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2.    Spectral Analysis 

The name for spectral analysis comes from a very simple spectral analysis performed very 
frequently in our every-day life, namely, defining a colour of a certain object, where the usual 
definition of a color is wavelength or frequency of light. Besides, the colors are usually not pure 
colors, but their combinations. While deciding about the color of a certain object and about which 
color prevails, we perform spectral analysis. For more precise decomposition of light, we send it 
through a prism, resulting in a spectrum of colors.  

Similar analysis can also be performed for phenomena from other areas. The process under our 
investigation only has to be stationary, i. e. it has to fluctuate around certain value and be stable up to a 
certain degree (no obvious positive or negative trend). Very commonly, spectral analysis is employed 
in the field of physics (optics, acoustics, fluid mechanics, and turbulence), electrical engineering, 
geophysics (oceanography, seismology), medicine (EEG and ECG). As micro-level economic and 
especially financial data are observed at ever greater frequency (on an almost continuous basis), the 
spectral analysis can be applicable here as well.  

Unfortunately, the literature on spectral analysis in economy and finance is rather scarce, as 
opposed to ARIMA or ARCH methods, for example. Another problem is that the terminology is quite 

different with different authors, let alone the notations. Next, some authors operate with frequency f  

(where the length of the entire period is 1), while the others with angular frequency f 2  (with 

2  as the length of the period).  
Anyway, spectral or frequency-domain analysis is basically trying to determine how important 

cycles of different frequencies are for the behavior of a certain time series. Essentially it has to do with 
decomposition of a stationary process into a sum of sinusoidal components with uncorrelated random 
coefficients. We consider the observed time series as (according to Fourier theorem) a weighted sum 
of underlying series that have different cyclical patterns, i.e. as a Fourier series, which is a linear 
combination of sinusoids of different frequencies and amplitudes. Thus, the total variance of the 
observed time series can be viewed as a sum of the contributions of these underlying series, which 
vary at different frequencies. Therefore, spectral analysis is usually applied in order to decompose the 
observed time series variance.  

A device that uses this idea is periodogram, which was introduced already at the end of 19th 
century by A. Schuster [2], originally to detect periodicities, hidden in noise.  

2.1 Spectrum and Periodogram 

Let  ,...,  , tyt  be the observed zero mean, stationary time series process. The 

autocovariance at lag k is defined as ),( kttkk yyCov    . The autocovariance-generating 

function for this time-series process is 





k

k
kY zzg )( . If we evaluate this function at the complex 

value iez  ,   real, and divide it by 2  we obtain the (population) spectrum of the observed 
time-series process.  

According to Wiener-Khintchine theorem [2], for any stationary stochastic process with auto 

covariance function k , there exists a monotonically increasing function )(F , such that 





0

)()cos( dFkk . This is the so-called spectral representation of the autocovariance function, 

where )(F  can be interpreted as the contribution to the variance of the original series, accounted for 

by frequencies in the range ),0(  . Spectral density function, or spectrum, is then defined as  
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where the spectrum represents the contribution to variance of the components with frequencies in the 
range ),(  d . It shows relative importance of a certain frequency. The total area under the 

spectrum curve equals the total variance of the original process.  

The spectrum is Fourier transform of k  and k  is (inverse) Fourier transform of )(f . The 

Fourier transform pair is thus:  
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The spectrum can be simplified (due to symmetry of autocovariances and sine and cosine functions, 
DeMoivre’s theorem and known polar values [3]) to  
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which is a strictly real continuous function of  . The cosine function is cyclic with period 2 , which 
means that the entire spectrum is known if the values for   from 0 to   are known. (Due to the 
symmetry of cosine function, it suffices to know the values of   from 0 to  , not to 2  – the values 
of the spectrum for   from 0 to –  are thus the same as those from 0 to  .) If the data-generating 
process actually includes cycles with frequencies greater than  , these will be imputed to cycles with 
frequencies between 0 and  , which is called aliasing [4]. The highest frequency about which we can 
get some meaningful information from the dataset, is called Nyquist frequency ( , or 0,5 if not 
angular). The lower the frequency we are interested in, the longer the time horizon over which we 
need to take measurements (so as to distinguish between a trend and periodic movement), whereas the 
higher the frequency we are interested in, the more frequently we have to take observations. 

From  






dkfdkf YYk  
 0

)cos()(2)cos()(  

we can see that the spectral density function and the sequence of autocovariances only produce two 
different aspects of the same time-series process. The spectrum and the sequence of autocovariances 
contain exactly the same information.  

The spectrum is related to the whole population, or the whole realization. Usually we are only 
presented with a part of it, which can be considered a sample. The sample counterpart to the spectrum 
is a periodogram  
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which is a discrete Fourier transform of the complete sample autocovariance function 
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But a periodogram is not a consistent estimator of )(f , as its variance does not decrease with 

increasing number of observations (we need T  observations to evaluate T  parameters in Fourier 
representation). One solution is smoothing of the periodogram and thus removing irregular variation. 
Sometimes smoothing is called kernel estimation, window estimation, or lag windowing (a set of 
smoothing weights is called a window). The revised estimator is thus  

))cos(2(
2

1
)(ˆ

1
00 




M

k
kkY kcwcwf 


 ,         (1) 

where TM 2  roughly if also truncation is performed [2]. There are several suggestions for 
weights [2]: Bartlett, Hamming, Hann, Parzen, Tukey,… We use Hamming (or Tukey-Hamming): 

)(ˆ23,0)(ˆ54,0)(ˆ23,0)(ˆ
111 MffMffY   ,  

where )(1̂ f  equals to the equation (1) with all weights kw  set to 1.  

When testing for periodicity at the confidence level of  , we get the confidence interval of 

)/)(ˆ*  ,/)(ˆ*( afrbfr  , where )(2 ra  , )(1
2 rb    and MNr / 516.2  for the 

Hamming window [6]. 

3.    Application of Spectral Analyisis to GBP/EUR and TRY/EUR Exchange Rates 

For comparison, we apply spectral analysis to two  Euro foreign exchange rate time series, British 
Pound (GBP/EUR) and Turkish Lira (TRY/EUR). The data for British Pound exchange rate were 
available from the beginning of 1999 on, which resulted in 3716 daily observations (up to July 4th, 
2013), whereas the data for Turkish  Lira exchange rate were available from the beginning of 2005 on, 
making 2179 daily observations (Fig. 1).  

 

 
Figure 1. GBP/EUR and TRY/EUR exchange rates from 1999 and 2005 on, respectively 

 
In order to make both time series stationary we took first differences and conducted the analysis on the 
transformed time series.  

Fig. 2 represents the periodogram for GBP/EUR exchange rate, Fig. 3 the smoothed periodogram 
for GBP/EUR exchange rate, plotted against frequency, and Fig. 4 the smoothed periodogram for 
GBP/EUR exchange rate, plotted against period. When considering the two smoothed periodograms 
simultaneously, the interpretation is easier. Likewise, Figs. 5, 6 and 7 represent the same for 
TRY/EUR exchange rate. In Figs. 3 and 6, frequency ranges from 0 (for a constant mean) to 0,5 (for a 
cycle with only 2 observations). In Figs. 4 and 7, period ranges from 2 (for a cycle with only 2 



29 
 

observations) to the number of all observations (for a constant mean). Period is displayed in a power 
scale. 

 

 
Figure 2. Periodogram for first differences of GBP/EUR exchange rate 

 
 
 

 
Figure 3. Smoothed periodogram for first differences of GBP/EUR exchange rate, plotted against frequency 
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 Figure 4. Smoothed periodogram for first differences of GBP/EUR exchange rate, plotted against period 

 
 

 

.  
Figure 5. Periodogram for first differences of TRY/EUR exchange rate 

 
 

 
Figure 6. Smoothed periodogram for first differences of TRY/EUR exchange rate, plotted against frequency 
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Figure 7. Smoothed periodogram for first differences of TRY/EUR exchange rate, plotted against period 

 
Sine- or cosine- shaped periodic components appear in the periodogram as single peaks, whereas non-
sinusoidal periodic components appear as a series of equally spaced peaks of different amplitudes as 
can be seen from Fig. 3 for GBP/EUR exchange rate. We also notice that (see Figs. 3 and 4) the 
highest peak, which represents the greatest share of variance, is around frequency 0,2 corresponding to 
the period length of 5 (= 1/0,2) (working) days, indicating weekly periodicity. 

For TRY/EUR exchange rate we observe (see Figs. 6 and 7) the highest peak at the highest 
frequency, suggesting that the major part of variance is represented by day-to-day volatility. 
Otherwise, the highest peak for a “true” periodicity is around frequency 0,05 corresponding to the 
period length of 1 month (1/0,05 = 20 working days), revealing the prevailing monthly fluctuations. 

4.    Conclusion 

The autocorrelation function (which is a base of the ARIMA and GARCH models) and the 
spectrum are transforms of each other, and therefore they are mathematically equivalent in ways of 
describing a stationary stochastic process. Thus, the only question is their representational value.  

From a practical point of view, they are complementary to each other, rather than excluding one 
another. When being interested in the main building blocks of the variance and searching for some 
meaningful interpretation, the spectral analysis is irreplaceable. Or, if we try to detect multiple 
underlying periodicities and/or a lot of noise, spectral analysis shows the clearest picture. Besides, it 
can also be used as informal testing for white noise that should have a     constant spectrum.  

On the other hand, when trying to predict the actual values, the time-domain analysis may prove 
to be, above all, less complicated, especially due to somewhat less intuitional concept of the 
frequency-domain analysis, and even more so due to the fact that we are usually not taught the spectral 
analysis during the basic statistics or econometrics courses.  
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