
Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009, pp-43-46

Copyright © 2009, Bioinfo Publications, Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009

GA implementation of the multi dimensional knapsack problem using
compressed binary tries

Sunanda Gupta* and Garg M.L.

*School of Computer Science and Engineering, Shri Mata Vaishno Devi University, Katra (J&K), India,
sunanda.gupta@smvdu.ac.in, garg.ml@smvdu.ac.in

Abstract- During the last two decades solving combinatorial optimization problems, using genetic algorithms
(GA), has attracted the attention of many researchers. The genetic algorithm on which this work is based on
uses a special repair operator to prevent the generation of infeasible solutions and to transform each
feasible solution into a locally optimal solution. In longer runs it is likely that this algorithm produces
candidate solutions that have already been generated and evaluated before. This effect can significantly
reduce the algorithm's overall performance. To prevent the reconsideration of already evaluated solutions, a
solution based on a Trie is studied. This paper presents the algorithms and data structures for compressing
the Binary Trie and incorporates this in the GA implementation of the Multi Dimensional Knapsack Problem.
Keywords- Genetic Algorithms, Tries, Performance.

Introduction
The Multidimensional Knapsack Problem (MKP)
is a combinatorial optimization problem that is a
generalization of the well-known 0-1 Knapsack
Problem. The problem is known to be strongly
NP-hard which means that no deterministic
polynomial algorithm is supposed to exist to solve
the problem [1]. In 1998, Chu and Beasley [1]
published a (hybrid) genetic algorithm for
heuristically solving larger instances of the MKP,
which is still among the best approximate solution
approaches. As a major feature it includes a
strong repair and local improvement operator
which ensures that only promising feasible
solutions at the boundary of the feasible region
are produced as candidate solutions. The
disadvantage of this approach, however, is that in
longer runs the same solutions are repeatedly
generated and evaluated many times, and
valuable CPU-time is wasted. In this work, Chu
and Beasley's algorithm is enhanced by using
compressed binary tries a special archive to
efficiently avoid these re-computations by
inserting each solution in the archive before
evaluating it. In digital search methods, the binary
trie is famous as one of the fastest access
methods, and is utilized for a hash table of trie
hashing and a dictionary in natural language
processing [2],[3]. However, in the case when the
binary trie is implemented as a hash table of the
trie hashing, if the key sets to be stored are large,
the hash table represented by a binary trie is too
big to store into main memory. Therefore, it is
very important to compress the binary trie into a
compact data structure. Then, Jonge et al. [4]
proposed the method to compress the binary trie
into a compact bit stream (called the pre-order bit
stream) by traversing the trie in pre-order. The
potential benefits of this enhancement of the
genetic algorithm is investigated and discussed.
Section 2 presents the method to compress the
binary trie into the compact bit stream according
to Jonge et al. Section 3 incorporates the
algorithm as subroutines in the GA

implementation of the Multi Dimensional
Knapsack Problem. Section 4 provides the
theoretical evaluation. Finally, our conclusion is
summarized in section 5.

A Compression Algorithm for Fast Retrieval
A Trie is a data structure that is suitable to store
many strings. The name was first suggested in
[7]. It is a kind of specialized search tree that
makes use of the string representation of the
keys to be inserted into the trie. The difference to
binary search trees is that no node in the Trie
stores the string that is associated with it, but the
position of each node relative to the root node
determines the string that is represented by a
node. In a Binary trie, the binary sequence
obtained from the translation of the characters
into their binary code, is used as the value of the
key. Namely, the left arc is labeled with the value
‘0’ and the right arc with the value ‘1’. From this
reason the binary trie is called the Binary Digital
Search Tree (BDS tree). A solution can only be
uniquely identified by a leaf node at the lowest
level of trie. Even if only one solution is contained
in the trie all internal nodes on the path from the
root to the leaf corresponding to the solution
string are needed to describe the solution. If each
of leaves in the BDS-tree points to record of only
one key, the depth of the BDS-tree becomes very
deep. So as to reduce the depth of the tree, each
leaf has the address of the bucket, where some
corresponding keys to the path are stored. When
the BDS-tree is implemented, the larger the
number of registered keys, the greater the
number of nodes in the tree is, and more storage
space is required. So, Jonge et al.[4] proposed
the method to compress the BDS-tree into a very
compact bit stream. This bit stream is called pre-
order bit stream. The pre-order bit stream
consists of three elements: treemap, leafmap and
B_TBL. The tree map represents the state of the
tree and can be obtained by a pre-order tree

GA implementation of the multi dimensional knapsack problem using compressed binary tries

Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 44

traversal, where ‘0’ is for every internal node and
‘1’ is for every bucket visited. The leafmap
represents the state (dummy or not) of each leaf
and by traversing in pre-order the corresponding
bit is set to ‘0’ if the leaf is dummy, otherwise the
leaf is set to ‘1’. (Empty buckets and their
corresponding leaves are called dummies). For
example, let us consider that the following key
set B is to be inserted into the BDS-tree.
B = {cat, bat, job, run, see, son, yak, ink, lap, get}
If the binary sequence obtained from the
translation of the internal node of each character,
where internal codes of a,b,..…z are 1,2,…26
respectively, into binary numbers of 5 bits is
used, the corresponding bit strings to be
registered are as follows.
cat → 00011 / 00001 / 10100
bat → 00010 / 00001 / 10100
job → 01010 / 01111 / 00010
run → 10010 / 10101 / 01110
see → 10011 / 00101 / 00101
son → 10011 / 01111 / 01110
yak → 11001 / 00001 / 01011
ink → 01001 / 01110 / 01011
lap → 01100 / 00001 / 10000
get → 00111 / 00101 / 10100
If B_SIZE is 2, the corresponding BDS-tree for
the key set B is shown in Fig 1. B_SIZE is used
to denote the number of keys and records that
can be stored in one bucket.

Fig. 1- The BDS-tree for key set B

In order to compress the BDS-tree, a particular
leaf is applied, which does not have any
addresses for the bucket. This leaf is called
dummy leaf. Dummy leaf is introduced because
of the following advantages. First, it satisfies the
property of binary trees that the number of leaves
is one more than the number of internal nodes.
This property underlies the search algorithm
using the compact data structure. Secondly, if the
search terminates in a dummy leaf, the search
key is regarded as a key that does not belong to
the BDS-tree and no disk access will be needed
at all. Fig 2. shows the preorder bit stream
corresponding to the BDS-tree of Fig 1. In order
to understand the relation between the BDS-tree
and the pre-order bit stream easily, we indicate
above the treemap the corresponding internal

node and leaf number (in the case of the dummy
leaf, the number is “d”) within the round “()” and
square “[]” brackets respectively.All the internal
nodes are represented by “0” and all the leaf
nodes in a tree map are represented by “1”. All
the leaves except for the dummy leaves are
represented by “1” in leafmap. The search using
the pre-order bit stream proceeds bit by bit from
the first bit of treemap going to the right, so that,
the search is done, traversing the BDS-tree in
pre-order.

Fig. 2- Pre-order bit stream

The retrieval algorithm using the pre-order bit
stream as proposed by Jonge et al. [4] is
presented below.

BDS_RETRIEVE
Step S-1: {Initialization}
keypos → 1;
treepos → 1;
leafpos → 1;
Step S-2: {Verification of bit value of the key}
If the bit pointed by keypos is ‘1’ proceeding to
Step (S-3) otherwise proceed to Step (S-5).
Step S-3: {Skipping left subtree in treemap}
Advance treepos until the number of ‘1’ bits in
treemap is one more than the number of ‘0’ bits
and proceed to Step (S-4).
Step S-4: Advance leafpos by the number of ‘0’
bits skipped in treemap from the current treepos.
Step S-5: {Loop invariant until reaching
bucket}
Advance treepos by one, and if the bit pointed to
by treepos is ‘0’ proceed to step (S-2) after
advancing keypos by one.
Step S-6: {Verification of leafmap}
If the bit of leafmap pointed to by leafpos is ‘0’,
FALSE is returned.
Step S-7: {Verification of B_TBL}
Count the number of ‘1’ bits in leafmap from the
first bit of leafpos and obtain the bucket number
indicated by the counted value. If the bucket
indicated by bucketnum contains the key return
TRUE, otherwise return FALSE.
In the above algorithm the following abbreviations
have been used.
keypos: A pointer to the current position in
s_key.

Sunanda Gupta and Garg ML

Copyright © 2009, Bioinfo Publications, Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009

45

treepos : A pointer to the current position in
treemap.
leafpos: A pointer to the current position in
leafmap.

GA based MKP incorporating binary tries
In longer runs it is likely that the genetic algorithm
produces candidate solutions that have already
been generated and evaluated before. This effect
can significantly reduce the algorithm’s overall
performance. This is because if the majority of
the individuals share the same value for a
chromosome, the chromosome is said to have
converged and if all the chromosomes have
converged, the population is said to have
converged [5][6]. To prevent the reconsideration
of already evaluated solutions, a solution archive
based on a trie is studied. Each newly generated
solution is inserted into this archive. If during
insertion into the archive a solution is recognized
to be a duplicate of an already visited solution
then it is discarded. An approach that detects
duplicates not only within the current population
but also among all chromosomes that have been
generated, has not yet appeared in literature to
my knowledge. Thus, the genetic algorithm for
the multidimensional knapsack problem
incorporating compressed binary trie is presented
below.

GA_MKP_TRIE
Step 1: Set t: =0;
Step 2: P (t): = {S1,S2,….SM}, such that Si = {Jk
where 1≤ k ≤ n | Jk = {0,1}}
Step 3: Call subroutine BDS_INSERT for creating
a trie consisting of all the chromosomes of the
population generated.
Step 4: Evaluate P(t) := {f(S1),…….f(SM)};
where f(Si) = ∑ fitness Ji where 1≤ i ≤ n | only if Ji
= 1}
Step 5: Find S* ∈ P (t) such that f(S*) ≥ f(S) for

all S∈ P(t)
Step 6: while t < tmax do
Step 7: Select {P1,P2}: = Φ (t);

/* Φ = binary tournament operator */

Step 8: Crossover C: = Ωc (P1,P2)

/* Ωc = uniform crossover operator*/

Step 9: Mutate C ← Ωm(C)

/* Ωm = mutation operator */
Step 10: Evaluate f(C)
Step 11: If f(C) is unfit then C ←
GreedyRepair(C)
Step 12: Call subroutine BDS_RETRIEVE
If it returns true i.e C ≡ any S ∈P(t) then discard
C and go to step 7
else
call subroutine BDS_INSERT for inserting the
new key into the trie.
Step 13: end if
Step 14: find S’ ∈P (t) such that f(S’) ≤ f(S) for all

S ∈ P(t) and replace S’ ← C

/*steady state replacement*/
Step 15: if f(C) > f(S*) then
Step 16: S* ← C
Step 17: end if
Step 18: t ← t+1
Step 19: end while
Step 20: return S*, f(S*)

As it is evident from the algorithm, BDS_INSERT
is a subroutine that has been used for creating
the archive for storing all the chromosomes that
are generated in a population. The algorithm for
creating a binary trie using BDS_INSERT is
presented below. The GA_MKP_TRIE algorithm
follows steady state replacement strategy, as the
initial population created is evolved, by replacing
single chromosomes by newly generated ones.
Only one child individual is created at a time and
this individual replaces the worst individual in the
population. GreedyRepair operator designed by
Chu and Beasley [1] is used. It consists of two
phases. The first part called the DROP phase
ensures that every solution that was processed
by this DROP phase is feasible. Each variable is
examined in ascending order of utility ratios and
as long as solution is infeasible the current item
examined is excluded from the solution if it was
included. The second part called the ADD phase,
examines all items in decreasing order of utility
ratios and add each item that is not included in
the solution as long as no resource constraint
gets violated. BDS_RETRIEVE is the
compression algorithm which actually checks
whether the new chromosome generated is a
duplicate or not. It has been explained well in
detail in section 2.

BDS_INSERT
The method for inserting the new key into the
BDS-tree is divided into following three cases: -
Case A) Required Bucket is partially filled
i.The required bucket is read in.
ii. The new record inserted into it.
iii. Bucket is rewritten to disk.
iv. COUNT incremented by 1. (COUNT keeps

the check that the number of keys should not
exceed B_SIZE)

Case B) Required Bucket is a Dummy.
i. Dummy bucket is converted into real one.
ii. Dummy buckets don’t have disk space

allocated to them, inserting a record in a
dummy bucket will require allocating a new
disk bucket.

iii. Initializing COUNT to 1
iv. New bucket included in B_TBL at the

appropriate position.
Case C) Required Bucket is full
i. Bucket must be split into two buckets.
ii. All b+1 keys (the b keys that previously filled

the bucket, plus the new one to be inserted)
are distributed over the two new buckets.

GA implementation of the multi dimensional knapsack problem using compressed binary tries

Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 46

Theoretical Evaluation
A. Storage Requirements
Bucket addresses are stored in a separate table,
indexed by bucket number. Fig.2 shows the
linear representation of the tree of fig.1. A bucket
number is just the position of its leaf bit in the
linear representation when zeros (internal nodes)
are neglected, whereas the bucket address is a
physical or symbolical address. Associated with
each tree is a leafmap with as many bits as the
tree has leaves. For each leaf (bucket) the
corresponding bit is set to zero if the bucket is
empty, otherwise the bit is set to 1. When a tree
search terminates, the bucket number of the
bucket found is used to index into the leafmap to
fetch the corresponding bit. If that bit is a ‘1’, the
bucket found exists; otherwise the bucket is a
dummy. It is straightforward to calculate the
number of bits required in the index per bucket in
the file. If a tree has N buckets (including
Dummies), it will have 2N-1 nodes total, and thus
2N-1 bits are needed for its linear representation.
Thus, each leaf (bucket) requires approximately 2
bits. If the leaf map is not used, then every
bucket and every dummy has a slot in B_TBL. In
B_TBL dummies will have 0’s and buckets will
contain disk addresses. If the number of bits
required for representing the address in each
bucket is A, then the number of bits required per
bucket is A+2. If a fraction d of all the buckets are
dummies, the number of bits per nondummy
bucket is (A+2) / (1-d). If the leafmap is used, the
number of bits per leaf is increased from 2 to 3,
but only buckets need a slot in the table for their
disk addresses, so the total number of bits per
bucket is A+3 / (1-d). Clearly, the leafmap
scheme is to be preferred whenever:

(A+3) / (1-d) < (A+2) /(1-d)
which occurs whenever d > 1/A.

B. Time Effeciency
The computational cost of the retrieval algorithm
BDS_RETRIEVE is linear in the size of the tree.
During a search the algorithm reads from the
linear representation all bits up to and including
the 1 bit representing the bucket (dummy or not)
finally found. The retrieval algorithm spends its
time mainly on skipping subtrees. This means
that on the average about half the bits of the
linear representation will be read. Clearly, about
half the bit map will be scanned on the average.
On the other hand, if no trie structure is
maintained as in case of algorithm given by chu
and Beasley [1] then searching for a duplicate in
a generation where the chromosomes are stored
in a file would require sequential access i.e.
reading the entire file sequentially.

Conclusion
In this paper, a genetic algorithm enhanced with
binary tries used for detecting duplicates is
incorporated for solving the multi dimensional
knapsack problem. Chu and Beasley’s [1]
algorithm also does duplicate elimination,
however it detects duplicates that are contained
in the population at the time of generation of the
duplicate solution. It is however possible and not
so unlikely that a candidate solution that was
replaced by a different solution is generated
again in later iteration. This kind of duplicate
occurrence has been detected with the help of
compressed binary tries. Trie based archive
BDS_INSERT represents the entire search space
for the MKP. This enables more opportunities
how to handle the detection of a duplicate and
that too in minimum time. As future
improvements, the GA_MKP_TRIE should be
modified in such a manner that in case of
detection of duplicate solution, it generates
alternative unvisited solution (from the created
duplicate solution) that is not contained in BDS
archive.

References
[1] Chu P.C.and Beasley J.E. (1998) Journal of

Heuristics, 4(1), pp 63-86.
[2] Aoe J. (1991) IEEE Computer Society

Press
[3] Gonnet G.H. (1984) Handbook of

Algorithms and Data Structures,
Addison-Wesley, Reading Mass. Ch. 3
(Searching Algorithms), pp 25-147.

[4] Jonge W.D., et.al (1987) IEEE Trans.
Software Engineering, SE-13 (7), pp.
799-809.

[5] Gottlieb J. (2000) AE ’99 Selected Paqpers
from the 4th European Conference on
Artificial Evolution, volume 1829 of
Lecture Notes in Computer Science, pp
23-37. Springer-Verlag (2000).

[6] Freville A. (2004) European Journal of
Operation Research, 127(1), pp1-21.

[7] Fredkin E. (1960) Trie Memory;
Communication of the ACM, 3(9). 490-
499.

