
Bioinfo Publications 78

DYNAMIC INVOCATION OF WEB SERVICES

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012, pp.-78-82
Available online at http://www.bioinfo.in/contents.php?id=33

TERE G.M.1*, JADHAV B.T.2 AND MUDHOLKAR R.R.3

1Department of Computer Science, Shivaji University, Kolhapur, Maharashtra - 416004, India
2Department of Electronics & Computer Science, Y.C. Institute of Science, Satara, Maharashtra - 4, India
3Department of Electronics, Shivaji University, Kolhapur, Maharashtra - 416004, India
*Corresponding Author: Email - girish.tere@gmail.com

Received: February 21, 2012; Accepted: March 06, 2012

Abstract- When we use web service, we should add it in the web reference and then call its methods statically. This way of calling web
services has lots of limitations. In order to take maximum advantage of the flexibility and power of Web services, the user must be able to
dynamically discover and invoke a Web service. We need to dynamically discover and invoke the service because the information returned
from web services can be used by heterogeneous applications which are executed on different machines. As our business world is dynamic
and heterogeneous, a client often needs to invoke an unfamiliar web service at run time. However, current web services technology pays
little attention to this issue. In this paper, we propose a framework for a client to dynamically invoke web services. The framework can in-
crease the use and reliability of web services invocation in a dynamic, heterogeneous environment. Web Service has been widely accepted
by industry. How to find and integrate existing Web Service is a crucial work. Client finds Web Service from UDDI Registry and invokes it
directly as described in a contract, web service description language, WSDL. It is difficult for an enterprise user to dynamically invoke the
most appropriate Web Service. This paper briefly introduces Service-Oriented Architecture and discusses advantages and disadvantages of
UDDI, then puts forward a dynamic Web Service framework that extends the SOA .
Keywords- SOA, Web services, UDDI, WSDL

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012

Introduction
With the rapid growth in Internet functionality, distributed compu-
ting systems have attracted more attention in the Information
Technology world. This has resulted in recent standardization
effort of distributed computing architecture, which is known as
Service Oriented Architecture (SOA). The Web Service is the
main component of this architecture. Some of the challenges in
implementing the SOA [1] architecture are maintainability, reliabil-
ity, and security.
Fig. (1) shows the basic Service Oriented Architecture (SOA)
using web services. It contains three main components viz., Ser-
vice broker, Service provider, Service consumer. The communica-
tion between them is achieved by exchanging messages in SOAP

form. SOA is the exposure of software resources in the form of
services, which can be accessed over a network [6]. When SOA
is used for EAI (Enterprise application integration) where diverse
applications in an enterprise communicate and collaborate to
achieve a business objective, binding between the web services is
pre-configured and the interaction is static. For discovering a web
service client concerns a service broker. A common service bro-
ker is Universal Description, Discovery and Integration, UDDI.
UDDI is a platform-independent, extensible markup language,
XML, based registry for businesses worldwide to list themselves
on the Internet and a mechanism to register and locate web ser-
vice applications. The UDDI used is private and is accessible to
organization, its business partners only

Citation: Tere G.M., Jadhav B.T. and Mudholkar R.R. (2012) Dynamic Invocation of Web Services. Advances in Computational Research,
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, pp.-78-82.

Copyright: Copyright©2012 Tere G.M., et al. This is an open-access article distributed under the terms of the Creative Commons Attribu-
tion License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are cred-
ited.

http://en.wikipedia.org/wiki/Platform-independent
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_service

Bioinfo Publications 79

Fig. 1- Basic SOA

Fig. (2) shows implementation of SOA architecture for EAI where
static binding between web services is required

Fig. 2- Static web service interaction

Dynamic Web Service Invocation
We propose to use dynamic ‘Web Service Invocation’ method to
address maintainability and reliability issues without sacrificing the
overall system performance. In order to consume a web service,
we need to create client stubs from the WSDL description. This
can be done through static client or dynamic client [3]. Static Cli-
ent is a stand-alone program that calls the operations of a web
service through a stub, a local object which acts as a proxy for the
remote service. Because this stub is created before runtime it is
called a static stub. Dynamic Client calls a remote procedure
through a dynamic proxy, and object created at runtime that repre-
sents the Web service [2]. As businesses become global there is a
need for these applications to become available globally [9]. Thus
the pre configured binding between web services becomes obso-
lete. Suppose an application for an online shopping chain access-
es a service broker that specializes in shipping. The broker locates
services from public UDDI registry that meet certain criteria such
as fast delivery time and invokes them at run time. Thus the bind-

ing between broker and web services is dynamic. Fig. (3) shows
the dynamic binding between client and web services in SOA.
As shown in Fig. (4) UDDI Proxy is added in SOA and acts as a
proxy for Web Service [7], which is placed at client side. UDDI
Proxy obtains a list of currently usable Web Services from private
service registry and accomplishes the work of finding, testing,
verification and management of the Web Services through Monitor
Service and Dispatch Service inside UDDI Proxy component. Ser-
vice provider registers Web Service information in public service
registry as before

Fig. 3- Dynamic Invocation of multiple web services

Fig. 4- Web Service dynamic invocation framework

The difference is that service requestor no longer needs to inquire
service information in public service registry but only bind service
access point provided by UDDI Proxy. There are three compo-
nents in the UDDI Proxy which are RegistryCopy Service, Monitor
Service and Dispatch Service. RegistryCopy Service is closely
related to private
service registry. It subscribes Web Service registry information
with specific function from public service registry through Sub-
scription API. When public service registry adds, updates or de-
letes relevant Web Service information, private service registry will
receive all of these changes through notification and make chang-
es to corresponding registry information inside it.

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012

Dynamic Invocation of Web Services

Bioinfo Publications 80

Use of dynamically discover and invoke the web service
We will need to discover information about the service from UDDI
and read the WSDL implementation file from the service provider
and parse it for various information. Every provider creating ser-
vice need to describe the service in WSDL and every client, after
searching the web service need to use the web services as per
explained in WSDL [3]. Thus, WSDL is a contract between a serv-
er and client. We will have enough information to marshal a SOAP
request to the Web service. In both the case to create a web ser-
vice client we must know the web services and operations to be
called beforehand. With the ‘Web Service Invocation’, a client can
call a web service even if the signature of the methods or the
name of the service is unknown until runtime. In contrast to a stat-
ic stub or dynamic proxy client, a ‘Web Service Invocation’ client
does not require runtime classes.

Advantages and disadvantages of static invocation of a Web
service versus dynamic invocation
There are actually three different ways to invoke a Web service:
a. static binding
b. dynamic binding
c. dynamic invocation

With static binding compile and bind client proxy at development
time. This binding is tightly bound to one and only one service
implementation. It provides the fastest performance of the three
options, but gives us the least flexibility[4].
With dynamic binding the only thing to compile at development
time is the interface to a service type (i.e., the WSDL <portType>
definition). At runtime client can bind to any service implementa-
tion that supports that <portType>. It generates a dynamic proxy
from the service's WSDL <binding> at runtime and casts it to the
interface. From a developer's point of view, this approach is as
easy to use as a static proxy. We need to retrieve the WSDL and
do some runtime compilation of the WSDL, so the initial connec-
tion takes a bit longer (a few hundred milliseconds), but once the
binding is complete, performance is equivalent. Advantage of this
process is we can enjoy a lot of flexibility. Using this technique,
application can connect to any number of different service imple-
mentations without modification. It can automatically handle
changes to the underlying protocols. It doesn't automatically han-
dle changes to the service signature, though. With dynamic invo-
cation, don't compile anything at development time. Instead do
everything at runtime. The application retrieves and interprets the
WSDL at runtime and dynamically constructs calls. It gives us the
most flexibility, but also requires a much more sophisticated client.
Obviously, there's a bigger hit in terms of performance, which
occurs on each invocation. The advantage of using ‘Web Service
Invocation’ is that we need not to have generated the stubs before
runtime. This allows us to generically invoke services that may not
know about at run time.

The server implementation
We developed a Web service using a simple Java class with a
method that takes two integers as parameters and returns an
integer which is the multiplication of the parameters. This class
will, of course, be exposed as a Web service, and that service will
need to be published to UDDI

The client
Let us discuss how to dynamically discover and invoke the ser-
vice. First we need to discover information about the service from
UDDI. Second, we need to read the WSDL implementation file
from the service provider and parse it for various information. In
this way we will have enough information to marshal (encode) a
SOAP request to the Web service implementation using Axis.
In the client code this is accomplished using the open source
packages uddi4j, wsdl4j, and Apache Axis[5]. We have used ud-
di4j to browse the UDDI registry as it provides an API which al-
lows the user to make inquiries and publish to any UDDI 2.0 regis-
try. The wsdl4j package will be used to programmatically repre-
sent the elements of a WSDL file. Then we will use Axis to actual-
ly make the SOAP request to the server and wait for the response.

Finding the Web service in UDDI
In order to dynamically invoke your Web service we need to know
four things. We must know the inquiry URL of the UDDI registry,
the publish URL of the UDDI, the name of the business entity, and
the name of the business service. This information can be found
in following code
public class DynamicInvoke {

 private String uddiInquiryURL =
 "http://localhost:80/uddisoap/inquiryapi";
 private String uddiPublishURL =
 "http://localhost:80/uddisoap/publishapi";
 private String businessName = "ABCD Ltd.";
 private String serviceName =
 "WebMathService";
…
}

This locates the UDDI and once that is found, proper business
service can be selected. We use the UDDI URLs to create a proxy
to the UDDI registry which can be used to query the registry to
find the business service. This is done as explained in following
code.

 // create a proxy to the UDDI
 UDDIProxy proxy = new UDDIProxy(
 new URL(uddiInquiryURL), new
 URL(uddiPublishURL));
 // we need to find the business in the UDDI
 // we must first create the Vector of business
 name
 Vector names = new Vector();
 names.add(new Name(businessName));
 // now get a list of all business matching our
 search criteria
 BusinessList businessList =
 proxy.find_business(names, null, null, null,
 null, null,10);
 // now we need to find the BusinessInfo object for
 our business
 Vector businessInfoVector =
businessList.getBusinessInfos().getBusinessInfoVector();
 BusinessInfo businessInfo = null;

Tere G.M., Jadhav B.T. and Mudholkar R.R.

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012

Bioinfo Publications 81

 for (int i = 0; i < businessInfoVector.size(); i++) {
 businessInfo = (BusinessInfo)
businessInfoVector.elementAt(i);
 // make sure we have the right one
 if(businessName.equals(businessInfo.getNameString())) {
 break;
 }
 }

We obtain a Definition object for the WSDL implementation from
the implementation URL. We then obtained anoth-
er Definition object, this one representing the WSDL interface, by
searching all the imports defined in the implementation WSDL. A
well-formed implementation WSDL should have an import pointing
to its corresponding WSDL interface. It's simple now to find the
target namespace which to be passed to Axis. We can make a
call to Definition.getTargetNamespace() on the WSDL implemen-
tation object.

Advantages and Disadvantages of UDDI
The mechanism of service registry enables mutual Web Service
integration, effectively improve the inter-operation ability of Web
Service and promote wide application. Nevertheless, there are
some drawbacks in present UDDI:
1) Service registry accepts service information passively.
When a service or the access point changes without updating
service information in the registry, service requestor will probably
use false information and fail to invoke Web Service.
2) Present service registry contains too much complex classifica-
tions and information. It is not convenient for service requestor to
quickly find and choose suitable Web Service and will influence
the efficiency of program.
3) It cannot meet the requirement of dynamic invocation of Web
Service. The Enterprise always uses the same fixed Web Ser-
vices. When one service is down, service requestor can choose
another service to guarantee uninterrupted service invocation. At
present service requestor has to bind every Web Service till a
suitable one is found. This process not only adds more works to
service requestor, but also reduces the efficiency of program.

Therefore, to invoke Web Service in a dynamic and transparent
way and to reduce the searching time for suitable service in the
registry, efficient mechanism is required. We can get all the ports
declared in the interface WSDL and just choose the first one. After
choosing the port to use, we need to find the service name and
port name which will be supplied to Axis. This can be done by
finding the binding in the WSDL interface which corresponds to
the chosen port. Thus we get the service and port in the WSDL
implementation that provides an endpoint for this binding. We
need to make sure that the binding we choose in the interface
WSDL contains the same port we have already chosen. Then we
need to make sure that the service chosen in the implementation
WSDL contains a port which has a binding attribute value which is
the same as the interface WSDL binding's name attribute value. If
these are the same, then we have found the service and binding
which refer to chosen port. Web Service has gradually become a
new web application form and widely accepted by corporations
and research institutions. Based on current UDDI and SOA, by

adding notification mechanism, private service registry and UDDI
Proxy, this paper designs and realizes a dynamic Web Service
framework, which enhances the reliability, transparency and dy-
namics of Web Service invocation.

Conclusions
In order to take full advantage of the flexibility and power of Web
services, the user must be able to dynamically discover and in-
voke a Web service implementation. This is the ultimate promise
of Web services and the original reason why technologies like
UDDI were developed. It has even been proposed that business-
es could provide publicly-accessible implementations of Web
services. Although, this idea is not yet ready, there is still use for
such dynamic invocation. In this paper, we demonstrate how a
Web services client can dynamically discover and invoke a Web
service without any prior knowledge of its design. We used dy-
namic Web service invocation method to address maintainability
and reliability issues without losing the overall system perfor-
mance. To achieve these goals, we propose a Dynamic Web
Service Invocation Framework (DWSIF). The dynamic invocation
of Web services allows both service providers and service con-
sumers to remain autonomous and maintain the loosely coupled
relationship without scarifying the performance. Through a series
of experiments and objective evaluations, we have shown that the
dynamic web service invocation can serve its client better than
static invocation, particularly in maintainability and reliability.
Some of the screen shots of Dynamic Web Service Invocation
Framework (DWSIF) are shown in Fig. (5) and Fig. (6).

Fig. 5- Web service invocation application tool

Result of multiplication operation is shown in following Fig. (6)

Fig. 6- Result of Calculator Web service

Dynamic Invocation of Web Services

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012

Bioinfo Publications 82

Acknowledgement
We wish to thank teachers of Department of Computer Science,
Shivaji University, Kolhapur for motivating us for this research.

References
[1] Haller A., Cimpian E., Mocan A., Oren E. and Bussler (2005)

IEEE International Conference on Web Services.
[2] Medjahed B. and Bouguettaya A. (2005) IEEE Transactions

on Knowledge and Data Engineering, 17(7).
[3] Greenwood D., Buhler P. and Reitbauer A. (2005) IEEE Inter-

national Conference on e-Technology, e-Commerce and e-
Service (EEE).

[4] Shen D., Yu G., Yin N. and Nie T. (2004) IEEE International
Conference on E-Commerce Technology for Dynamic EBusi-
ness.

[5] Doug Tidwell (2001) IBM developer Works.
[6] Hansen M., Madnick S. and Siegel M. (2002) WES, LNCS

2512, 12-27.
[7] Mrissa M., Benslimane D., Ghedira C. and Maamar Z. (2004)

IDEAS Workshop on Medical Information Systems: The Digital
Hospital.

[8] Pires P., Benevides M. and Mattoso M. (2003) Symposium on
Applications and the Internet (SAINT).

[9] Shah D., Patel D. (2008) SEEC, 172-175.

Tere G.M., Jadhav B.T. and Mudholkar R.R.

Advances in Computational Research
ISSN: 0975-3273 & E-ISSN: 0975-9085, Volume 4, Issue 1, 2012

