
|| Bioinfo Publications || 153

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 5, Issue 1, 2013, pp.-153-156.

Available online at http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000187

KAPADIA V.V.1* AND THAKAR V.K.2

1Department of Computer Science & Engineering, The Maharaja Sayajirao University, Vadodara- 390 020, Gujarat, India.
2Department of Electronics and Communication, A.D. Patel Institute of Technology, New Vallabh Vidyanagar- 388 120, Gujarat, India.
*Corresponding Author: Email- kapadia_viral2005@yahoo.co.in

Received: July 15, 2013; Accepted: December 24, 2013

Introduction

Now a day’s size of the application program is increasing dramati-
cally, same time data size is also increasing so we require that
some trade of should be done in mark-sweep and coping collector.
However, advanced garbage collection techniques have been de-

veloped to ameliorate the situation in two different ways:

One way for the solution of this problem is to split the work tradition-
ally performed in a single collector invocation for smaller amount of
time parts, incremental algorithms address the problem of increas-
ingly longer interruptions. Second, by deriving some method to find
out probable life time of the objects, generation-based algorithms
aim to reduce the total amount of collection work that needs to be

carried out at all.

Garbage Collection

However, we have to some price for automatic garbage collection.
A general collection strategy is to allow the main program run for as
long as possible, allocating new objects as needed. Only when
memory resources become exhausted is the garbage collector acti-
vated, returning unused areas of memory to the allocator, and ena-

bling the main program to continue [1].

Thus, the execution of the main program is completely halted while
the garbage collector carries out its work. In many settings, such

garbage collection pauses are completely acceptable.

During large and complex batch computations, it is of little interest
whether, at some point in time, the computer is working to solve the
given problem or merely performing garbage collection; what counts
is the total amount of time spent. In fact, even though garbage col-

lectors are very general in nature and usually not fine-tuned to han-
dle any particular computation, they are usually highly optimized
pieces of code and may out-perform many handwritten deallocation

routines [2,3].

However, interruptions to the execution flow of the main program
can be totally unacceptable. For instance, in real-time applications,
a long garbage collection pause may in itself render the program
useless. Examples of real-time applications include sound and ani-
mation, robot motion control, and certain communication systems

[1].

Processor Design for Garbage Collection

We have designed the instruction set for the model. The processor

we are designing is an 4-bit processor with following instruction set.

D/I: Direct/Indirect instruction

S0, S1, S2: For Op-code

D0, D1, D2, D3: Data

Op-codes for Different Operation

000 - Update the allocation

001 - Increase Reference

010 - for freeing the memory

100 - Updating the data

101 - for increasing reference of memory

Citation: Kapadia V.V. and Thakar V.K. (2013) A Novel Algorithm for Efficient Memory Management with Parallel Coprocessor for Garbage
Collection. Advances in Computational Research, ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 5, Issue 1, pp.-153-156.

Copyright: Copyright©2013 Kapadia V.V. and Thakar V.K. This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are

credited.

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 5, Issue 1, 2013

Abstract- Memory management on which researchers are mainly focusing are the different techniques related to memory management i.e.
garbage collection techniques, scheduling, real time system, user oriented design and many more. The major problem found out in memory
management is processor and operating system delays. Here a new design of processor is discussed in the paper that will improve to the over

all system performance.

Keywords- Memory management, garbage collection techniques, scheduling, real time system

A NOVEL ALGORITHM FOR EFFICIENT MEMORY MANAGEMENT WITH PARALLEL
COPROCESSOR FOR GARBAGE COLLECTION

D/I S0 S1 S2 D1 D2 D3

|| Bioinfo Publications || 154

Now we are discussing the overall approach found out for efficient

memory utilization of memory.

Model

Fig. 1- Hardware Model

Fig. 2- Instruction Word

Fig. 3- CPU OPCODE

Fig. 4- Memory OPCODE

We have designed a small module for separate processor for gar-
bage collection and the design is shown in [Fig-1]. [Fig-2] shows the
instruction format of 8 bit processor that illustrates opcode and op-
erand of the instruction word. [Fig-3] illustrates the CPU instruction
that contains Addition, multiplication etc operations of traditional
processor and [Fig-4] illustrates the instruction set for the memory
processor. The processor switched between memory and CPU

more through the first bit.

Process

One of the major task in this research area is model designing and
model has been designed. This model is designed using tool VHDL
and it is simulated on Xilinx ISE 9.2 Edition. It is simulated on the
same tool. The major problem as discussed in the previous section
is speed and lack of parallelism. As these features are very difficult
to achieve under software part, designing new hardware becomes a

necessity. Software works under the scenario shown below.

Steps Performed by Software Garbage Collection

 Instruction is loaded and now it has to be executed by Proces-

sor [Fig-5].

 First Memory Instruction is loaded and now it has to be execut-

ed by Processor [Fig-6].

 Memory instruction needs memory and has to call garbage

collection process [Fig-7].

 Software garbage collector reclaim garbage and gives control
back to processor mean while, processor was ideal but it wasn’t
able to execute next instruction although we have large instruc-
tion word and processor has already fetched the data at once

[Fig-8].

 As memory instruction was over the processor executed the

CPU instruction [Fig-9].

One of the probable solutions to this problem is designing a dedi-
cated hardware processor for garbage collection process. [Fig-10]
illustrates the case where a new processor is designed and dedicat-
ed for memory management as well as garbage collection. Addi-
tionally it also reflects that instructions are executed simultaneously
on different processor (Assuming that one is CPU instruction and
other is memory instruction and don’t have any dependencies of
each other) which will definitely help in improving the overall

through put of the system.

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 5, Issue 1, 2013

A Novel Algorithm for Efficient Memory Management with Parallel Coprocessor for Garbage Collection

|| Bioinfo Publications || 155

Fig. 5- Instruction referred to Processor

Fig. 6- Memory Instruction referred to Processor

Fig. 7- Hands over the control to GC

Fig. 8- GC responds back

Fig. 9- Normal Instruction

Fig. 10- Both Memory & CPU instruction

One of the major task in this research area is model designing and
model has been designed. This model is designed using tool VHDL

and it is simulated on Xilinx ISE 9.2 Edition.

It is simulated on the same tool. The major problem as discussed in
the previous section is speed and lack of parallelism. As these fea-
tures are very difficult to achieve under software part, designing

new hardware becomes a necessity.

Algorithm

At any time related to memory processor may be confined into any

one state i.e.

 If (Memory Available → True) have it

 Else (Memory Available → False) Needs Garbage collection.

This process needs to be identified as an instruction generated from

the software.

If Software requires some processing and in effect to execute that
task the processor requires the memory (In our approach we are
identifying the same thing through instruction i.e. memory instruc-

tion)

 If (Garbage Collection Processor → Available)

The memory instruction should be again moved to waiting queue
and till the garbage collection Co-processor find the memory block

through under defined process.

Find the memory in Young generation area as there is a very higher
probability of getting the free space and the life of objects residing

in Young Generation is very less.

 If (FREE → Available)

Directly return the address of the space to processor and Update

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 5, Issue 1, 2013

Kapadia V.V. and Thakar V.K.

|| Bioinfo Publications || 156

the free List.

 Else (FREE → Not Available)

Need to move the most mature object in young generation (Also
considering the remaining time left for use of the Object) and return

the Free space to the processor.

This approach can also help in the pipelining process of processor

and scheduler.

If the processor is Idle it will instruct the coprocessor of garbage

collector to collect the garbage in incremental manner.

 Garbage collection Process (Counter → 25)

It collects the garbage for 25 objects and stops

 While Processor is Free

 Repeat (Step → i) and update free list

Fig. 11- Input Wave Form

Results

Inputs given to the system are in waveforms that is represented by
[Fig-11] (Input wave form) that represents the input instruction given
to the processor as per the model given in [Fig-2] and the corre-
sponding output is shown in [Fig-12] that shows the garbage collec-
tion process is activated when ever instruction is not issued or i/p to
the system is idle. Hence the table of results indicate that accuracy
is 100% of finding the garbage hence its can be termed as con-

sistent system.

Fig. 12- Output Wave Form

Conclusion

Adopting this approach a new shift is likely to be introduced as none
of the process has to wait for processor when garbage collection is
performed, except for (exceptional memory requirement). The re-
sults indicate that if such co-processors are designed with efficiency

then we may have a great speed up in overall system performance.

Conflicts of Interest: None declared.

References

[1] Seligmann J., Grarup S. (1993) Incremental Mature Garbage
Collection, M.Sc. Thesis, Computer Science Department, Aar-

hus University, Denmark.

[2] Appel A.W. (1987) Information Processing Letters, 25(4), 275-

279.

[3] Zorn B. (1993) Software: Practice and Experience, 23(7), 733-

756.

[4] Cohen A., Rohou E. (2010) Proceedings of the 47th Design

Automation Conference, ACM, 102-107.

[5] Srisa-an W., Lo C.T., Chang J.M. (2003) IEEE Transactions on

Mobile Computing, 2(2), 89-101.

[6] Chang Y., Wellings A. (2010) IEEE Transactions on Computers,

59(8), 1063-1075.

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 5, Issue 1, 2013

A Novel Algorithm for Efficient Memory Management with Parallel Coprocessor for Garbage Collection

