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Abstract- Since the dawn of computing, the sorting problem has attracted a great deal of research. In 
past, many researchers have attempted to optimize it properly using empirical analysis. We have 
investigated the complexity values researchers have obtained and observed that there is scope for fine 
tuning in present context. Strong evidence to that effect is also presented. We aim to provide a useful 
and comprehensive note to researcher about how complexity aspects of sorting algorithms can be best 
analyzed. It is also intended current researchers to think about whether their own work might be 
improved by a suggestive fine tuning. Our work is based on the knowledge learned after literature 
review of experimentation, survey paper analysis being carried out for the performance improvements of 
sorting algorithms. Although written from the perspective of a theoretical computer scientist, it is 
intended to be of use to researchers from all fields who want to study sorting algorithms rigorously. 
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1. Introduction 
Searching and Sorting are the tasks that are 
frequently encountered in various Computer 
Applications. Since they reflect fundamental 
tasks that must be tackled quite frequently, 
researchers have attempted in past to develop 
algorithms efficient in terms of optimum 
memory requirement and minimum time 
requirement i.e., Time or Space Complexities. 
Together with searching, sorting is probably the 
most used algorithm in Computing, and one in 
which, statistically, computers spend around 
half of the time performing

 a 
. Sorting algorithms 

are always attractive because of the amount of 
time computers spend on the process of sorting 
has always been a matter of research attention. 
For this reason, the development of fast, 
efficient and inexpensive algorithms for sorting 
and ordering lists and arrays is a fundamental 
field of computing. By optimizing sorting, 
computing as a whole will be faster. When we 
look to develop or use a sorting algorithm on 
large problems, we came across previous 
research literature where it was mentioned 
clearly to concentrate on how long the 
algorithm might take to run. We discovered 
that, the time for most sorting algorithms 
depends on the amount of data or size of the 
problem and in order to analyze an algorithm, 
we required to find a relationship showing how 
the time needed for the algorithm depends on 
the amount of data.  We found that, for an 
algorithm, when we double the amount of data, 
the time needed is also doubled. The analysis 
of another algorithm told us that when we 
double the amount of data, the time is 
increased by a factor of four. The latter 
algorithm would have the time needed increase 
much more rapidly than the first. We have 
discovered that, some factors other than the 
sorting algorithm selected to solve a problem, 
affect the time needed for run [1]. It is just 
because different people carrying out a solution 
to a problem may work at different speeds, 
even when they use the same sorting method, 
as different computers work at different 

speeds.  The different speeds of computers 
can be due to different "clock speeds”, the 
rates at which steps in the program are 
executed by the machine and different 
"architectures," the way in which the internal 
instructions and circuitry of the computer are 
organized. Consequently, analysis of sorting 
algorithm can not predict exactly how long it will 
take on a particular computer. We also found 
that, the analysis of efficiency depends 
considerably on the nature of the data. For 
example, if the original data set is almost 
ordered already, a sorting algorithm may 
behave rather differently than if the data set 
originally contains random data or is ordered in 
the reverse direction. The purpose of this 
investigation is to magnify analysis of sorting 
algorithms considering all possible factors and 
make a concise note of it. Our work may be 
useful for some applications that seek to 
determine which sorting algorithm is the fastest 
to sort the lists of different lengths, and, to, 
therefore determine which algorithm should be 
used depending on the list length. For example 
Shell sort should be used for sorting of small 
(less than 1000 items) arrays. It has the 
advantage of being an in-place and non-
recursive algorithm, and is faster than 
Quicksort up to a certain point. For larger 
arrays, the best choice is Quicksort, which uses 
recursion to sort lists, leading to higher system 
usage but significantly faster results. We have 
attempted to review the rich body of sorting 
literature in accord with their utility and 
performance so as to make a critical analysis of 
them in order to discover tuning factors. These 
factors are intended to help the reader to avoid 
wasted efforts in order to produce correct 
complexity values. Most of the part of this 
paper concentrates on the study of algorithms 
for problems in the standard format where both 
instances and outputs are finite objects, and 
the key metrics are resource usage (typically 
time and memory).Several of the suggestions 
enunciated here may be somewhat 
controversial, but we have, at least elaborated 



A Comprehensive Note on Complexity Issues in Sorting Algorithms 

 

Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 2 

them. Indeed, although there is much common 
agreement on what makes good experimental 
analysis of sorting algorithms, certain aspects 
have been the subject of debate, such as the 
relevance of running time comparisons. 
 
2. Background Knowledge  
In computer science and mathematics, a 
sorting algorithm is an algorithm that puts 
elements of a list in a certain order. The most 
used orders are numerical order and 
lexicographical order. Sorting algorithms are 
often prevalent in introductory computer 
science classes, where the abundance of 
algorithms for the problem provides a gentle 
introduction to a variety of core algorithm 
concepts. Herein, we restrict the scope of 
sorting to ordering of data by a digital 
computer. Given a collection of data entries 
and an ordering key, sorting deals with various 
processes invoked to arrange the entries into a 
desired order. Sorting algorithms are of two 
types. Internal and External, depending upon 
ordering a list of elements residing in primary 
storage or secondary storages. There are two 
types of each of them viz, the comparative and 
the distributive. The comparative algorithms 
order the list by making a series of 
comparisons of the relative magnitude of the 
ordering keys of the elements. The distributive 
algorithms order the list by testing a key or a 
digit of a key against a standard and collecting 
all members of a group together. Group 
definitions are then modified so that all 
elements and groups are ordered during a last 
pass. The performance of comparative 
algorithms varies with the number of elements 
to be sorted and the permutation of the 
elements. The performance of distributive 
algorithm varies with the range of the keys and 
their distribution. The criteria for measuring the 
performance of an ordering algorithm include, 
the number of comparisons that must be 
performed before the list is ordered, the 
number of movements of data on the list before 
the list is ordered, the amount of space 
required beyond that needed to hold the list, 
and the sensitivity to certain kinds of order of 
the data. The number of comparisons among 
algorithms varies considerably.  A minimum 
storage algorithm is one that requires little or 
no additional storage to perform the ordering. 
Algorithmic complexity of sorting algorithm is 
generally written in a form known as Big-O 
notation, where the O represents the 
complexity of the algorithm and a value n 
represents the size of the set the algorithm is 
run against. For example, O (n) means that an 
algorithm has a linear complexity [2]. Generally, 
the complexity notational terminology is 
covered as in [3]. Research on efficiency 
analysis of sorting algorithms [4] uses Big Oh 
(O), Omega (Ω) and Theta (Θ) notations to give 
asymptotic upper, lower, and tight bounds on 
time and space complexity of sorting 
algorithms. The best and worst cases in a 
given algorithm express what the resource 

usage is at least and at most, respectively. An 
algorithm's average performance is its behavior 
under "normal conditions". In almost all 
situations the resource being considered is 
running time, but it could also be memory, for 
instance. The worst case is most of concern 
since it is of critical importance to know how 
much time would be needed to guarantee the 
algorithm would finish. Let us see how 
complexity of a sorting algorithm is measured 
[1] .Consider Merge Sort algorithm. The merge 
sort function/algorithm (merge sort l) takes a list 
l of length n, and does a merge on the merge 
sort of the first half of l, and the merge sort of 
the second half of l. The stopping condition is 
when the list l is of size 0 or 1. Let the merge 
function takes two sorted lists l1 and l2. At each 
step merge takes the smaller of the head of l1 
and the head of l2, and appends it to a growing 
list, and removes that element from the list 
(either l1 or l2).  A merge on lists of length n/2 
is O (n).The running time of merge sort on a list 
of n elements is then ,   t(0) = 0  ,  t(1) = 1 , 
…… t(n) = 2.t(n/2) + c.n  , where c.n is the cost 
of merging two lists of length n/2, and the term 
2t(n/2) is the two recursive calls to merge sort 
with lists l1 and l2 of length n/2. Consequently,   
 T (n)  = 2.t (n/2) + c.n    
  = 2. (2. t (n/4) + c.n/2) + c.n   
 = 2. (2. (2.t (n/8) + c.n/4) + c.n/2) + c.n    
  = 8.t (n/8) + 3.c.n 
  A pattern emerges and by 
induction on i we obtain  
 
                        t (n) = 2^i.t(n/2^i) + i.c.n , Where 
the operator ^ is "raised to the power".  
 
If we assume that n is a power of 2 (i.e., 2, 4, 8, 
16, 32, generally 2^k) the expansion process 
comes to an end when we get t (1) on the right, 
and that occurs when i=k, whereupon  
  t(n) = 2^k.t(1) + k.c.n  
We have just stated that the process comes to 
an end when i=k, where n = 2^k. Put another 
way, k = log n (to the base 2 of course), 
therefore     
   t (n) = n + c.n.log n  = O(n 
log n).  
Thus O(n log n) is the threshold value of 
complexity of sorting algorithms. 
In our work, if the size of unsorted list is (n), 
then for typical sorting algorithm, good behavior 
is O (n log n) and bad behavior is   Ω (n²).  The 
Ideal behavior is O (n). Sort algorithms which 
only use an abstract key comparison operation 
always need Ω (n log n) comparisons in the 
worst case. Literature review carried out in [5] 
indicates the man’s longing efforts to improve 
running time of sorting algorithm with respect to 
above core algorithmic concepts.  
In addition to algorithmic complexity, the speed 
of the various sorts can be compared with 
empirical data. Since the speed of a sort can 
vary greatly depending on what data set it 
sorts, accurate empirical results require several 
runs of the sort be made and the results 
averaged together. We feel that this description 
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is slightly inaccurate, since the running time 
can significantly deviate from a precise 
proportionality, especially for small n. 
Technically, it's only necessary that for large 
enough n, the algorithm takes more than an 
time and less than bn time for some positive 
real constants a , b. Keeping in mind this 
discussion on the current practices to analyze 
sorting algorithms , we can say that for a given 
sorting algorithm, it can be proven that there 
exists an order of number which this sorting 
algorithm will execute in linear time. However, 
for a general case, we agree that, no sorting 
algorithm can perform better than n (log n) [6]. 
At last but not the least , we take an opportunity 
to quote that , even though Linear time is often 
viewed as a desirable attribute for a sorting  
algorithm ,much research has been invested 
into creating algorithms exhibiting (nearly) 
linear time or better. These researches 
included both software and hardware methods. 
In the case of hardware, some algorithms 
which, mathematically speaking, can never 
achieve linear time with the standard 
computation model are now able to run in linear 
time. We found that there are several hardware 
technologies which exploit parallelism to 
provide this. An example is associate memory. 
[17] 
 
3. Some Light on Proper Tuning of Sorting 
Algorithm’s Analysis 
In above discussions, by analysis of algorithm 
we meant theoretical and algorithmic analysis 
only. Generally empirical analysis of sorting 
algorithms is considered to be easy, but that it 
is in fact difficult and requires a place in 
research topics. Empirical analysis of 
algorithms is also an important idea in its own 
right. Theoretical analysis does not give much 
of an idea of how well a given algorithm will 
perform in a specific situation [7], empirical 
analysis would help here. Empirical analysis is 
also important in comparing two algorithms 
which may or may not have the same order of 
complexity – when would one use one and not 
the other. As an example of this consider 
Insertion Sort  and Quick sort, where for small 
input instances Insert Sort could be a better 
algorithm to use and is certainly easier to 
understand and code (and has a good best 
case performance). We believe that the 
improvement of efficiency of a sorting algorithm 
is a continuing process. A large body of 
literature about sorting has been developed as 
the result of continuous and intensive work in 
the area since the invention of the general-
purpose digital computer. At different times 
during the history of sorting, workers in the field 
were preoccupied with different problems. In 
the late 1950’s, concern was with improved 
techniques using tape drives; in the early 
1960’s, with efficient methods using minimum 
storage space; in the mid 1960’s, with disk-
oriented methods; and currently the industry is 
becoming concerned with sorting on parallel 
processors and in virtual memory 

environments. Work in sorting is progressing 
along several lines. Some effort is aimed at 
developing greater insight into known 
techniques and at discovering more details 
about their behavior in different situations.  A 
second line is the development of improved 
techniques. For example, the search for 
algorithms combining efficient use of storage 
space with a small number of comparisons has 
resulted in significantly different techniques 
from those that appear as “standard” in the 
early literature. Other activity is concerned not 
so much with the fundamental techniques of 
achieving order but with the environment in 
which an ordering process occurs. 
Investigations of new kinds of devices, new 
data-handling techniques for new devices, new 
processor or channel architectures, etc., are 
constantly underway. A very thorough 
understanding of sorting is based on a usable 
knowledge of these disciplines. But the 
development of sorting programs is an activity 
far more extensive than the development of 
sorting algorithms. The worker with little 
mathematics or statistics can make important 
contributions to the field once he has 
understood an algorithm theoretically 
developed. Therefore, those who wish only to 
find and implement reasonable sort knowledge 
need no associated specialized knowledge. 
Working descriptions of sorting methods with 
usable guides to relative performance exist in 
the extensive literature of the field. We feel 
that, the contributions made by non 
mathematicians may be mere superficial. 
Though, many of the articles tend to be 
oriented toward statisticians or mathematicians, 
there exists sufficient narrative material so that 
a programmer or analyst without this 
background can familiarize himself with 
techniques and alternatives. Thus we are 
indulged in a dilemma of authentic work. We 
feel that, those who desire to specialize in the 
development or analysis of sort algorithms or to 
be very careful in their choice of a sort 
procedure must have a statistical and 
mathematical background. An appreciation of 
the derivation, applicability, and generality of 
formulas used to project performance requires 
concepts of permutation, distribution, 
randomness, non parametric tests for 
randomness, autocorrelation, etc. Developing 
performance analysis methods for new 
techniques or new combinations of techniques 
requires facility in algebra and calculus. 
Algebra is often used to describe sorting 
processes. Bounds or limits on performance 
are often expressed in the calculus. The past 
emphasis among theoreticians on the more 
rigorous and theoretical modes of analysis is of 
course to be expected. Moreover, it has strong 
justifications. To this day it is difficult to draw 
useful extrapolations from experimental 
studies. Indeed, it was the lack of scientific 
rigor in early experimental work that led Knuth 
and other researchers in the 1960’s to 
emphasize worst- and average-case analysis 



A Comprehensive Note on Complexity Issues in Sorting Algorithms 

 

Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 4 

and the more general conclusions they could 
provide, especially with respect to asymptotic 
behavior. The benefits of this more 
mathematical approach have been many, not 
only in added understanding of old algorithms 
but in the invention of new algorithms and data 
structures, ones that have served us well as 
faster machines and larger memories have 
allowed us to attack larger problem instances. 
Almost all theoretical computer scientists would 
choose experimental analysis, but such gets 
often treated almost as an afterthought. Indeed, 
experimental analysis of sorting algorithms has 
been almost common these days to distinguish 
between different approaches to analyze 
invisible in the theoretical computer science 
literature. We saw experimental work 
dominates algorithmic research in most other 
areas of computer science and related fields 
such as operations research. Recently, 
however, there has been an upswing in interest 
in experimental work in the theoretical 
computer science community. This is not 
because theorists have suddenly discovered a 
love of programming or because they are 
necessarily good at it, but because of a 
growing recognition that theoretical results 
cannot tell the full story about real-world 
algorithmic performance. Encouragement for 
experimentation has come both from those like 
ourselves who are trying to experimenting and 
from funding agencies who view 
experimentation as providing a pathway from 
theory into practice. We are interested in 
influences that go in the other direction. How 
can theoretician’s concern for asymptotic, 
generality, and understanding can help to 
derive a more scientific approach and how can 
expertise be obtained in the form of fine tuning 
from the background in theoretical analysis. It 
is this scientific bias that we will be stressing in 
this part, while also providing more general 
advice for would be can such expertise helps in 
doing experimentation? Unfortunately, as many 
researchers have already discovered, the field 
of experimental analysis of sorting algorithm is 
fraught with pitfalls. In many ways, the 
implementation of a sorting algorithm is the 
easy part. The hard part is successfully using 
that implementation to produce meaningful and 
valuable (and publishable!) research results. 
Although much of what we have to say here is 
due to the opportunity to read in the 
experimental literature, with special emphasis 
on papers about the Sorting Problem, which we 
have surveyed as annexed here. Literature 
review makes impression that the sorting 
algorithms have widely analyzed using criterion 
discovered by Baase [8], which are 
Correctness, Work done, Space used, 
Simplicity or clarity and Optimality.  Similarly 
Sedgewick [9] devotes a chapter to the 
“Implementation of Algorithms” Here he makes 
the claim that “it is unfortunately all too often 
the case that mathematical analysis can shed 
very little light on how well a given algorithm 
can be expected to  perform in a given 

situation”. He stresses the importance of 
empirical analysis in this case. He also 
advocates the use of empirical analysis in 
comparing two algorithms to solve the same 
problem – “run both to see which takes longer”. 
Moret and Shapiro [10] do not just present 
algorithms in pseudocode but give actual 
running programs in Pascal. They give three 
reasons for doing this. Two of their reasons 
have relevance here – that the distance from 
the pseudocode description of an algorithm to 
its implementation is often considerable and 
requires nontrivial decisions; and that where 
algorithms with similar asymptotic behaviors 
have been proposed for the same problem then 
an informed choice can only be made by 
implementing and comparing them. Chapter 8 
of their book “Sorting: A case study in efficient 
coding” gives some insight into the complexity 
of the task of empirical analysis. Brunskill and 
Turner [11] give a list of some things that the 
execution time of a given program will depend 
on the CPU ,the compiler , the programming 
language ,the way the program is constructed , 
time for disk accesses and other IO , whether 
the system is single or multitasking. They do 
not discuss in any detail how these things 
would / could affect the program or what is 
required to understand them. A combined 
reading of Baase, Sedgewick, Moret & Shapiro 
and Brunskill & Turner create an impression 
that the analysis of sorting algorithms carried 
out previously mere on theoretical basis or 
experimentally emphasizing running time, 
suffers a fine tuning. In order to speak correctly 
about the complexity aspects, we need to 
understand a number of areas and the interplay 
between them clearly. This gives some insight 
into the difficulty of the problem of correctly 
formulating complexity values. This is the 
reason why we consider empirical analysis of 
sorting algorithms a crucial part of the analysis 
of algorithms. Even many course curriculums 
on analysis of algorithms expects that topics 
like Divide and Conquer, Amortized Analysis, 
Greedy Approaches need to be taught through 
the perspective of analysis of Sorting  
Algorithms. We are of the opinion that beside 
above discussions a contribution from 
Sedgewick and Flajolet [12] is most important 
for proper tuning. In their approach, Sedgewick 
and Flajolet made it clear that doing empirical 
analysis of sorting algorithms properly is a non-
trivial exercise.  
In order to do proper analysis we need to 
a. understand the theoretical analysis 
b. decide on what should be measured 
c. decide on appropriate hardware 
d. decide on an appropriate implementation 

language 
e. decide on appropriate data structures 
f. implement the algorithms 
g. implement some form of timing device 
h. Create the input data sets necessary to 

produce the       measurements we 
need 
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i. measure the performance of the 
algorithm on the different input data 
sets  

j. interpret the results and relate the results 
to the theoretical analysis 

Few of these tasks are trivial. To deal with 
them adequately, knowledge and 
understanding of a number of theoretical 
concepts / areas is required including 
asymptotic notation, probability theory, 
machine architecture, programming languages, 
compilers, data structures and machine 
representation of these, and experimental 
statistics. In addition, programming and 
presentation skills are necessary to complete 
the task successfully. We admire that, it is 
essential to be aware of them and to be able to 
determine which require more attention in a 
particular case. Previous researchers did not 
consider all of these aspects in every empirical 
analysis and hence those results are rather 
relative than absolute. To support our opinion 
we consider an example based on the 
probability of the number being searched for 
being in each position in the list or not in the list 
at all. Clearly an understanding of asymptotic 
notation and some probability theory is required 
to understand this analysis. This implies that, in 
our sorting experiments, we must decide that, 
for each instance size we need to test every 
possibility and then average the resulting 
running times for each case. This would be the 
most exact thing to do but it would probably not 
be practical for any reasonably sized lists. We, 
thus, have to try to approximate this average 
case performance. This, hence, means making 
decisions- which must be clear and well 
motivated – about how many cases to test and 
how to generate these test cases that too 
having an understanding of probability theory 
and statistics as well as perhaps knowing about 
pseudo-random numbers generators is 
essential. In addition, some understanding of 
the machine architecture is required to make 
sure that we can handle the test cases we 
decide on. Once we have made these 
decisions we still have lot of other factors to 
consider. Since past researchers of sorting 
theory have not looked upon this sphere of 
intelligence, we doubt in the absolute values. 
Further , even though the effective way to 
compare how different algorithms perform on a 
system, the main disadvantage of empirical 
data we have observed , that  it is entirely 
dependent on the computer where  it has been 
obtained on. Very different results can arise 
from running algorithms on systems as 
dissimilar as a mainframe and a cell phone. 
Different variables, such as memory, 
processor, operating system, and currently 
running programs can affect the runtime of the 
algorithms. Even though they are kept constant 
in an investigation, by always running all the 
algorithms on the same system, nonetheless, 
we will not come to any system-independent 
conclusions. Many research scholars have 
restricted their work to Algorithmic best, worst 

and average cases. We found that, the average 
and worst-case performances are mostly used 
in sorting algorithm analysis while best-case 
performance is more of a fantasy description of 
a sorting algorithm. Computer scientists use 
probabilistic analysis techniques, especially 
expected value, to determine expected average 
running times. Similarly, worst case 
performance analysis is often easier to do than 
"average case" performance. Determining what 
"average input" is a bit difficult, and often that 
"average input" has properties which make it 
difficult to characterize mathematically. 
Similarly, even when a sensible description of a 
particular "average case”, which will probably 
only be applicable for some uses of the 
algorithm, is possible, they tend to result in 
more difficult to analyze equations. For many 
sorting algorithms, it is difficult to analyze the 
average-case complexity. Generally speaking, 
the difficulty comes from the fact that one has 
to analyze the time complexity for all inputs of a 
given length and then compute the average. 
This is in fact a difficult task. Researchers have 
tackled it by using the incompressibility 
method, where we can choose just one input 
as a representative input and via Kolmogorov 
complexity, we can show that the time 
complexity of this input is in fact the average-
case complexity of all inputs of this length [13]. 
However in our opinion, constructing such a 
“representative input” is impossible, but many 
times we know it exists and this is sufficient for 
the proper analysis. The price of this generality 
is exponential complexity; with the result that 
many problems of practical interest are 
solvable better than mare such knowledge of 
sorting. For these reasons, the analysis for 
sorting algorithms often considers separate 
cases, depending on the original nature of the 
data or the method deployed with optional 
considerations of the under laying hardware. 
We observed that the limitations of 
computational capacity prevent them from 
being solved in practice. The increasing 
diversity in computing platforms motivates 
consideration of multi-processor environment. 
Literature review suggests that no substantial 
efforts were found mentioned regarding 
complexity in multiprocessor environment in 
past time .Recently, many results on the 
computational complexity of sorting algorithms 
were obtained using Kolmogorov complexity 
(the incompressibility method). Especially, the 
usually hard average-case analysis is 
amenable to this method. A survey [13] shows 
such results about Bubble sort, Heap sort, 
Shell sort, with stacks and queues in sequential 
or parallel mode. It is also found that the trade-
off between memory and sorting is enhanced 
by the increase in availability of computer 
memory and the increase in processor speed. 
Currently, the prices of computer memory are 
decreasing. Therefore, acquiring larger 
memory configurations is no longer an 
obstacle, making it easier to equip a computer 
with more memory. Similarly, every year there 
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is an increase in computer speed. Increasing 
computer speed causes acceleration of 
comparison based algorithms. Thus knowledge 
proved by some researcher for a sorting 
algorithm on its complexity can not be 
considered absolute as it may be increased or 
decreased analogously. We are also of the 
opinion that, the programming language and 
compiler / interpreter used can also affect the 
speed of programs. A research [14] used 
Python, but if the algorithms were implemented 
in a language such as C, the result would have 
probably been much faster sorting, due to C’s 
compiled nature over Python’s interpreted 
approach. Likewise, if the language the sorting 
algorithm is to be implemented with is 
particularly efficient for some aspects like 
recursion, Quick sort might have gotten a much 
smaller runtime. This leads to another limitation 
of sorting investigation as past researchers did 
not conclude anything about code-independent 
algorithms. In our view, the solution to this 
drawback would be to use a system-
independent method of analyzing algorithms by 
using asymptotic analysis. By obtaining 
relevant data from the analysis of algorithms, a 
concrete comparison regarding their speed can 
be used to obtain system and programming 
language independent results. Thus previous 
research has limitation of a runtime-based 
comparison. Similarly, we found other limitation 
of a comparison based on random arrays. 
Major sorting algorithms investigated so far are 
on purely random arrays. Such analysis may 
show the expected time needed for an 
algorithm to sort a random list. However, most 
of the time lists in computing are not entirely 
random. Usually, long lists are not created from 
scratch, but rather they are continuously being 
created by adding items to it. Therefore, most 
unsorted lists in computing will actually be 
mostly sorted. This kind of list, however, was 
not explicitly studied in any investigation. Apart 
from only random and mostly sorted lists, 
arrays sorted in reverse order and arrays with 
duplicate elements could also have been 
investigated to lead to more thorough 
conclusions on the best algorithm. 
 
 
4. Analysis of Sorting Algorithms  
In the context of Reviewed Literature and 
Discovery of Suggestive Tuning Factors  
Keeping in mind discussions of introductory 
part, we now speak on complexity issues in 
sorting algorithms. Although asymptotic 
analysis of the algorithms is touched upon 
herein, the main type of comparison discussed 
is an empirical assessment based on running 
each algorithm against random lists of different 
sizes. We have borrowed some readymade 
results of known and authentic work [14,15,16] 
so as to avoid reparative findings as nothing is 
said beyond   O(n log n) as far as sorting 
algorithms are concerned [6] .This  reduces the 
length of the paper there by making a concise 
representation. For simplicity, we assume that 

the common sorting algorithms can be divided 
into two classes by the complexity of their 
algorithms as,  
(n

2
), which includes the bubble, insertion, 

selection, and shell sorts , and  
(n log n) which includes the heap, merge, and 
quick sorts.  
 
A) Bubble Sort  
The bubble sort is the oldest and simplest sort 
in use. Unfortunately, it’s the slowest one. The 
bubble sort works by comparing each item in 
the list with the item next to it, and swapping 
them if required. The algorithm repeats this 
process until it makes a pass all the way 
through the list without swapping any items (in 
other words, all items are in the correct order). 
This causes larger values to "bubble" to the 
end of the list while smaller values "sink" 
towards the beginning of the list. The bubble 
sort is generally considered to be the most 
inefficient sorting algorithm in common usage. 
While the insertion, selection and shell sorts 
also have O (n2) complexities, they are 
significantly more efficient than the bubble sort. 
A fair number of algorithm purists (which 
means they've probably never written software 
for a living) claim that the bubble sort should 
never be used for any reason. Realistically, 
there isn't a noticeable performance difference 
between the various sorts for 100 items or less, 
and the simplicity of the bubble sort makes it 
attractive. The bubble sort shouldn't be used 
for repetitive sorts or sorts of more than a 
couple hundred items. Clearly, bubble sort 
does not require extra memory. 
 
B) Selection Sort  
The selection sort works by selecting the 
smallest unsorted item remaining in the list, 
and then swapping it with the item in the next 
position to be filled. The selection sort has a 
complexity of O (n

2
). It is simple and easy to 

implement and it is Inefficient for large lists, so 
similar to the more efficient insertion sort that 
the insertion sort should be used in its place. 
The selection sort is the unwanted stepchild of 
the n

2 sorts. It yields a 60% performance 
improvement over the bubble sort, but the 
insertion sort is over twice as fast as the bubble 
sort and is just as easy to implement as the 
selection sort. In short, there really isn't any 
reason to use the selection sort - use the 
insertion sort instead. The worst case occurs if 
the array is already sorted in descending order. 
The Selection sort spends most of its time 
trying to find the minimum element in the 
"unsorted" part of the array. It clearly shows the 
similarity between Selection sort and Bubble 
sort. Bubble sort "selects" the maximum 
remaining elements at each stage, but wastes 
some effort imparting some order to "unsorted" 
part of the array. Selection sort is quadratic in 
both the worst and the average case, and 
requires no extra memory. We highlight that 
these observations hold no matter what the 
input data is. In the worst case, this could be 
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quadratic, but in the average case, this quantity 
is O (n log n). It implies that the running time of 
Selection sort is quite insensitive to the input. If 
you really want to use the selection sort for 
some reason, try to avoid sorting lists of more 
than a 1000 items with it or repetitively sorting 
lists of more than a couple hundred items.  
 
C) Insertion Sort  
The insertion sort works just like its name 
suggests - it inserts each item into its proper 
place in the final list. The simplest 
implementation of this requires two list 
structures - the source list and the list into 
which sorted items are inserted. To save 
memory, most implementations use an in-place 
sort that works by moving the current item past 
the already sorted items and repeatedly 
swapping it with the preceding item until it is in 
place. Like the bubble sort, the insertion sort 
has a complexity of O (n

2
). Although it has the 

same complexity, the insertion sort is a little 
over twice as efficient as the bubble sort. It is 
relatively simple and easy to implement and 
inefficient for large lists. Best case is seen if 
array is already sorted.  It is a linear function of 
n. The worst-case occurs; when array starts out 
in reverse order .It is a quadratic function of n. 
The insertion sort is a good middle-of-the-road 
choice for sorting lists of a few thousand items 
or less. The algorithm is significantly simpler 
than the shell sort, with only a small trade-off in 
efficiency. At the same time, the insertion sort 
is over twice as fast as the bubble sort and 
almost 40% faster than the selection sort. The 
insertion sort shouldn't be used for sorting lists 
larger than a couple thousand items or 
repetitive sorting of lists larger than a couple 
hundred items. Since multiple keys with the 
same value are placed in the sorted array in 
the same order that they appear in the input 
array, Insertion sort is stable. This algorithm 
does not require extra memory. 
 
D) Shell Sort  
Invented by Donald Shell in 1959, the shell sort 
is the most efficient of the O (n

2
) class of 

sorting algorithms. It is a "diminishing 
increment sort", better known as a "comb sort" 
to the unwashed programming masses. The 
algorithm makes multiple passes through the 
list, and each time sorts a number of equally 
sized sets using the insertion sort. The size of 
the set to be sorted gets larger with each pass 
through the list, until the set consists of the 
entire list. (Note that as the size of the set 
increases, the number of sets to be sorted 
decreases.) This sets the insertion sort up for 
an almost-best case, run each iteration with a 
complexity that approaches O (n). It is efficient 
for medium-size lists. It is somewhat complex 
algorithm, not nearly as efficient as the merge, 
heap, and quick sorts. The function form of the 
running time for all Shell sort depends on the 
increment sequence and is unknown. For the 
above algorithm, two conjectures are n (log n)

2
 

and n
1.25

. Furthermore, the running time is not 

sensitive to the initial ordering of the given 
sequence, unlike Insertion sort. The shell sort 
is by far the fastest of the N

2
 class of sorting 

algorithms. It's more than 5 times faster than 
the bubble sort and a little over twice as fast as 
the insertion sort, its closest competitor. The 
shell sort is still significantly slower than the 
merge, heap, and quick sorts, but its relatively 
simple algorithm makes it a good choice for 
sorting lists of less than 5000 items unless 
speed is hyper-critical. It's also an excellent 
choice for repetitive sorting of smaller lists.  
 
E) Quick Sort  
The quick sort is an in-place, divide-and-
conquer, massively recursive sort. As a normal 
person would say, it's essentially a faster in-
place version of the merge sort. The quick sort 
algorithm is simple in theory, but very difficult to 
put into code .This recursive algorithm consists 
of making decisions based on the pivot 
element. It then splits the array into two parts - 
one with elements larger than the pivot and the 
other with elements smaller than the pivot. If 
there are one or less elements in the array to 
be sorted, then returns immediately. The 
efficiency of the algorithm is majorly impacted 
by which element is chosen as the pivot point. 
The worst-case efficiency of the quick sort, O 

(n
2
), occurs when the list is sorted and the left-

most element is chosen. Randomly choosing a 
pivot point rather than using the left-most 
element is recommended if the data to be 
sorted isn't random. As long as the pivot point 
is chosen randomly, the quick sort has an 
algorithmic complexity of O (n log n). It is 
extremely fast. It is very complex algorithm, 
massively recursive. The running time of quick 
sort depends on whether partition is balanced 
or unbalanced, which in turn depends on which 
elements of an array to be sorted are used for 
partitioning. A very good partition splits an 
array up into two equal sized arrays. A bad 
partition, on other hand, splits an array up into 
two arrays of very different sizes. The worst 
partition puts only one element in one array 
and all other elements in the other array. If the 
partitioning is balanced, the Quick sort runs 
asymptotically as fast as merge sort. On the 
other hand, if partitioning is unbalanced, the 
Quick sort runs asymptotically as slow as 
insertion sort. The best thing that could happen 
in Quick sort would be that each partitioning 
stage divides the array exactly in half. The 
quick sort is by far the fastest of the common 
sorting algorithms. It's possible to write a 
special-purpose sorting algorithm that can beat 
the quick sort for some data sets, but for 
general-case sorting there isn't anything faster. 
We conclude with an observation. It has been 
brought to our notice that the empirical data 
obtained reveals the speed of each algorithm, 
from slowest to fastest , for a sufficiently large 
list, ranks as 1) Quicksort , 2)Shell sort , 3) 
Selection sort , 4)Insertion sort , 5)Bubble sort. 
There is a large difference in the time taken to 
sort very large lists between the fastest two and 



A Comprehensive Note on Complexity Issues in Sorting Algorithms 

 

Advances in Computational Research, ISSN: 0975–3273, Volume 1, Issue 2, 2009 8 

the slowest three. This is due to the efficiency 
Quicksort and Shell sort have over the others 
when the list sorted is sufficiently large. Also, 
the results show that for a very small list size, 
only selection sort and insertion sort are faster 
than Quick and Shell sort, and by a very small 
amount. It should also be noted that Quicksort 
is eventually faster than Shell sort, though it is 
slower for small lists. In a practical sense, the 
difference between the speeds of Quicksort 
and Shell sort are not noticeable unless the list 
is very large (has over 1000 items). For very 
small lists, the difference between all the 
algorithms is too small to be noticeable. 
However, Shell sort is much less system-
intensive than Quicksort because it is not 
recursive. Considering all this, for lists 
expected to be less than 1000 items, Shell sort 
is the optimal algorithm. It is in- place, non-
recursive, and fast, making it sufficiently 
powerful for everyday computing. For lists 
expected to be very large (for example, the 
articles in a news website’s archive, or the 
names in a phonebook) Quicksort should be 
used because, despite its larger use of space 
resources, it is significantly faster than any 
other of the algorithms in this investigation 
when the array is sufficiently large 
 
5. Epilogue  
Past researches on sorting algorithms have 
more emphasis on theoretical and empirical 
analyses.  We regret that the algorithmic study 
based mere on time of execution of sorting 
random lists alone is not complete. Although 
speed of algorithms is a very important factor, it 
is not the only factor that must be taken into 
account when comparing sorting algorithms 
and saying that “X” is faster than “Y” and hence 
recommended for a “Z” situation. There are 
many other aspects that need to be taken into 
account, such as memory usage, CPU usage, 
algorithm correctness, code reusability, et 
cetera. Though sorting algorithms are blazingly 
fast, that speed comes at the cost of 
complexity. Recursion, advanced data 
structures, multiple arrays, etc make extensive 
use of those nasty things.  Keeping note of 
these points, we have identified some 
intelligent tuning factors. Through our extended 
paper, we have come with a new perspective to 
do a comparison of these factors so as to 
determine which algorithm, as a whole, is most 
efficient. But as with everything else in the real 
world, there are trades-offs so do with the 
sorting algorithms. Thus knowledge proved by 
some researcher for a sorting algorithm on its 
complexity can not be considered absolute as it 
may be increased or decreased analogously.  
 
Conclusion 
In our paper, asymptotic analysis of the 
algorithms is mainly touched upon and efforts 
are made to point out some deficiencies in 
earlier work related to analysis of sorting 
algorithms. Till today, sorting algorithms are 
open problems and in our view, complexity 

research regarding sorting algorithm, up to 
some extent, is the momentarily belief among 
people. These researches are not absolute as 
their results are specific some factors 
discussed herein. We have shown that, every 
sorting algorithm can undergo a fine tuning with 
the intelligence aspects we have discovered so 
as to gain significant reduction in complexity 
values. The important thing we want to share  
is  to forget the prejudice i.e.,  pick the sorting 
algorithm that we think is most appropriate for 
the task at hand, there by neglecting its 
literature values as those values are not 
absolute, rather relative. We are aware that the 
efficiency gain will not go beyond  O (n log n), 
but hopeful enough to reduce complexities by 
using intelligent tactics , for example, there 
could be a smooth transition from quadratic 
complexity to linear one observed in  
comparative  sorts due to intelligently using 
linked lists instead of arrays to hold data . This  
drastically reduce the  space requirement  
since no need to swap the data as we need to 
change the pointers only , there by keeping the 
contents of nodes , the same . We have also 
showed that the choice of sorting algorithm is 
not a straight forward matter, as a number of 
issues may be relevant. It may be the case that 
an O (n*n) algorithm is more suitable than an O 
(n log n) algorithm. Some factors may be the 
quality of object code, computing platforms 
available, size of objects to be swapped, 
number of times algorithm is to be used versus 
time to develop (if not already in place), 
criticality of run time (maybe we don't care), 
size of input. 
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