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Abstract -Given a connected, weighted, undirected graph G and a bound D, the bounded diameter 
minimum spanning tree (BDMST) problem seeks a spanning tree on G of minimum weight among the trees 
in which no path between two vertices contains more than D edges. This problem is NP-hard for 4 ≤ D ≤ |v| -
1. In present paper a new randomized greedy heuristic algorithm for solving BDMST is proposed. An 
evolutionary algorithm encodes spanning trees as lists of their edges, augmented with their center vertices. 
It applies operators that maintain the diameter bound and always generate valid offspring trees. These 
operators are efficient, so the algorithm scales well to larger problem instances. On 25 Euclidean instances 
of up to   1000 vertices, the EA improved substantially on solutions found by the randomized greedy 
heuristic. 
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Introduction 
The bounded diameter minimum spanning tree 
(BDMST) problem is a combinatorial optimization 
problem that appears in many applications such 
as wire-based communication network design 
when certain aspects of quality of service have to 
be considered, in ad-hoc wireless network[1] and 
in the areas of data compression and distributed 
mutual exclusion algorithms [2]. The goal is to 
identify a tree-structured network of minimum 
costs in which the number of links between any 
pair of nodes is restricted by a constant D, the 
diameter. More formally, we are given an 
undirected connected graph G =(V;E) with node 
set V and edge set E and associated costs ce ≥ 0, 
for all e in E.  We seek a spanning tree T=(V,ET ) 
with edge set ET being a subset of E whose 
diameter does not exceed D ≥ 2, and whose total 
costs c(T) = ∑e∈ ET  ce are minimal. This task can 
also be seen as choosing a center (one single 
node if D is even or an edge in the odd-diameter 
case)and building a height-restricted tree where 
the unique path from this center to any node of 
the tree consists of no more than H = D/2 edges. 
The BDMST problem is known to be NP-hard for 
4 ≤ D ≤ V-1. Techniques for solving the BDMST 
problem may be classified into two categories: 
exact methods and inexact (heuristic) methods. 
Exact approaches for solving the BDMST 
problem are based on mixed linear integer 
programming [3][4][5]. More recently, Gruber and 
Raidl suggested a branch and cut algorithm 
based on compact 0-1 integer linear 
programming [6]. However, being deterministic 
and exhaustive in nature, these approaches 
could only be used to solve small problem 
instances (e.g. complete graphs with less than 
100 nodes). [7] presented a greedy heuristic 
algorithm - the One Time Tree Construction 
(OTTC) for solving the BDMST problem. OTTC is 
based on Prim’s algorithm in [8]. It starts with a  

 
 
set of vertices, initially containing a randomly 
chosen vertex. The set is then repeatedly 
extended by adding a new vertex that is nearest 
(in cost) to the set, as long as the inclusion of the 
new node does not violate the constraint on the 
diameter of the tree. This algorithm is time 
consuming, and its performance is strongly 
dependent on the starting vertex. Raild and 
Julstrom [9] modified this approach to start from a 
predetermined centre and presented randomized 
greedy heuristic algorithm (RGH). RGH extends 
spanning tree from center by adding a randomize 
node from remain nodes and connecting it to 
node in the tree with smallest weight. RGH starts 
from a centre by randomly selecting a vertex and 
keeping it as the fixed center during the search. It 
then repeatedly extends the spanning tree from 
the center by adding a randomly chosen vertex 
from the remaining vertices, and connecting it to 
a vertex that is already in the tree via an edge 
with the smallest weight. The obtained results 
showed that on Euclidean instances RGH 
performs better than OTTC, whereas on non-
Euclidean instances the situation is reversed. 
Raidl and Julstrom proposed a genetic algorithm 
for solving BDMST problems which used edge-
set coded [10] (JR-ESEA) and permutation-
coded  representations for individuals [11] (JR-
PEA). Permutation coded evolutionary algorithms 
were reported to give better results than edge-set 
coded, but usually are much more time 
consuming. Another genetic algorithm, based on 
a random key representation, was derived in[12], 
sharing many similarities with the permutation-
coded evolutionary algorithms. In[13], Gruber 
used four neighborhood types to implement 
variable neighborhood local search for solving 
the BDMST problem. They are: arc exchange 
neighborhood, level change neighborhood, node 
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swap neighbourhood, and center change level 
neighborhood. Later, [14], re-used variable 
neighborhood searches as[13], embedding them 
in Ant Colony Optimization (ACO) and genetic 
algorithms for solving the BDMST problem. Both 
of their proposed algorithms (ACO and GA) 
exploited the neighborhood structure to conduct 
local search, to improve candidate solutions. In 
[15], Nghia and Binh proposed a new 
recombination operator which uses multiple 
parents to do the recombination in their genetic 
algorithm. Their proposed crossover operator 
helped to improve the minimum and mean 
weights of the evolved spanning trees. More 
recently, in [16], Alok and Gupta derived two 
improvements for RGH heuristics (given in [10]) 
and some new genetic algorithms for solving 
BDMST problems (notably the GA known as 
PEA-I). PEA-I employs a permutation-coded 
representation for individuals. In [17], Binh et al., 
also implement another variant of RGH, which is 
called RGH1. RGH1 is similar to RGH, except 
that when a new vertex is added to the 
expanding spanning tree, it is chosen at random, 
and connected to a randomly chosen vertex that 
is already in the spanning tree. Section 2 
presents a discriminatory randomized greedy 
heuristic which is an improvement of RGH. 
Section 3 deals with the novel crossover operator 
proposed. Section 4 explains the novel GA 
strategy developed incorporating    D-RGH as the 
initialization operator. Results are given in section 
5. And finally, conclusion forms section 6. 
 
The Discriminatory Randomized Greedy 
Heuristic (D-RGH) 
As the starting vertex, significantly affects the 
weight of the generated trees therefore we 
propose not to choose the vertex randomly from 
the V. Our algorithm rather than choosing 
randomized center V (one center if D is even and 
two otherwise), we propose to choose the center 
from a subset C of vertices. In addition, while 
extending the tree also, the next vertex is not 
chosen randomly from V, but from a subset C of 
V. Note that the, spanning tree with diameter less 
than D has at least (n- 1)/(2*D) or (n-2)1(2*D) 
pendant vertices (i.e. vertices of degree 1) 
corresponding to the case of D being even or 
odd. Therefore, let P be the set of  [2(n - 2)/D] 
vertices that are farthest from the center, these 
vertices will be connected in the end hoping that 
large edges will not have to be incorporated into 
the tree. They will be considered when remaining 
vertices have been connected.  
 
Algorithm using path length matrix to determine 
the center: 
CENTER_DET {} 
Step C-1: {Determine path length matrix} 

• Determine the Matrix X, each entry x[ij] 
of which is a number referring to the 

minimum number of edges between all 
pairs of i and j. 

Step C-2: {Computing row total of X} 
• Compute ∑ x[i] for all i. And let s[i] = ∑ 

x[i], the sum of lengths of shortest paths 
from vertex i to the rest (v-i) vertices. 

Step C-3: {Sorting s[i]} 
• Sort s[i] in the ascending order. 

Step C-4: {Determine Q} 
• Determine a number Q, chosen 

randomly between 2 and (i-1). 
Step C-5: {Determining the center} 

• Let C be the set of the first Q vertices 
from the sorted list s[i]. The center will 
be chosen from C. 

 
Next, the algorithm D_RGH to generate the 
BDMST using the novel approach suggested by 
the authors is presented: 
D_RGH {} 
Step D-1: {Call subroutine CENTER_DET} 

• Determine X[i,j] and s[i] for all i , j in V. 
• Determine the set C. 

Step D-2: {Fixing the center} 
• Select {vo} : a random vertex in C; 
• C:= C- {vo}; /* Update the set C */ 
• U := V- {vo}; /* Update the set U of 

unconnected vertices */ 
• ST :={vo}; /* Add vo to ST, the set of 

connected vertices added in the 
spanning tree */ 

• depth[vo] := 0; /* Determine the distance 
of vo from the center. */ 

Step D-3: {The odd diameter case} 
• If D is odd then 
• Select {v1} : another random vertex in C; 
• T := {(vo, v1)}; /* Add the edge (vo, v1) to 

the set of tree edges T*/ 
• U := U- {v1 }; 
• ST :=  ST U  {v1}; 
• C  :=  C- {v1}; 
• depth[v l]  :=  0; 

Step D-4: { } 
• Determine the set P /* P is the set of 

pendant vertices */ 
• U := U- P;   

Step D-5: {Iterate for all vertices in U} 
• While U ≠ Ø do 
• v  :=  randomize vertex in U; 
• u  := vertex in ST with min W(u,v); 
• T := T U {(u, v)}; /* Update the tree 

edges*/ 
• U :=  U - {v}; /* Update the set U*/ 
• depth[v] := depth[u] + 1; /*Checking the 

diameter          bound */ 
• If depth[v] < [D/2] then /* checking 

diameter bound*/ 
ST: = ST U {v}; /* update the tree 
vertices*/ 

 



Sakshi Arora and Garg ML 

Copyright © 2009, Bioinfo Publications, Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 

 
41 

Step D-6: {Iterate for all vertices in P} 
• While P ≠ Ø do   /* P is  set of  farthest 

vertices*/ 
• v  :=  randomize vertex in R; 
• u  :=  vertex in C which has minimum 

W(u,v); 
• T := T U {(u, v)}; 
• P := P -{v}; 
• depth[v] := depth[u] + 1; 
• If depth[v] < [D/2] then 
             ST: = ST U {v}; 

Step D-7: {Return T} 
 
 
Improved Genetic Algorithm 
Genetic algorithm has proven effective on NP-
hard problem. Much works research on NP-hard 
problem, particularly in problems relating to tree 
have been done. Several studies proposed 
representations for tree [16, 7, 9, 10, 12, 17]. This 
section proposes a new recombination operator 
(called multi-crossover operator) in genetic 
algorithm for solving BDMST problem.  
A. Initialization 
Use NRGH algorithm described above for 
initializing population and edge list for 
chromosome code. 
B. Recombination operator 
In genetic algorithm, recombination operator is 
used to produce a new child and it should be 
provided strong heritability. In traditional 
recombination operator, the child is produced 
from two parents but in proposed multi-crossover 
operator one, the child is produced from several 
parents. In BDMST problem, the child tree 
produced by recombination from several parent 
trees so it contains most of potential parental 
edges. While the traditional method works with 
two parents, our method will work with possible 
more than two parents in hope that the child 
could inherit much more potential edges. The 
operator may be considered superior as it 
preserves those edges in the parents which are 
encountered in more than two parents. And as 
the parents from which these edges are taken 
are themselves minimum spanning trees 
obtained from D-RGH, their edges should be 
passed on to the child (as in Elitism). 
C. Mutation operator 
We have used the edge delete mutation in our 
algorithm. The preliminary experiments show that 
the other mutation operators such as greedy 
edge replace mutation, center move mutation 
and subtree optimize mutation do not impact the 
tree significantly differently than the edge delete 
mutation. 
GA_D-RGH{ } 
Step 1: Set gen: =0; 
Step 2: Call subroutine D-RGH for creating the 
bounded diameter spanning trees constituting the 
chromosomes of the population  

Step3: P (t): = {T[1], T[2]….T[N]}, such that T[K] = 
{the edge set (u,v) for all u , v in V} 
Step 4: /*Sketch of k-recombination operator*/ 

 T := Ø 
Step 5:  /*Determine center*/ 

If D is odd then 
vo := random center in T[i]; 
U: = V- {vo}; 
C: = {vo}; 
depth[vo] – 0 

else 
(vo, vl) - random center in T[i]; 
T - {(vo, vi)}; 
U- V- {vo, V,I; 
C – {vo, V- }; 
depth[vo] - 0; 
depth[vi] - 0; 

Step 6: while gen < genmax do 
Step 7: Select{T1,T2,T3…Tk}: = Φ (t); /* 2<k<N */ 
/* Φ = tournament operator */ 
Step 8: Crossover C: = Ωc (T1,T2, T3….Tk) 
/* Ωc = multi-crossover operator*/ 
Step 9: Mutate C ← Ωm(C) 
/* Ωm  = mutation operator */ 
Step 10: Evaluate f(C) 
Step 11: Evaluate P(t) := {f(T[1]),…….f(T[N])}; 
where f(T[i}) = ∑ fitness (u,v) where (u, v) is an 
edge between any two vertices in V 
Step 12: If C ≡ any T ∈P(t) then discard C and go 
to step 7 
else 
Discard C. 
Step 13: If f(C) < f(T[i])  then discard C and go to 
step 8 
Step 14: end if 
Step 15: end if 
Step 14: gen ← gen+1 
Step 19: end while 
Step 20: return  C, f(C) 
 
 
Experiment and Evaluation 
The EA Framework 
The representation and operators that the last 
section described were implemented in a 
conventional steady-state evolutionary algorithm. 
The EA applies the randomized greedy heuristic 
to generate candidate solutions for its initial 
population, so it starts with a diverse collection of 
relatively good solutions. It selects parents in 
tournaments with replacement. Recombination 
generates some offspring, but  every offspring is 
mutated with one of the four mutation operators. 
Each offspring replaces the worst solution in the 
population, except that duplicates are discarded. 
The EA’s parameters were set according to the 
experience gained from the preliminary test. In 
particular, its population contained 500 
chromosomes, the size of the tournament 
operator was four, and it applied crossover with a 
probability of 0.6. The rates of the four mutation 
operators were 0.2 between and 0.3. The 
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termination criteria was non improvement of 
solution in 1000 iterations. 
Tests 
The OTTC heuristic, the randomized greedy 
heuristic (RGH), and the evolutionary algorithm 
(EA) were compared on Euclidean instances of 
BDMST problem, five instances each of n= 100,, 
250, 500 and 1000 vertices from Beasley’s  OR-
Library (http://mscmga.ms.ic.ac.uk/info.html). 
These instance are Euclid complete graphs in the 
unit square. We have taken first fine instances for 
each size of n mentioned. The value of D is taken 
to be 10, 15, 20 and 25 respectively for each 
value of n. OTTC, RGH and D-RGH were run n 
times on each instance with random start 
vertices. EA was run 50 times on each instance. 
Table1 summarizes the results of these trials on 
a Pentium IV / 800 Mhz processor. For each trial 
of OTTC, RGH, D-RGH and EA(D-RGH) the 
table lists the weight of the best BDST generated 
and  the average weight of the BDSTs generated.  
 
Conclusion 
Given a connected, weighted, undirected graph 
G and a bound D, the bounded-diameter 
minimum spanning tree problem seeks a 
spanning tree on G of lowest weight in which no 
path between two vertices contain more than D 
edges.  OTTC, an algorithm based on Prim’s 
technique identifies high weight trees.  
A randomized greedy heuristic connects vertices 
to the tree in random order, but each with a valid 
edge of lowest weight. An evolutionary algorithm 
that encodes spanning trees as list of their 
edges, augmented by their center vertices. 
Further, the multi parent crossover operator 
provides strong heritability and consequently 
better (lower weight) trees on instances upto 
1000 points for Euclidean problem sets. The 
crossover and the mutation operator both are 
implemented in linear time making the EA scale 
well to large problem instances. The proposed 
algorithm also gives significantly better solutions 
particularly if its initial population has been 
generated using the suggested discriminatory 
randomized greedy heuristic. 
Table 1- Results obtained by OTTC, RGH, D-RGH and 

EA(D-RGH) 
Instance OTTC RGH D-RGH EA(D-RGH) 

n D in Best mean Best Mean Best Mean Best Mean 

100 10 1 18.50 28.56 9.16 10.78 8.78 8.90 7.99 8.67 

  2 18.34 24.44 9.78 10.82 8.67 8.95 7.65 7.99 

  3 20.06 24.78 9.77 11.12 8.54 8.84 7.34 7.62 

  4 17.27 26.89 9.34 11.26 8.45 8.62 6.63 6.80 

  5 16.32 26.07 9.23 10.29 8.77 8.83 6.32 6.71 

250 15 1 41.78 71.29 15.16 15.45 10.89 10.90 8.89 8.98 

  2 50.45 70.89 15.56 15.98 10.78 11.12 8.56 8.91 

  3 42.65 65.67 15.13 15.38 10.13 11.67 8.12 8.17 

  4 44.87 62.55 15.89 15.97 10.90 11.78 8.34 8.56 

  5 36.90 68.78 15.45 16.01 10.56 11.44 8.11 8.22 

500 20 1 88.67 91.29 20.78 20.90 19.56 19.80 16.99 16.98 

  2 87.67 90.89 21.03 21.09 18.67 19.78 16.67 15.76 

  3 85.45 95.67 20.89 20.67 19.05 19.78 15.87 15.90 

  4 90.45 62.55 20.56 21.61 18.57 18.67 15.65 16.84 

  5 89.56 68.78 20.66 20.91 19.91 19.99 16.89 15.33 

1000 25 1 180.78 300.10 28.98 30.90 25.78 25.78 21.76 22.76 

  2 187.56 320.07 29.07 30.43 25.90 25.98 22.98 21.09 

  3 185.33 290.78 28.76 30.21 25.91 26.32 22.32 22.67 

  4 191.56 312.67 28.12 30.77 24.33 25.11 21.01 22.39 

  5 190.23 309.88 28.62 30.14 24.28 24.74 22.08 22.61 
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