
|| Bioinfo Publications || 72

K-LOOPS TRANSFORMATIONS FOR RECONFIGURABLE ARCHITECTURES

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012, pp.-72-75.
Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000221

DUA R.1* AND KUSHWAHA A.K.2
1Department of Electronics & Communication Engineering, Ansal Institute of Technology, Gurgaon- 122003, Haryana, India.
2School of Engineering & Technology, Ansal University, Gurgaon- 122003, Haryana, India.
*Corresponding Author: Email- rakhi.dua@aitgurgaon.org

Received: October 25, 2012; Accepted: November 06, 2012

Abstract- The focus of this paper is on kernel loops (K-loops), which are loop nests that contain hardware mapped kernels in the loop body.
In this paper, we propose methods for improving the performance of such K-loops, by utilizing standard loop transformations for exposing
and exploiting the coarse grain loop level parallelism. The goal is to achieve a reconfigurable architecture that is a heterogeneous system
consisting of a general purpose processor and a field programmable gate array (FPGA). In this work, different architectures are developed
to give solutions to different problems: how to partition the application - decide which parts to be accelerated on the FPGA, how to optimize

these parts (the kernels), what is the performance gain. So far, few researchers have exploited the coarse grain loop level parallelism.

Keywords- FPGA, GPP, CCU

Introduction

In this paper, we propose a general framework that helps to deter-
mine the optimal degree of parallelism for each hardware mapped
kernel within a K-loop, taking into account area, memory size,
bandwidth and performance considerations. Furthermore, we de-
sign algorithms for several loop transformations in the context of K-
loops which are used to determine the best degree of parallelism
for a given K-loop, here the mathematical models are used to de-
termine the corresponding performance improvement. The loop
transformations that we analyze in this work are unrolling the loop,
shifting the loop, K-pipelining, distribution of loop, and loop skew-
ing. Also developed an algorithm that decides which transfor-

mations is to be used for a given K-loop.

Definition of K-Loop

Within the context of Reconfigurable Architectures, we define a
kernel loop (K-loop) as a loop containing in the loop body. The loop
may also contain code that is not mapped on the FPGA and that
will always execute on the GPP (in software). The software code
and the hardware kernels may appear in any order in the loop
body. The number of hardware mapped kernels in the K-loop de-
termines its size. A simple example of a size one K-loop is illustrat-
ed in [Fig-1], where SW is the software function & K is hardware
mapped kernel. Here we focus on improving the performance for
such loops by applying standard loop transformations to maximize
the parallelism inside the K-loop.

Fig. 1- A K-loop with one hardware mapped kernel

Assumptions for K-loop Framework

K-Loop Structure

 No inter-iteration dependencies, expect for wave front like de-

pendencies;

 K-Loop bounds known at compile time.

Memory Accesses

 Reading or writing of memory at the beginning or end;

 Sharing of memory(on chip) by the GPP and CPPs

 All necessary data available in shared memory;

 Reading or writing of memory from or to the shared memory

performed sequentially;

 Storing of kernel local data in the FPGA’s local memory but not

in the shared part of the memory.

Citation: Dua R. and Kushwaha A.K. (2012) K-Loops Transformations for Reconfigurable Architectures. International Journal of Computation-

al Intelligence Techniques, ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, pp.-72-75.

Copyright: Copyright©2012 Dua R. and Kushwaha A.K. This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are

credited.

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

|| Bioinfo Publications || 73

Area and Placement:

 Shape of design not considered;

 Configuration of initial hardware is decided by a scheduling

algorithm such the configuration latency is hidden.

Problem Overview

We need to improve the performance of such type of K-loop as K-
loop is the part where applications spend most of their execution
times. The proposed approach is to use standard loop transfor-

mations and maximize the parallelism inside the K-loop.

Loop unrolling is a transformation that replicates the loop body and
reduces the iteration number. In our work, we use unrolling to ex-
pose the loop parallelism, thereby allowing us to execute concur-
rently multiple kernels on the reconfigurable hardware. [Fig-2]
illustrates the unrolling transformation, where every task inside the
initial loop is replicated for the same number of times inside the

unrolled loop.

Loop shifting is a particular case of software pipelining. The shifting
transformation moves operations from one iteration of the loop
body to the previous iteration, as can be seen in [Fig-3]. The opera-
tions are shifted from the beginning of the loop body to the end of
the loop body and a copy of these operations is also placed in the
loop prologue. To be more specific, the prologue consists of A(1),
the epilogue consists of a combination of B(N) and C(N), and each
iteration from the transformed loop body consists of B(i), C(i), and
A(i+1). In our research, loop shifting describes moving a function
from the beginning of the K-loop body to the end thereby preserv-
ing the correctness of the program. We use loop shifting and loop
pipelining to eliminate the data dependencies between software
and hardware functions, allow them to execute concurrently. We

use the loop shifting transformation for single kernel KL.

Fig. 2- Loop Unrolling

Fig. 3- Loop Shifting

Loop pipelining is used in our work for transforming K-loops with
more than one kernel in the loop body. [Fig-4] illustrates the loop
pipelining transformation. The prologue consists of A(1) followed by
A(2) and B(1). The epilogue consists of B(N) and C(N-1), followed
by C(N). Each iteration i from the transformed loop body consists of
C(i), A(i + 2), and B(i + 1). When applied to K-loops, we define this
transformation as K-pipelining. Assuming that the software and
hardware functions alternate within the K-loop body, then half of

the total number of function will need to be relocated.

Fig. 4- Loop Pipelining

Loop distribution is a technique that breaks a loop into multiple
loops over the same index range but each taking only a part of the
loop’s body. In our work, loop distribution is used to break down
large K-loops (more than one kernel in the loop body) into smaller
ones, so as to benefit more from parallelization with loop unrolling
and loop shifting or K-pipelining. A generic representation of the
loop distribution transformation is presented in [Fig-5]. In the top
part, a loop with three tasks is illustrated. In the bottom part, each
task is within its own loop and the execution order of the tasks has
not changed.

Fig. 5- Loop Distribution

Loop skewing is a widely used loop transformation for nested loops
iterating over a multidimensional array, where an individual iteration
of the inner loop depends on previous iterations. This type of code
cannot be parallelized or pipelined in its original form. Loop skew-
ing rearranges the array accesses so that the only dependencies
are between iterations of the outer loop, and enables the inner loop

parallelization.

Consider a nested loop whose dependencies are illustrated in [Fig-
6a]. In order to compute the element (i, j) in each iteration of the
inner loop, the previous iteration’s results (i-1, j) must be available
already. Performing the affine transformation (p, t) = (i, 2 * j + i) on
the loop bounds and rewriting the code to loop on p and t instead
of i and j, the iteration space as well as dependencies change are

shown in [Fig-6b].

K-Loops Transformations for Reconfigurable Architectures

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

|| Bioinfo Publications || 74

Fig. 6a- Loop dependencies Before skewing (different shades of
gray show the elements that can be executed in parallel)

Fig. 6b- Loop dependencies After skewing(different shades of gray

show the elements that can be executed in parallel)

Eps = 2; shift = 0;

Loop_trans KL

Fig. 7- The loop transformations algorithm.

Dua R. and Kushwaha A.K.

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

Table 1- Summary of loop transformations for K-Loops

Transformation K-loop size Impact Reconfiguration Can be used with Exclusive with Can schedule kernels in sw

Unrolling Any Enable hw parallelism No (2)-(5) - No

Shifting 1 Enable hw-sw Parallelism No (1),(4),(5) -3 No

K-pipelining ≥2 Enable hw-sw Parallelism No (1),(4) -2 No

Distribution ≥2
Split the K-loop into K-sub loops that are individually

optimized
Yes/no (1)-(3),(5) - No

Skewing 1 Eliminate dependencies enable unrolling No (1),(2) - Yes

Overview of Loop Transformations

Here, we develop an algorithm used to decide which loop transfor-
mations to apply to a given K-loop. [Table-1] shows an overview of
the different loop transformations analyzed in this paper. For each
transformation, the summary of loop transformations for K-loops is

shown in [Table-1].

The K-loop size that is suitable for:

 The effect it has on the code (such as enabling parallelism or

eliminating dependencies);

 The transformations that can be used in conjunction with it;

 The transformations that are used exclusive with it;

 How can transformation schedule kernels to run in software or

not.

Simulation Technique

The ‘Loop Trans’ algorithm in [Fig-7] can be used to decide which

loop transformations can be used on a given K-loop (KL). If the K-
loop size is 1, depending on the existing loop dependencies, the K-
loop is transformed with either loop skewing and/or loop shifting.
Loop shifting is used to enable the software- hardware parallelism.
If loop shifting is performed, it is important to look at the ratio be-
tween the execution times of the software part and of the hardware
part of the K-loop, in order to understand if loop unrolling, which
exposes the hardware parallelism, should be performed. If the
software execution time is twice (or more) more than the hardware
execution time, unrolling will bring no benefit because the hardware
execution would be completely hidden by the software execution. If
the ratio between the software and the hardware execution times is

less than the threshold value (Eps = 2), unrolling will be performed.

If the K-loop size is larger than 1, the loop distribution algorithm will
determine the best partitioning of the K-loop. In this way the algo-
rithm run in a Greedy manner, selecting the most promising kernel
in terms of speedup and adding functions around it to create a K-
sub-loop, thereby constantly checking the performance of the K-

|| Bioinfo Publications || 75

sub-loop against that of the original loop. It is possible that the
partitioning that gives the best performance is into smaller K-sub-
loops, each of the K-sub-loops will be transformed according to the
original K-loop. If the loop distribution algorithm has decided that
the original K-loop would perform best, then it will be transformed

with K-pipelining and unrolling.

[Table 2] summarizes the formulas for computing the K-loop execu-
tion time (in cycles) for each of the proposed loop transformations.

The formulas presented for the loop unrolling, loop shifting, K-
pipelining and loop skewing are dependent on the unroll factor,
thereby assuming that we are always interested in exploiting the
features of hardware parallelism. In loop distribution, the total exe-
cution time is the sum of the execution times of the K-sub-loops
and their reconfiguration times, and each of the K-sub-loops may
have a different degree of parallelism and different formula to com-
pute its execution time. For this reason, we cannot explicitly write

the formula in the case of loop distribution.

K-Loops Transformations for Reconfigurable Architectures

International Journal of Computational Intelligence Techniques
ISSN: 0976-0466 & E-ISSN: 0976-0474, Volume 3, Issue 2, 2012

Table 2- Summary of the formulas for computing the k-loop execution time for each of the proposed loop transformations

Transformation Execution Time

Unrolling T­ ­unroll (u)= N. T­­sw + [N/u]. T­k(hw) (u) + T­k(hw) (R)

Shifting T shift (u)= u. T­­sw + [N/u]. T­k(hw) (u) + T­k(hw) (R) u<U1; N/u].u.T sw + max (R.T­­sw,T­k(hw) (u)) + T­k(hw) (R) u≥U1

K-pipelining T­ ­pipe (u)=
(N/u-1).(+ + +(R+u). .T swK+1

Distribution T­ ­distr (u)= , When the K-loop is split into L K sub-loops (KL..t-1), Tr is reconfiguration time

Skewing T­ ­h/h (u)=
2.q.

Conclusions

In this paper, we laid the foundations for the methods which are
suitable for optimal implementation of formulas for computing K-
loop Execution time for each loop transmission. In this paper, an
algorithm has been developed that decides which of the five trans-
formations is to use for a given K loop. The purpose is to eliminate
the data dependencies over software and hardware functions and
allow them to execute in parallel. The architecture is working well

as per requirements.

References

[1] Alexander Aiken and Alexandru Nicolau (1988) 2nd European

Symposium on Programming, 221-235.

[2] Alexander Aiken and Alexandru Nicolau (1990) 2nd Workshop

on Languages and Compilers for Parallel Computing.

[3] Vicki H. Allan, Reese B. Jones, Randall M. Lee and Stephen J.

Allan (1995) ACM Computing Surveys, 367-432.

[4] John R. Allen and Ken Kennedy (1984) SIGPLAN Symposium

on Compiler.

[5] Yanko va Y., Kuzmanov G., Bertels K., Gaydadjiev G., Lu Y.,
Vassiliadis S. (2007) Field Programmable Logic and Applica-

tions.

[6] Dragomir O., Stefanov T.P. and Bertels K. (2009) ACM Trans-

actionson Reconfigurable Technology & Systems, 2(4).

[7] Guo Z., Buykkurt B., Najjar W. and Vissers K. (2005) Optimized

Generation of Data Path from Codes for FPGA.

