the other systems (Table). According to the results, interactions are weak in this systems and the solvents have non-polar property.

REFERENCES

[1]. H. E]-Kashef Opt. Mater. 10 (1998), p. 207.
[2]. H. El-Kashef Opt. \& Las. Techn. 30 (1998), p. 367.
[3]. G. Marchionni, M. Bassi, G. Fontana, P. Maccone, G. Ajroldi J. Flourine Chem. 98 (1999), p. 41.
[4]. M.T. Barao, U.V. Mardolcar, C..A. Nieto de Castro Fluid Phase Equilibria. 150 (1998), p. 753.
[5]. H.M.Shabana Polym. Testing 19 (2000), p. 493.
[6]. P. Debye, Polar Molecules, Dover Publication, New York 1929.
[7]. M. Cebe, Atom ve Molekūl Kimyası (Bursa, 1998)
[8]. S. Victor, P. Ljupco and S. Bojan J. Mol. Struct. 1 (2003), p. 13.
[9]. M. Cebe, Fizikokimya Il. (Bursa, 1995)
[10]. H. El-Kashef Opt. Mater. 10 (1998), p. 305.
[11]. N. Tekin, "Değişik Türde Bileşen İçeren Çözelti Ortamlarinda Kinetik ve Termodinamir. Parametrelerin Fizikokimyasal İslemlerle Karakterizasyonu" PhD Thesis, Balıkesir Üniversitesi, Balıkesir, Turkiye, 2002.
[12]. Hohmann H., International Lab. 29 (1999), p. 12.

