РАЗВИТИЕ СХЕМОТЕХНИКИ ВЫПРЯМИТЕЛЕЙ НА БАЗЕ КОЛЬЦЕВОЙ СХЕМЫ

Ю. С. Игольников, А. А. Курганов

В статье рассматривается развитие схемотехники выпрямителей на базе новой кольцевой схемы с уравнительным реактором, обеспечивающей как 6-пульсный, так и 12-пульсный режимы выпрямления; приводятся результаты моделирования и экспериментальной проверки этих схем.

Ключевые слова: трехфазный трансформатор, уравнительный реактор, вентиль, моделирование, напряжение, ток.

CIRCUITRY RECTIFIERS DEVELOPMENT BASED ON CIRCULAR PATTERNS

Yu. S. Igol'nikov, A. A. Kurganov

This paper considers the development of circuitry rectifiers based on the new ring circuit with smoothing reactor providing both six-pulse and twelve-pulse modes of rectification. The results of modeling and experimental validation of these schemes are presented.

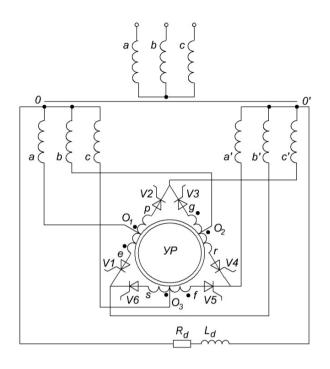
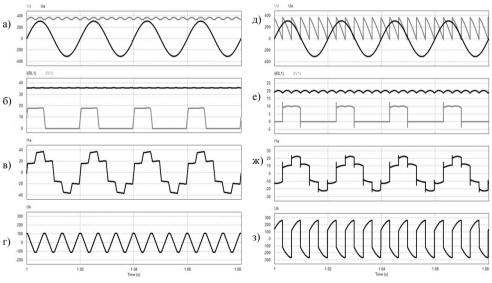
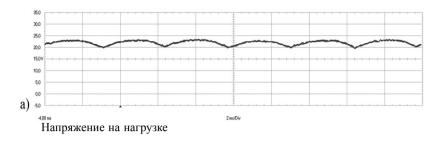
Keywords: three-phase transformer, current-balancing reactor, gate, modelling, voltage, current.

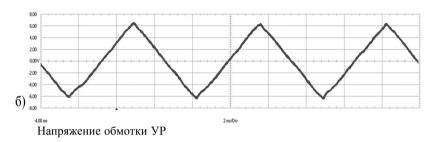
В выпрямительной технике широко известна кольцевая схема [3], позволяющая получить длительность протекания тока через вентиль в течение 60 эл. град. при амплитуде тока, равной току нагрузки. Однако такая форма тока вентиля не является оптимальной из-за коэффициента формы. На основе этой схемы впервые была создана 6-фазная кольцевая схема с уравнительным реактором (УР) [2; 1] (рис. 1). Ее достоинством является протекание тока через вентиль в течение 120 эл. град. при амплитуде тока, равной половине тока нагрузки.

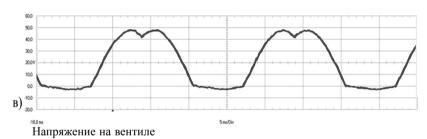
Согласно рис. 1, кольцевая схема с УР содержит следующее: 3-фазный силовой трансформатор с двумя вторичными обмотками, каждая из которых соединена в звезду; шесть вентилей, соединенных в замкнутое кольцо так, что каждая фаза одной вторичной обмотки через вентили связана с разноименными фазами второй вторичной обмотки; УР, выполненный

в виде трех обмоток со средней точкой, расположенных на одном магнитопроводе (средняя точка каждой обмотки реактора подключена к одной из фазных обмоток одной группы вторичных обмоток трансформатора, а сама обмотка реактора последовательно соединена с одноименными электродами двух вентилей, через которые указанная фазная обмотка соединена с разноименными фазами второй вторичной обмотки. Обмотки реактора соединены между собой через вентили по схеме треугольника).

Формирование напряжения $\mathbf{u}_{\rm d}$ на нагрузке $\mathbf{R}_{\rm d}\mathbf{-L}_{\rm d}$ осуществляется на основе поочередного выравнивания с помощью УР двух анодных ЭДС одной и другой звезд. Данная схема была промоделирована в программе P-SIM [4] в неуправляемом и управляемом режимах и проверена экспериментально. Результаты моделирования приведены на рис. 2, осциллограммы ее экспериментальной проверки — на рис. 3.


Рис. 1. Кольцевая схема с УР



а) u_a — напряжение на нагрузке при α =0, u_a — фазное напряжение вторичной обмотки при α =0; б) i_{RL1} — ток нагрузки при α =0, i_{V_1} — ток вентиля при α =0; в) i_{1a} — ток первичной обмотки при α =0; г) u_k — напряжение обмотки реактора при α =0; д) u_d — напряжение на нагрузке при α =60, u_a — фазное напряжение вторичной обмотки при α =60; е) i_{RL1} — ток нагрузки при α =60, u_a — ток вентиля при α =60; ж) u_a — ток первичной обмотки при α =60; з) u_k — напряжение обмотки реактора при α =60

Р и с . 2. Диаграммы токов и напряжений на элементах схемы, полученные при моделировании

Р и с . 3. Диаграммы токов и напряжений на элементах схемы, полученные при экспериментальной проверке α =0

Как моделирование, так и экспериментальная проверка подтвердили работоспособность схемы в соответствии с

теоретическим анализом. Дальнейшим развитием кольцевой схемы с УР стало создание 12-пульсной схемы (рис. 4).

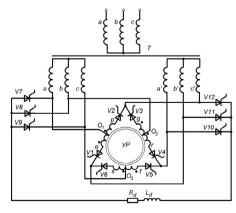
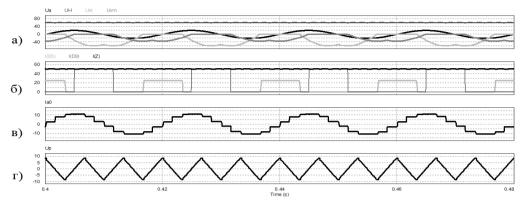



Рис. 4. 12-пульсная схема с УР

Эта схема была промоделирована в программе P-SIM и проверена экспериментально. Диаграммы напряжений и

токов, полученные в результате моделирования и экспериментальной проверки на макете, приведены, на рис. 5–6.

а) ${\bf u_a}$ — фазное напряжение вторичной обмотки, ${\bf u_H}$ — напряжение на нагрузке, ${\bf u_{vk}}$ — напряжение на кольцевой группе вентилей, ${\bf u_{vm}}$ — напряжение на мостовой группе вентилей, ${\bf 0}$ і $_{{\bf 0}6}$ — ток вентиля кольцевой группы, ${\bf i_{p9}}$ — ток вентиля мостовой группы, ${\bf i_{z}}$ — ток нагрузки; в) ${\bf i_{a0}}$ — ток первичной обмотки трансформатора; г) ${\bf u_p}$ — напряжение обмотки уравнительного реактора

Р и с . 5. Диаграммы токов и напряжений на элементах 12-пульсной схемы, полученные при моделировании.

Экспериментальная проверка схемы проводилась на макете, состоявшем из силового 3-фазного трансформатора с двумя вторичными обмотками габаритной мощностью 3 кВА, трех блоков вентилей, соединенных согласно схеме (см. рис. 4), УР и нагрузки из реостата и дросселя. Питание первичных обмоток осуществлялось от лабораторной 3-фазной сети 220В, фазное напряжение вторичных обмоток составляло 24В. Транс-

форматор и реактор были изготовлены из магнитопроводов.

Диаграммы напряжений, полученные в результате эксперимента, полностью подтвердили результаты теоретического анализа и моделирования.

Напряжение на нагрузке (см. рис. 6) формировалось путем сложения двух фазных напряжений одной звезды с фазным напряжением другой звезды и напряжением обмоток УР.

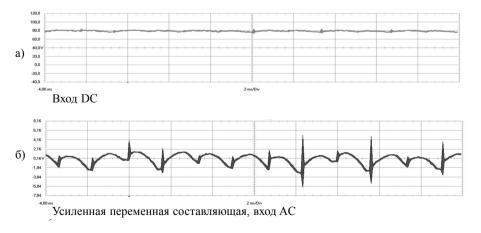
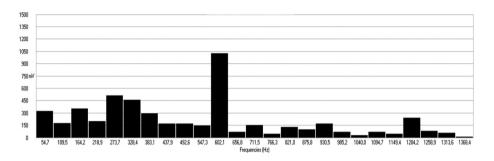



Рис. 6. Диаграммы выпрямленного напряжения на нагрузке

Согласно диаграмме спектра выпрямленного напряжения (рис. 7), в выпрямленном напряжении при преобладающей двенадцатикратной частоте пульсаций содержатся и другие частоты, что обусловлено некоторой асимметрией вторичных фазных напряжений в трансформаторе.

Р и с . 7. Диаграмма спектра выпрямленного напряжения на нагрузке 12-пульсного выпрямителя

Двенадцатикратная частота пульсаций получалась путем сложения напряжений мостовой и кольцевой схем с УР, сдвинутыми на 30 эл. град. за счет работы УР. При увеличении тока нагрузки выходное напряжение выравнивалось, что объ-

ясняется лучшей работой УР. При этом напряжение на УР имело вид, представленный на рис. 8. В ходе эксперимента были выявлены также некоторые особенности в работе реактора, обусловленные коммутацией вентильных элементов.

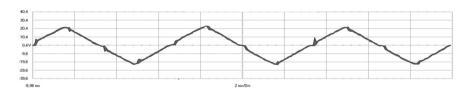


Рис. 8. Диаграммы напряжения на полуобмотке УР

Из диаграмм напряжения на вентилях разных групп (рис. 9) следует, что все вентили проводят ток в течение 120 эл. град. и начало проводимости разных групп вентилей смеще-

но на 30 эл. град. При этом величина обратного напряжения вентилей моста и кольца отличается в 2 раза, но не превышает величины выпрямленного напряжения на нагрузке.

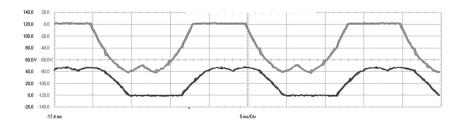


Рис. 9. Диаграммы напряжений на вентилях разных групп

Проверялась также работа схемы с двумя нагрузками (см. рис. 4): одна из них подключалась на выход 12-пульсной схемы, другая – к нулевым точкам звезд, что показало возможность подключения двух нагрузок без их влияния друг на друга.

Таким образом, основные параметры схемы полностью соответствуют моделям и расчетным данным. Это схемотехническое решение имеет ряд

преимуществ по сравнению с классическими схемами (два моста, соединенных последовательно), используемыми в таких преобразователях, как В-ТПЕД и В-ТППТ и предназначенными для тяговых подстанций электрифицированных железных дорог фирмы «ESTEL» (г. Таллин). Моделирование и экспериментальная проверка подтвердили работоспособность схемы и обеспечение требуемых параметров.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. **Игольников, Ю. С.** Кольцевая схема выпрямителя с уравнительным реактором / Ю. С. Игольников, А. А. Курганов // Электротехника. -2013. -№ 5.
- 2. Патент 2325025 Российская Федерация, МПК H02M7/06. Преобразователь трехфазного переменного напряжения в постоянное / Ю. С. Игольников; заявитель и патентообладатель Мордов. гос. ун-т. 2007110012/09; заявл. 19.03.2007; опубл. 20.05.2008, Бюл. № 14.
- 3. Патент 265254 СССР, МПК Н 02 m. Трехфазный выпрямитель / Ю. И. Горлов ; заявитель и патентообладатель Гос. ордена Труд. Крас. Знамени завод «Электрик» ; №1057256/24-7; заявл. 14.02.1966 ; опубл. 09.03.1970, Бюл. № 10.
 - 4. PSIM User Manual/ Canada: Powersim Technologes Inc., 1999.

Поступила 19.12.2013 г.

Об авторах:

Игольников Юрий Соломонович, кандидат технических наук, доцент, преподаватель кафедры теоретической и общей электротехники светотехнического факультета ФГБОУ ВПО «Мордовский государственный университет имени Н. П. Огарева» (Саранск, Россия), I.US@mail.ru

Курганов Андрей Александрович, аспирант кафедры теоретической и общей электротехники светотехнического факультета ФГБОУ ВПО «Мордовский государственный университет имени Н. П. Огарева» (Саранск, Россия), Neiml@mail.ru

Для цитирования: Игольников, Ю. С. Развитие схемотехники выпрямителей на базе кольцевой схемы / Ю. С. Игольников, А. А. Курганов // Вестник Мордовского университета. – 2014. – №1. – С. 125–131.

REFERENCES

- 1. Igolnikov Yu. S., Kurganov A. A. Kol'cevaja shema vyprjamitelja s uravnitel'nym reaktorom [Ring circuit rectifier smoothing reactor]. *Jelektrotehnika* Electrical Engineering. 2013, no. 5.
- 2. Igolnikov Yu. S., patent 2325025, Rossyiskaya Federazia, MPC H02M7/06 Preobrazovatel trehfaznogo peremennogo naprayzheniya v postoyannoye [Patent 2325025, Russia, MPC H02M7/06, Three-phase inverter AC to DC], applicant and patentee muzzle. Red. Univ. 2007110012/09, claimed 19.03.2007, published 20.05.2008, Bul. no. 14.
- 3. Gorlov Yu. I., patent 265254 SSSR, MPC H02m Trehfaznii vipryamitel [Patent 265254, Russia, MPC H02m Three-phase rectifier], no. 1057256/24-7, claimed 14.02. 1966, published 09.03.1970, Bul. no. 10.
 - 4. PSIM User Manual. Canada, Powersim Technologes Inc. Publ., 1999.

About the authors:

Igol'nikov Yuriy Solomonovich, Associate Professor (docent) of Power electronics, automation, protection and diagnostic system chair of Ogarev Mordovia State University (Saransk, Russia), Kandidat Nauk (PhD) degree holder in Technical sciences, I.US@mail.ru

Kurganov Andrey Alexandrovich, postgraduate student of Light Engineering Department of Ogarev Mordovia State University (Saransk, Russia), Neiml@mail.ru

For citation: Igol'nikov Ju. S., Kurganov A. A. Razvitie shemotehniki vyprjamitelej na baze kol'cevoj shemy [Circuitry Rectifiers Development Based On Circular Patterns]. Vestnik Mordovskogo Universiteta – Mordovia University Bulletin. 2014, no. 1, pp. 125 – 131.