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Abstract: Clustering techniques are mostly 

unsupervised methods that can be used to organize 

data into groups based on similarities among the in-
dividual data items. Fuzzy c-means (FCM) clustering 

is one of well known unsupervised clustering tech-

niques, which can also be used for unsupervised web 

document clustering. In this chapter we will intro-

duce a modified method of clustering where the data 

to be clustered will be represented by graphs instead 

of vectors or other models. Specifically, we will ex-

tend the classical FCM clustering algorithm to work 

with graphs that represent web documents (Phukon, 

K. K. (2012), Zadeh, L. A. (1965). Dunn, J. 

C.(1974)). We wish to use graphs because they can 
allow us to retain information which is often discard-

ed in simpler models. 

Keywords: Graph, Web Document, Hard Par-

tition, Fuzzy Partition, Fuzzy C- Means. 

 

 

1. INTRODUCTION 

 

 

Fuzzy clustering is well-known not 

only in fuzzy community, but also in the re-

lated fields of data analysis, neural net-

works, and other areas in computational in-

telligence. The FCM algorithm, proposed by 

Dunn, J. C. (1974) and extended by Bezdek, J. 

C. (1981), Cannon, R. L., Dave, J. V., 

Bezdek, J. C. (1986) can be applied if the 

objects of interest are represented as points 

in a multi-dimensional space. FCM relates 

the concept of object similarity to spatial 

closeness and finds cluster centers as proto-

types. Several examples of application of 

FCM to real clustering problems have 

proved the good characteristics of this algo-

rithm with respect to stability and partition 

quality. 

In general, cluster analysis refers to a 

broad spectrum of methods which try to 

subdivide a data set X into c subsets (clus-

ters) which are pair wise disjoint, all 

nonempty, and reproduce X via union. The 

clusters then are termed a hard (i.e., non-

fuzzy) c-partition of X. A significant fact 

about this type of algorithm is the defect in 

the underlying axiomatic model that each 

point in X is unequivocally grouped with 

other members of its cluster, and thus bears 

no apparent similarity to other members of 

X. One such manner to characterize an indi-

vidual point's similarity to all the clusters 

was introduced in 1965 by Zadeh. The key 

to Zadeh's idea (Zadeh, L. A. (1965)) is to 

represent the similarity a point shares with 

each cluster with a function (termed the 

membership function) whose values (called 

memberships) are between zero and one. 

Baruah (2011) has defined the membership 

function of a normal fuzzy number N=

[ , , ]    as  

 
(Eq: 1.1) 
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Where 
1( )x and 

2(1 ( ))x are two 

independent distribution functions defined in 

 ,  and [ , ]   respectively. 

Clustering techniques are generally 

applied to data that are quantitative (numeri-

cal), qualitative (categorical), or a mixture of 

both. But in this chapter we are going to put 

forward a means for clustering graphical ob-

jects with the help of FCM algorithm. Let us 

start with quantitative data where each ob-

servation may consists of n measured varia-

bles, grouped into an n-dimensional column 

vector Zk = [z1k, . . . ,znk]
T, Zk ∈ n. A set of 

N observations is denoted by Z= {zk | k = 1, 

2, . . .,N}, and is represented as an n × N ma-

trix: 

 

 
 
In the pattern-recognition terminology, 

the columns of this matrix are called pat-

terns or objects, the rows are called the fea-

tures or attributes, and Z is called the pattern 

or data matrix. The meaning of the columns 

and rows of Z depends on the context. 

 

 

2.  HARD AND FUZZY PARTITIONS 

 

 

Hard clustering methods are based on 

classical set theory, and require that an ob-

ject either does or does not belong to a clus-

ter. Hard clustering means partitioning the 

data into a specified number of mutually ex-

clusive subsets. Fuzzy clustering methods, 

however, allow the objects to belong to sev-

eral clusters simultaneously, with different 

degrees of membership. In many situations, 

fuzzy clustering is more natural than hard 

clustering. Objects on the boundaries be-

tween several classes are not forced to fully 

belong to one of the classes, but rather are 

assigned membership degrees between 0 and 

1 indicating their partial membership. 

 

 

2.1. Hard Partition 

 

 

The objective of clustering is to parti-

tion the data set Z into c clusters (groups, 

classes).Using classical sets, a hard partition 

of Z can be defined as a family of sub-

sets{Ai|1 ≤ i ≤ c} ⊂P(Z), ( P(Z) is the power 

set of Z) with the following properties 

(Bezdek, 1981): 

 

 

 

 

(Eq: 2.1.1, 2.1.2 & 2.1.3 respectively.) 

 

Equation (2.1.1) means that the union 

subsets Ai contain all the data. The subsets 

must be disjoint, as stated by (2.1.2), and 

none of them is empty nor contains all 

thedata in Z (2.1.3). In terms of member-

ship(characteristic) functions, a partition can 

be conveniently represented by the partition 

matrix U =[
ik ]c×N. The ith row of this ma-

trix contains values of the membership func-

tion i of the ith subset Ai of Z. It follows 

from the above equations that the elements 

of U must satisfy the following conditions: 
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(Eq: 2.2.1, 2.2.2 & 2.2.3 respectively.)  

 

The space of all possible hard partition 

matrices for Z, called the hard partitioning   

space (Bezdek, 1981), is thus defined by: 

 

 
1

{0,1}, , ;0 ,
N

c N
ik ikhc

k

M U i k N i 



      

( Eq: 2.3) 

 
Example 1.1 Hard partition:Let us 

illustrate the concept of hard partition by a 

simpleexample. Consider a data set Z = {z1, 

z2, . . . ,z10}, consisting of 10 web pages each 

represented by graphs. Suppose we obtained 

the figure below after calculating the dis-

tance[2,3] between each and every pair of 

graphs by using the formula: 
 

( ( , ))

( , ) 1
max( ( ), ( ( )))

i j

SOM
MCS i j

i j

d MCS z z

dist z z
d z d z



 

 
 

 
 
 
 



 

wherei,j=1,2…10 
(Eq: 2.4) 

 

as shown in Figure below: 

 

Figure 1.1.  A dataset in 
2

 

 

A visual inspection of this data may 

suggest two well-separated clusters (data 

points z1 to z4 and z7 to z10 respectively), one 

point in between the two clusters (z5), and 

an“outlier” z6. One particular partition        

U ∈ Mhc of the data into two subsets (out of 

the 210 possible hard partitions) is 

 

U= 1 1 1 1 1 1 0 0 0 0

0 0 0 0 0 0 1 1 1 1

 
 
 

 

The first row of U defines point-wise 

the characteristic function for the first subset 

of Z, A1, and the second row defines the 

characteristic function of the second subset 

of Z, A2. Each sample must be assigned ex-

clusively to one subset (cluster) of the parti-

tion. In this case, both the boundary point z5 

and the outlier z6 have been assigned to A1.It 

is clear that a hard partitioning may not give 

a realistic picture of the underlying data. 

Boundary data points may represent patterns 

with a mixture of properties of data in A1 

and A2, and therefore cannot be fully as-

signed to either of these classes, or do they 

constitute a separate class. This shortcoming 

can be alleviated by using fuzzy partitions as 

shown in the following sections. 
 

 

2.2. Fuzzy Partition 

 

 

Generalization of the hard partition to 

the fuzzy case follows directly by allowing 

ik to attain real values in [0, 1]. Conditions 

for a fuzzy partition matrix, analogous to 

(2.2) are given by (Ruspini, 1970): 

 
(Eq: 2.5.1, 2.5.2 & 2.5.3 respectively.) 
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The ith row of the fuzzy partition ma-

trix U contains values of the ith membership 

function of the fuzzy subset Ai of Z. Equa-

tion (2.5.2) constrains the sum of each col-

umn to 1, and thus the total membership of 

each zk in Z equals one. The fuzzy partition-

ing space for Z is the set 

 

 
1

[0,1], , ;0 ,
N

c N

fc ik ik

k

M U i k N i 



        

(Eq. 2.6) 

 

Example 1.2: Fuzzy partition: Let us 

consider the data set from Example 1.1. One 

of the infinitely many fuzzy partitions in Z 

is: 

U = 1.0 1.0 1.0 0.8 0.5 0.5 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.2 0.5 0.5 0.8 1.0 1.0 1.0

 
 
 

 

 

The boundary point z5 has now a 

membership degree of 0.5 in both classes, 

which correctly reflects its position in the 

middle between the two clusters. Note, how-

ever, that the outlier z6 has the same pair of 

membership degrees, even though it is fur-

ther from the two clusters, and thus can be 

considered less typical of both A1 and A2 

than z5. This is because condition (2.5.2) 

requires that the sum of memberships of 

each point equals one. It can be, of course, 

argued that three clusters are more appropri-

ate in this example than two. In general, 

however, it is difficult to detect outliers and 

assign them to extra clusters.  

 

 

3. FUZZY C-MEANS CLUSTERING 

 

 

Most analytical fuzzy clustering algo-

rithms (and also all the algorithms presented 

in this chapter) are based on optimization of 

the basic c-means objective function, or-

some modification of it. Hence we start our 

discussion with presenting the FCM func-

tional. 

3.1 The Fuzzy c-Means Functional 

 

 

A large family of fuzzy clustering al-

gorithms is based on minimization of the 

fuzzy c-means functional formulated as 

(Dunn, 1974; Bezdek, 1981): 

 

J(Z;U,V) =  
2

1 1

c N
m

ik k i A
i k

z v
 


 

 

where 

 

U=  ik fcM 
 

is a fuzzy partition matrix of Z, 

 

V=[v1, v2, …,vc ], vi
n  

 

is a vector of cluster prototypes(centers), 

which have to be determined, 

 
2

ikAD 
2

k i A
z v =    

T

k i k iz v A z v   

 

is a squared inner product distance norm 

where A is a norm-inducing matrix, and  

 

m  1, 
 

 

(Eq: 3.1.1, 3.1.2, 3.1.3, 3.1.4 & 3.1.5 respec-

tively.)
 

    
 

is a parameter which determines the fuzzi-

ness of the resulting clusters. The value of 

the cost function (8.1) can be seen as a 

measure of the total variance of 
kz from 

iv . 

 

 

3.2. The Fuzzy c-Means Algorithm 

 

 

The minimization of the c-means func-

tional (3.1.1) represents a nonlinear optimi-

zation problem that can be solved by using a 

variety of methods, including iterative min-
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imization, simulated annealing or genetic 

algorithms. The most popular method is a 

simple Picard iteration through the first-

order conditions for stationary points of 

(3.1.1), known as the FCM algorithm. 

The stationary points of the objective 

function (3.1.1) can be found by adjoining 

the constraint (2.5.2) to J by means of La-

grange multipliers: 

_

( ; , , )J Z U V  = 2

1 1 1 1

( ) 1
c N N c

m

ik ikA k ik

i k k i

D  
   

 
  

 
     

(Eq: 3.2) 

 

and by setting the gradients of J with respect 

to U,V and  to zero. It can be shown that 
2 0, ,ikAD i k  and m>1, then (U,V) 

n c

fcM  may minimize if and only if  

2/( 1)

1

1
, 1 , 1 ,

( / )
c

m
ikA jkA

j

i c k Nik
D D






    



  

 

and  1

1

( )

;1 .

( )

N
m

ik k

K
i N

m

ik

k

z

V i c









  



  

(Eq: 3.3.1 & 3.3.2) 
 

This solution also satisfies the remain-

ing constraints (2.5.1) and (2.5.3). Equations 

(3.3)are first-order necessary conditions for 

stationary points of the functional (3.1.1). 

The FCM (Algorithm 1.1) iterates through 

(3.3.1) and (3.3.2). Sufficiency of (3.3) and 

the convergence of the FCM algorithm is 

proven in (Bezdek, 1980). It is to be noted 

that (3.3.2) gives vi as the weighted mean of 

the data items that belong to a cluster, where 

the weights are the membership degrees. 

That is why the algorithm is called “c-

means”. 

Algorithm1.1 Fuzzyc-means (FCM).  

Given the data set Z, choose the number of 

clusters 1 < c < N, the weighting exponent 

m >1, the termination tolerance >0 and 

the norm-inducing matrix A. Initialize the 

partition matrix randomly, such that (0)U ∈

fcM . 

Repeat for l = 1, 2, . . . 

 

Step 1: Compute the cluster proto-

types (means): 

 

( 1)

( ) 1

( 1)

1

( )

;1 .

( )

N
l m

ik k
l K

i N
l m

ik

k

z

v i c













  



 

 

Step 2: Compute the distances: 

 
2

ikAD     ( ) ( ) ,1 ,1 .
T

l l

k i k iz v A z v i c k N       

 

Step 3: Update the partition matrix: 
for 1 ≤ k ≤ N 

if
ikAD >0 for all i = 1, 2, . . . , c 

2/( 1)

1

1( )
,

( / )
c

m
ikA jkA

j

l

ik
D D








  

otherwise,  
( ) 0l

ik  if
ikAD = 0 and  ( ) 0,1l

ik   with 

( )

1

1.
c

l

ik

i




  

until
( ) ( 1)l lU U    

 

3.3. Parameters of the FCM Algorithm 

 

 

Before using the FCM algorithm, the 

following parameters must be specified: the 

number of clusters, c, the ‘fuzziness’ expo-

nent, m, the termination tolerance,  , and 

the norm-inducing matrix, A. Moreover, the 

fuzzy partition matrix, U, must be initial-

ized. 
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3.3.1. Number of Clusters 

 

 

The number of clusters c is the most 

important parameter, in the sense that the 

remaining parameters have less influence on 

the resulting partition. When clustering real 

data without any a priori information about 

the structures in the data, one usually has to 

make assumptions about the number of un-

derlying clusters. The chosen clustering al-

gorithm then searches for c clusters, regard-

less of whether they are really present in the 

data or not.  

 

 

3.3.2. Fuzziness Parameter 

 

 

The weighting exponent m is a rather 

important parameter as well, because it sig-

nificantly influences the fuzziness of the re-

sulting partition. As m approaches one from 

above, the partition becomes hard (
ik ∈ {0, 

1}) and vi are ordinary means of the clusters. 

As m → ∞, the partition becomes complete-

ly fuzzy (
ik = 1/c) and the cluster means 

are all equal to the mean of Z. These limit 

properties of (8) are independent of the op-

timization method used (Pal and Bezdek, 

1995). Usually, m = 2 is initially chosen. 

 

 

3.3.3. Termination Criterion 

 

 

The FCM algorithm stops iterating 

when the norm of the difference between U 

in two successive iterations is smaller than 

the termination parameter  . For the maxi-

mum norm 
( 1)max ( )l l

ik ik ik   , the usual 

choice is  =0.001, even though  = 0.01 

works well in most cases, while drastically 

reducing the computing times. 

 

3.3.4. Norm-Inducing Matrix 

 

The shape of the clusters is determined 

by the choice of the matrix A in the distance 

measure (3.1.4). A common choice is A = I, 

which gives the standard Euclidean norm: 

 
2 ( ) ( )T

ik k i k iD z v z v    

 

 

3.3.5 Initial Partition Matrix 

 

 

The partition matrix is usually initial-

ized at random, such that U ∈ Mfc. A simple 

approach to obtain such U is to initialize the 

cluster centers 
iv at random and compute the 

corresponding U by (10.1) (i.e., by using the 

third step of the FCM algorithm). 

 

 

4. THE MODIFIED FUZZY C MEANS 

ALGORITHM TO FIT WITH GRAPHS 

 

 

The main challenge with adapting 

fuzzy c-means for graphs lies in creating a 

method of computing the cluster representa-

tives.  

Let us consider a graphical dataset  

 

Z=(zk|k=1,2,…N) 

 

Under fuzzy c-means the cluster cen-

ters are computed with a weighted averaging 

that takes into account the membership val-

ues of each data item. Thus the graph medi-

an cannot be directly used. We propose the 

following method of determining cluster 

centers for graph-based data. For each clus-

ter j, use deterministic sampling to compute 

the number of copies of each graph i to use, 

( )je i , which is defined as: 

 



(IJCRSEE) International Journal of Cognitive Research in science, engineering and education 

Vol. 1, No.2, 2013. 

www.ijcrsee.com 

( )

i

ij

j

ij

a
e i n

a


 
 
 
 

 

 

Here n is the total number of items in 

the data set. We then create a set of graphs 

consisting of ( )je i copies of graph i and 

compute the median graph of this set to be 

the representative of cluster j .So the new 

algorithm becomes:  

Repeat for l = 1, 2, . . . 

 

Step 1: Compute the cluster proto-

types (representative median of a set of 

graphs): 

 

( )

1

1
arg min ( , )

S

l

i y
s S

y

g dist s G
s 



 
   

 
  

 

where S is the set of graphs and  gS 

(S = {G1,G2,..., Gn}) such that g has the low-

est average distance to all elements in S[3] 

 

Step 2: Compute the distances: 

 
2

ikAD     ( ) ( ) ,1 ,1 .
T

l l

k i k iz g A z g i c k N       

 

where ( )l

k iz g is representing the dis-

tance between the graph zk and the cluster 

representative l

ig , i.e. ( , )l

MCS k idist z g (refer 

eq. 2.4). 

Step 3: Update the partition matrix: 
for 1 ≤ k ≤ N 

if ikAD >0 for all i = 1, 2, . . . , c 

 

2/( 1)

1

1( )
,

( / )
c

m
ikA jkA

j

l

ik
D D








  

otherwise,  

( ) 0l

ik  if
ikAD = 0 and 

 ( ) 0,1l

ik   with 
( )

1

1.
c

l

ik

i




  

until
( ) ( 1)l lU U  

 
 

 

4. CONCLUSION 

 

 

In this article, we suggested a cluster-

ing method for graph based data with special 

reference to graphs representing web docu-

ments. The basic idea is the calculation of 

cluster center in case of graphical objects. 

We have modified the step 1 and 2 of the 

original FCM algorithm which will arm it to 

handle graph based data. We have made 

these changes without changing the funda-

mental concepts of the FCM algorithm.  

This method will enhance the efficiency and 

effectiveness of the FCM algorithm, as the 

graphical objects will boost the clustering 

method with abundant information [6, 7, 8]. 
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