Abdominal Obesity And Pulmonary Function In Adults

Swapnil J. Paralikar*, Mukesh R. Dinkar**

*Assistant Profesor, **Professor & Head, Department of Physiology, GMERS Medical College, Gotri, Vadodara

Abdominal obesity is a cardiovascular risk factor that is associated with insulin resistance, impaired glucose metabolism, hypertension, and dyslipidemia, all of which are features that are associated with the metabolic syndrome ^{1,2}. Insulin resistance is recognized as a low-grade inflammatory condition³ and proinflammatory cytokines (i.e. adiponectin, leptin, tumor necrosis factor- alpha and interleukin-6) are associated with obesity^{4,5}. Systemic inflammation is also thought to play a role in the association between reduced pulmonary function and cardiovascular mortality as well as all-cause mortality^{6,7}. Insulin resistance and inflammation that arise from abdominal obesity may mediate the relation of pulmonary function and all-cause mortality.

A number of studies have explored the relation between abdominal obesity and pulmonary function. H M Ochs-Balcom et al ⁸ investigated the relation of a number of adiposity markers with pulmonary function in a population-based study. They found inverse associations of abdominal height and waist circumference with pulmonary function in men and women with BMI values of $\geq 25 \text{kg/m}^2$. Their results suggested that both overall and abdominal adiposity are negatively associated with FEV₁ and FVC, and that abdominal adiposity markers (i.e. abdominal height and waist circumference) have better explanatory power than total body adiposity Canoy et al 9 measured as BMI or weight. analyzed the association of waist/hip ratio and pulmonary function in the European Prospective Investigation into Cancer and Nutrition study (EPIC-Norfolk), and reported an inverse association that remained significant after adjustment for BMI. Chen et al ¹⁰ analyzed waist circumference and pulmonary function in a sample of men and women in the United Kingdom. authors found These inverse of waist circumference associations and pulmonary function. Harik-Khan et al investigated the association of fat distribution and pulmonary function using waist/hip ratio. They reported an inverse association of FEV₁ and waist/hip ratio in men only. Lazarus et al ¹² found no inverse associations of waist circumference or waist/hip ratio with FVC in women. These authors also reported an inverse association of abdominal girth/hip breadth ratio with pulmonary function after adjustment for BMI in men over a narrow range in the Normative Aging Study¹³. Collins et al ¹⁴ examined normal to mildly obese firefighters and found decreased pulmonary function in men with a waist/hip ratio of >0.95.

A number of hypotheses have been proposed to explain the negative co-relation between pulmonary function parameters and measures of visceral obesity. One possible mechanism is a mechanical limitation of chest expansion during the FVC maneuver. Increased abdominal mass may impede the descent of the diaphragm and increase thoracic pressure¹⁵. Also, abdominal obesity is likely to reduce expiratory reserve volume via compressing the lungs and diaphragm^{16,17}. In addition, visceral adipose tissue influences circulating concentrations of interleukin-6, tumor necrosis factor- alpha, leptin and adiponectin, which are cytokines that may act via systemic inflammation to negatively affect pulmonary function ^{4,5} Investigators reported an inverse association of serum leptin concentrations with FEV₁ as well as higher levels of C-reactive protein, leucocytes, and fibrinogen, which are markers of systemic inflammation¹⁸ Therefore, inflammation may be the link between visceral obesity and pulmonary function.

To conclude, abdominal obesity is an important determinant of impaired pulmonary function, and it is of greater importance than overall adiposity markers such as weight and BMI. Therefore, investigators should consider the inclusion of markers of abdominal obesity as a potential confounding factor when investigating the determinants of pulmonary function.

Referencess

 Sowers JR. Obesity as a cardiovascular risk factor. Am J Med 2003; 115 (suppl): 37 S -41S.

- 2. Reaven GM. Banting lecture 1988: role of insulin resistance in human disease.Diabetes 1988; 37 : 1595-1607.
- Dandona P, Aljada A, Bandhopadhyay A. Inflammation : the link between insulin resistance, obesity and diabetes. Trends Immunol 2004 ; 25 : 4-7.
- Kern PA, Ranganathan S, Li C , Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001 ; 280 : E 745-E751.
- Staiger H, Tschritter O, Machann J, Tharner C, Fritsche A, Maerker E, et al. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes Res 2003; 11: 368-372.
- Schunemann H J, Dorn J, Grant BJ, Winkelstein W Jr., Trevisan M. Pulmonary function is a long term predictor of mortality in the general population : 29-year follow up of the Buffalo Health Study. Chest 2000 ; 118 : 656-664.
- Ryan G, Knuiman MW, Divitini ML, James A, Musk AW, Bartholomew HC. Decline in lung function and mortality : the Busselton Health study. J Epidemiol Community Health 1999; 53 : 230-234.
- Heather M. Ochs-Balcom, Brydon J.B. Grant, Paola Muti, Sempos CT, Freudenheim JL, Trevisan M, et al : Pulmonary function and abdominal adiposity in the general population. Chest 2006 ; 129 : 853-862.
- Canoy D, Luben R, Welch A, Bingham S, Wareham N, Day N, et al. Abdominal obesity and respiratory function in men and women in the EPIC-Norfolk study, United Kingdom. Am J Epidemiol 2004 ; 159 : 1140-1149.

- Chen R, Tunstall-Pedoe H, Bolton Smith C, Hannah MK, Morrison C. Association of dietary antioxidants and waist circumference with pulmonary function and airway obstruction. Am J Epidem 2001; 153 : 157-163.
- Harik-Khan RI, Wise RA, Fleg JL. The effect of gender on the relationship between body fat distribution and pulmonary function. J Clin Epidemiol 2001; 54 : 399-406.
- Lazarus R, Gore CJ, Booth M, Owen N. Effects of body composition and fat distribution on ventilatory function in adults. Am J Clin Nutr 1998 ; 68 : 35-41.
- Lazarus R, Sparrow D, Weiss ST. Effects of obesity and fat distribution on ventilatory function : the Normative Aging Study. Chest 1997; 111: 891-898.
- Collins LC, Hoberty PD, Walker JF, Fletcher EC, Peiris AN. The effects of body fat distribution on pulmonary function tests. Chest 1995; 107: 1298-1302.
- Sugerman H, Windsor A, Bessos M, Wolfe L. Intra-abdominal pressure, sagittal abdominal diameter and obesity comorbidity. J Intern Med 1997; 241: 71-79.
- Koenig SM. Pulmonary complications of obesity. Am J Med Sci 2001; 321: 249-279.
- Ray CS, Sue DY, Bray G, Hansen JE, Wasserman K. Effects of obesity on respiratory function. Am Rev Resp Dis 1983; 128 : 501-506.
- Sin DD, Man SF. Impaired lung function and serum leptin in men and women with normal body weight : a population based study. Thorax 2003 ; 58: 695-698.