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Abstract- Software Reliability is defined as the probability of free-failure operation for a specified period of time in a specified environment. 
Software Reliability Growth models (SRGM) have been developed to estimate software reliability measures such as number of remaining 
faults, software failure rate and Software Reliability. Imperfect debugging models are considered in these models. However, most SRGM 
assume that faults will eventually be removed. Fault removal efficiency in the existing models is limited. This paper aims to incorporate the 
fault removal efficiency in software reliability growth modeling. In this paper imperfect debugging is considered in the sense that new faults 
can be introduced into the software during debugging and the detected faults may not be removed completely. 
Keywords- Non-Homogeneous Poisson process (NHPP), Software Reliability Growth Model (SRGM), Fault Removal, Maximum-Likelihood 
Estimation, Software Testing, Software Reliability, Software Debugging  
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Introduction 
over the last two decades modern society has become more in-
creasingly dependent on hardware and software systems. Soft-
ware Reliability is defined as the probability of free failure opera-
tion for a specified period of time in a specified environment. 
Since 1970’s many SRGM have been proposed for estimation of 
Reliability growth of products during software development pro-
cesses. SRGM are applicable to the late stages of testing in soft-
ware development and can provide information in useful in pre-
dicting and improving reliability of software products. In this paper, 
we propose a methodology to integrate a methodology in software 
reliability growth model. 
We are presents the formulation of the NHPP model addressing 
fault removal efficiency and fault introduction rate. The explicit solu-
tion of the mean value function for the proposed NHPP model is 
derived. This model considers the learning phenomenon Using an S
-shaped fault detection rate function and introduces a constant fault 
introduction rate. 
Software Testing is the process of exercising a program with the 

specific intent of finding faults prior to delivery to the users. After 
testing debugging is performed by programmers to discover high 
defects.  
 
Software Reliability Modeling 
In the family of Software Reliability models, NHPP Software Relia-
bility models have been widely used in analyzing and estimating 
the reliability related metrics of software products in many applica-
tions, such as telecommunications [6],[20] etc. This model consid-
ers the debugging process as a counting process, which follows a 
Poisson process with a time dependent intensity function. Existing 
NHPP Software Reliability models can be unified into a general 
NHPP function proposed by pham etc.[9].The primary task of 
using the NHPP models to estimate Software Reliability metrics is 
to determine the Poisson mean, which is known as the MVF. 
In this section, an NHPP model with fault removal efficiency is 
presented. The following are the assumptions for this model: 
1. The Occurrence of software failures follows an NHPP. 
2. The software failure rate at any time is a function of Fault 
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detection rate and the number of remaining faultsPresented at 
that time 

3. When a software failure occurs, a debugging effort will be 

initiated immediately with probability .The debugging is S- 
independent at each location of the software failures. 

4. For each debugging effort, whether the fault is successfully 
removed, or not, some new faults may be introduced into the 

software system with probability  
 
Assumption 1 is widely accepted assumption. Assumption 2 can 
be interpreted as follows: Software failure rate is the number of 
residual faults and the average failure rate of a fault. In practice, 
once a software failure is reported the review board members will 
assign a developer to look into the code. Although the fault that 
causes the failure may not be removed immediately, the debug-
ging effort is still initiated. When the developer tries to modify the 
code new faults could be introduced to the software. 
 
NHPP Software Reliability model with Fault Removal Efficien-
cy 
In this section, fault removal efficiency and fault introduction rate 
are integrated into the MVF of an NHPP model. Fault removal 
efficiency is defined as the percentage of bugs eliminated by re-
views, inspections, and tests [5]. The MVF that incorporates both 
fault removal efficiency and fault introduction phenomenon can be 
obtained by solving the system of differential equations as follows: 

                   (1) 

                 (2) 
Where p represents the fault removal efficiency, which means p% 
of detected faults can be eliminated completed during the develop-
ment process. Therefore (1), m(t) represents the expected number 
of faults detected by time t and pm(t) then represents the expected 
number of faults that can be successfully removed. Existing mod-
els usually assume that p is 100%  
The marginal conditions for the differential equations (1) and (2) 
are as follows. 

                          (3)  

                      (4)  
Where a is the number of initial faults in the software system be-
fore testing starts. Most existing NHPP models assume that the 
fault failure rate is proportional to the total number of residual 
faults. Equation (1) can be deduced directly from assumption 2 
and 3. Software system failure rate is a function of the number of 
residual faults at any time and the fault detection rate (which can 
also be interpreted as the average failure rate of a fault). The ex-
pected number of residual faults is given by 

                               (5) 
Notice, that when P=1 ,the proposed model can be reduced to an 
existing NHPP model [17].Equation 2 can also be deduced from 

assumption 3 and 4.The fault current rate  in software time 

at t is proportional to the debugging efforts to the system, which 

equals to  because of assumption 3.Equation (5) can be 
used to derive explicit solutions of (1) and (2).By taking derivates 
on both sides of (5),we obtain 
 

 
or  

                        (6) 
 
With marginal condition. Hence, the expected number of residual 
faults is given by (6) is 

                       (7) 
From (1),the failure rate function can be expressed as follows: 

  (8) 
Therefore, the explicit expression of the MVF can be obtained as 
follows: 

 (9) 
Using the result in (8),one can also obtain the solution for the fault 
content rate function by taking the integral of (2).The fault content 
rate function is given by 

 
The Reliability function based on the NHPP is, therefore 

                 (10) 
Where m(t) is given by(9). 
Thus, the reliability metrics, i.e. the expected number of residual 
faults , software failure rate, and Software Reliability can be esti-
mated from(7),(8) and (10) respectively. 
 
NHPP Model 
In this section, we derive a new NHPP model from the general 
class of model presented in the previous section. The fault detec-
tion rate function in this model, b(t) is a decreasing function with 
inflexion S-shaped curve[11],[12],which captures the learning pro-
cess of the software developers. In the existing model [11],[12] 
however the upper bound of the fault detection rate is assumed to 
be the same as the learning curve increasing rate. This is for the 
purpose of calculation convenience. In this paper, we relax this 
assumption and use a different parameter for the upper bound of 
fault detection rate. The model also addresses imperfect debug-
ging by assuming faults can be introduced during debugging with 

a constant fault introduction probability ,  .That is 

      (11) 
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Substituting (11) into (9), we obtain the MVF for the proposed 
model as follows: 

               (12) 
Note ,that the testing time t goes to infinity, m(t) converges to up-

per bound .The expected number of residual faults X(t) is 
given by 

             (13) 
and the software failure rate is        

  (14) 
 

Parameter Estimation and Model Comparison  
 
Parameter Estimation: Once the analytical expression for the 
MVFm(t) is derived, the parameters in the MVF need to be esti-
mated, which is usually carried out by using the maximum likeli-
hood estimate method. 
 
Model Comparison: Two criteria are used for model comparison. 
In this section, we evaluate the performance of the models using 
the sum of squared errors (SSE) and  

 
Akaike’s information criterion [1] .Both the descriptive and predic-
tive power of the models are considered. The sum of squared 
error is usually used as criterion for comparison goodness of fit 
and predictive power.SSE can be calculated as follows: 
Where 

      Observed number of faults 

 Expected number of faults by time  estimated by a  
Model 
 
K      fault index 
 
Another criterion used for model comparison is AIC, which can be 
calculated as follows. 
 
AIC=-2*log (likelihood function at its maximum value) +2*N 
 
Where N represents the number of parameters in the model. The 
AIC measures the ability of a model to maximize the likelihood 
function that is directly related to the degrees of freedom during 
fitting, increasing the number of parameters will usually result in a 
better fit. AIC criterion takes the degree of freedom into considera-
tion by assigning a model with more parameters a larger penalty. 
The lower the SSE and AIC values, the better the model performs. 
 
 

Table 1-Summary of the Software Reliability Functions and the 
Mean Value Functions 
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Model Evaluation and Comparison 
In this section, we examine the goodness-of-fit and predictive 
power of the proposed model and compare it with the existing 
models. The first set of data is documented in Lyu [9]. We need to 
separate the data sets into two subsets for the goodness-of-fit test 
and predictive power evaluation. As seen from Table I, the pro-
posed model provides the best fit and prediction for this data set 
(both the SSE and the AIC values are the lowest among all mod-
els). Furthermore, some instrumental information can be obtained 
from the parameter estimation provided by the proposed model. 
Software failure rate can be predicted after the parameters are 
estimated [5]. Fig. 1 shows the trend of failure rate for the test. 
and post-test period. Fig. 2 illustrates the difference between the 
post-test failure rates predicted by several existing models listed 
in Table and the proposed model. For instance, the failure rate 
given by the G-O model is on the optimistic side, due to the follow-
ing two reasons: 1) the G-O model underestimates the expected 
number of total faults unlike the proposed model, the G-O model 
does not consider the fault removal efficiency. Thus we can see 
that the new model has promising technical merit in the sense that 
it provides the development teams with both traditional reliability 
measures and in-process metrics. 

 

Fig.1- Failure rate for real time control data  
 

we test the predictive power of the new model and other existing 
models using four sets of software failure data. Wood [13] studied 
eight existing NHPP models based on four data sets that stem 
from four major releases of software products at Tandem Comput-
ers, and found that the G-O model performs the best.. In [13], 
Wood used a subset of each group of the actual data to fit the 
models and then predicted the number of future failures. He then 
compared the predicted number of failures with the actual data. 
From the SSE values, we can see this proposed model provides a 
significant prediction than G-O model. The AIC value for the pro-
posed model is also lower than that of G-O. 

Fig. 2- Comparison of the post test failure rates by different mod-
els 

Conclusion 
This paper incorporates fault removal efficiency into software 
reliability growth model. Imperfect debugging is considered in the 
sense that not all fault can be removed completely, and new faults 
can be introduced while removing existing ones. Both the fault 
removal efficiency and the fault introduction function can take a 
time-varying form. Data collected from real applications show that 
the proposed model provides both, the traditional reliability 
measures, and also, some important in-process metrics including 
the fault removal efficiency and fault introduction rate. When con-
sidering reliability growth, however, the rate of evolution of the 
failure intensity function depends on many factors 
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