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ABSTRACT 

Recently, it has been shown that deleted entries of the Microsoft Windows registry 
(keys) may still reside in the system files once the entries have been deleted from 
the active database. Investigating the complete keys in context may be extremely 
important from both a Forensic Investigation point of view and a legal point of 
view where a lack of context can bring doubt to an argument. In this paper we 
formalise the registry behaviour and show how a retrieved value may not maintain 
a relation to the part of the registry it belonged to and hence lose that context. We 
define registry orphans and elaborate on how they can be created inadvertently 
during software uninstallation and other system processes. We analyse the orphans 
and attempt to reconstruct them automatically. We adopt a data mining approach 
and introduce a set of attributes that can be applied by the forensic investigator to 
match values to their parents. The heuristics are encoded in a Decision Tree that 
can discriminate between keys and select those which most likely owned a 
particular orphan value. 
Keywords: Windows Registry, Data Structures, Retrieval, Orphans, Correlation 

1. INTRODUCTION 
The Windows Registry is a hierarchical database that stores information about the 
system software, hardware, its users and their preferences. Investigators tend to 
concentrate on the active data already present in the hives (Carvey, H. (2005), 
Farmer, D.J. and Burlington V. (2009), Registry Hives. (2008), Kahvedžić, D. and 
Kechadi, T. (2008), Kahvedžić, D. and Kechadi, T. (2008)ii, Wong, L. W. (2009)). 
After it has been deleted however, this information may still reside in the system 
files of the registry (B. D. (2009), Morgan, T. D. (2008)). The space of the deleted 
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keys is marked as free and can be reallocated for new keys. If the space is not yet 
overwritten, the deleted keys can be retrieved. The keys are found by simply 
parsing deallocated space and following any links to their values and data. The 
links between the data structures therefore are used to correlate one data structure 
to another. 
However, the structures found in a deleted state may be in a corrupt state and may 
not preserve the full information that it contains while it was active (Kahvedžić, D. 
and Kechadi, T. (2009)). The links in particular may not be preserved. Some data 
structures cannot be reattached to the registry tree and cannot be viewed in context. 
Registry key values are particularly important, since they store the actual key data 
and do not store links to their parents. We call all data structures that cannot be 
reattached to the registry hierarchy orphans. 
Software uninstallers and registry cleaners (JavaCoolSoftware (2009)) usually 
delete many values and keys from the registry. Many links between the deleted 
values and the points in the registry that they were deleted from can be easily 
retrieved. However some links may be lost and require specific processing to 
retrieve them. In this paper we will illustrate how many orphans are created during 
an uninstallation. We will then formalise the problem of reassembling these keys 
using a finite state machine model and describe a methodology for reattaching 
them by exploiting a number of observations on how the registry keys are 
managed. We consider these observations as attributes and take a data mining 
approach to reattach the orphaned values to the most likely owner keys. 
Section 2 defines the formal model. Section 3 discusses the data mining approach 
undertaken to solve this problem and the experimental setup that is used to test the 
technique and validate the results. Section 4 discusses the various patterns 
identified in the way that the registry stores its data structures. Section 5 combines 
the various attributes to construct the Decision Tree classifier. Section 6 and 7 
summarise the paper and describe future work. 

2. FORMAL MODEL 
We concentrate on the three major registry data structures; the key, the value and 
the security key (B. D. (2009)). In this section, we formalise the operation of the 
registry with respect to these structures. We define and describe how orphans are 
created and formalise the problem of connecting them to the most likely parent 
keys. 

2.1 Concepts 

Let and  be the set of all keys, values and security keys respectively in the 
registry. Let  be the union of all of them. Any registry entry (key)  can therefore 
be defined as a triplet consisting of a set of subkeys, values and a single security 
key: 
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), where  
 

 is a key that does not have any values, subkeys or security keys 
associated to it. The maximum number of structures a key can have is  
subkeys,  values and a single security key, where  and  denote the 
cardinality of  and , respectively. 

In addition, the keys can be in one of the two states; Active ( ) and Deleted ( ). 
All keys must have been active at some point in the registry. At certain time t, we 
can have some active keys and deleted keys. So we can write: 

 
 
 
 

 
Therefore the set of all deleted structures is . In normal 
operation of the registry, the user cannot access the deleted structures or retrieve 
deleted data. All of the keys available to the user are in the Active state and are 
denoted by . 

We can extend the definition of a key  by adding a number of constraints based 
on its state: 

 
 or 

 
 
Therefore, all deleted keys must reference deleted structures. A deleted key is not 
restricted to reference a deleted security key. Security keys can be used by multiple 
registry entries, ensuring a similar permissions policy (B. D. (2009)). 
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Figure 1: Deletion and Retrieval of Keys 

 
Finite State Machine 
A finite state machine model is adopted to illustrate the different actions that are 
possible on the registry key during its lifetime. Formally, a finite state model 
(FSM) for this problem can be defined as a tuple of three elements 

 where: 

• : A finite set of all possible states. 
• : A finite set of all possible events. 
• : A transition function that maps input symbols of 

the current state to the next state. 
The resulting FSM can be illustrated with a transition graph. Figure 1 illustrates the 
states, transitions and events between them. A single key can contain many 
peripheral data structures to store values and keys more efficiently. The starting 
state of the key is an empty state where it contains no subkeys or values. During its 
lifetime a key can have multiple values or keys and conversely can have these 
subkeys or values removed. The events are termed 

 and have important distinctions. 

The transitions  and  associate a new value or new subkey to a 
key. The space for the structures is allocated and a link from the key to the 
structure is created. In the case of a new subkey, a link from the subkey to its 
parent is also created. 

The transition, , converts  to . All of the structures referenced by 
the key are deleted,  to . The links between them are 
preserved and the associations can be retrieved. The key data structure itself 
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contains a link from the structure to the parent key in the hierarchy. These are not 
modified when a key is deleted and can be retrieved and used to reattach the 
deleted keys to the tree hierarchy. 

The transition, , deletes a single value and converts it from  to 
. A value data structure does not retain a link to its parent key. Therefore the 

value, once deleted, is disconnected from the tree hierarchy. They cannot be easily 
reattached to the registry hierarchy. 
The series of transitions from one state to another are termed computations. A 
finite computation is a sequence of steps  where each step is made 
up of an event, , and a state . The set of computations is denoted by 

. The computation, , is defined by a finite number of steps, , ranging 
from key creation to key deletion. 
Orphans are defined as any data structure that has lost its link to the registry tree 
and are represented in the set , where . Orphans are denoted  and 
represent both orphan keys  and values . 

 

 
Figure 2: Sample Computation 

 
2.3 Problem Statement 

Figure 2 illustrates one possible computation in the model  for a registry key . 
There are eight states starting with the key creation and ending with its deletion. 
During the process three values were added (at  and ) and two were deleted 
(at  and ). Current registry recovery programs can retrieve the key  and its 
values, but cannot associate the deleted values to the key. These orphans seem 
unrelated to the key. Therefore the number of data structures associated with a 
deleted key depends on its state when it was deleted. 
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Figure 3: Different states of the retrieved keys (2049 total) 

Let , where  and , be the probability of an orphan value  
belonging to the registry key . Our aim is to maximise  with respect to all 
orphans . 

The further in the past a value is deleted the less likely it can be retrieved 
(Kahvedžić, D. and Kechadi, T. (2009)). This is due to the reallocation of deallocated 
space by the registry manager (Russinovich. M. (2009)). However a large number of 
orphans can be created during the uninstallation of software or if a large number of 
values were recently deleted. 
As an illustration, registry keys belonging to the media platform Real Player 
(RealNetworks. (2009)) were retrieved after the software's uninstaller was 
performed. To minimise possible orphan creation as a normal operation of the 
software, Real Player was uninstalled directly after it was installed. Even in this 
best case scenario, where the time range  of the computation is kept deliberately 
very low, 20% of the keys were modified and 15% of the values-key relations 
were lost in the process. The values could still be retrieved but the link to the keys 
that they belonged to was removed. 
Figure 3 illustrates the different states of the retrieved keys for the Real Player 
uninstallation process. Of particular interest are the 72 keys that have had their 
values deleted prior to the key itself. The values of these keys can be found in the 
deallocated space but could not be associated to the keys. The rest of this paper 
will detail our methodology in extracting these associations and linking the 
orphans to the most likely key that may have contained them it. 

3. APPROACH AND VALIDATION TEST SETUP 
We use a data mining approach to classify the orphan values to their most likely 
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keys. We are able to process the values and other structures that are retrieved from 
the unallocated spaces with high accuracy. The stages of the mining process are 
described in Han, J. and Kamber, M. (2006). From this point of view, the registry 
retrieval processes is the first step; Data Acquisition. The next sections describe 
subsequent stages, namely Attribute Selection and Key Associations. 
The attributes are evaluated and validated using sample test systems. A number of 
different registries were extracted from a variety of systems to test out the 
attributes. All registries were from Windows XP SP2 Operating System 
computers. They ranged from registries of three months usage to registries taken 
from systems that were in use for a number of years. The Software and the 
`ntuser.dat' hives are the most active hives and contain the most useful information 
for a forensic investigation. As such we will concentrate on them in our validation 
tests. 
The summary of the various registries and the number of keys and values that they 
contain are summarized in Table 1. Security keys, although important for 
forensics, account for less than 0.05% of the total data structures. As such we will 
concentrate on the key and value structures only for the rest of the paper. 

Details of Hives Used 

Hives # of Keys # of Values 

Software Hives 285378 426929 

System Hives 33226 95832 

Security Hives 625 622 

SAM Hives 234 260 

ntuser.dat Hives (38 users) 53723 200130 

 
Table 1: Summary of the Hives and their Combined Keys and Values 

 
4. ATTRIBUTE SELECTION 

In this section we describe some of the features of the way keys and values are 
stored in the registry. These features will define attributes describing the value and 
key data structures. We use classifiers to predict which orphan values belong to 
which key. The attributes are based on a number of observations in the functioning 
of the registry. The observations are formalised as attributes and validated through 
experimentation in the following sections. 

4.1 Value-Key Position Relation 
The position of the value data structure with respect to its key depends on the 
allocation strategy of the registry management system; the Configuration Manager 
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(CM). Microsoft Windows documentation describes the allocation strategy of the 
CM when new keys are created (Russinovich. M. (2009)). The CM would first 
find the parent key data structure and then search for a block that is big enough to 
store the new key. If there is no block that satisfies the request then a new space is 
allocated at the end of the hive file. It has been found that the hive files contain 
much more smaller free fragments than large ones (Kahvedžić, D. and Kechadi, T. 
(2009)) and that some key values are created as soon as the key is created 
(Morgan, T. D. (2008)). Therefore it is likely that when a new key is created the 
CM would not find a big enough fragment and allocate new space. At least some 
values therefore are found close to, if not directly after, its key data structure. 
Formally, we consider a registry hive as a list of data structures with the physical 
position of the data structure within the hive denoted as , where . 
We also define a binary operator, , which states that the 
data structure  is stored later in the hive file than . The operator 

 is the opposite. This attribute states that  where 
. Namely, the closer in the hive file a value is 

found after a key, the more likely that the value belongs to that key. In this case the 
value  is more likely to belong to  than . 
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Figure 4: Relative Positions of Values to the Keys they Belong to 

 

Figure 4 shows the respective distances of a key’s closest value data structure 
relative to the position of the key in the hive in our test corpus. It is clear that in the 
majority of cases, the first value encountered after the key in the hive belongs to 
that key. Hives with a high amount of activity, such as the user hive (`ntuser.dat’) 
or the `SOFTWARE’ hive, tend to have more keys that follow the above heuristic. 
While hives with a lower activity, such as `SAM’ and `SECURITY’, tend not to 
follow the heuristic as much as the active ones. 
Value-Value Position Relation 
Similar to the key-value position relation, if one key has a large number of values, 
the CM, if possible, would allocate space for all of them in the same place in the 
hive. MRU lists for example often have a large number of values with their data 
structures found one after another in the hive. Similarly, if an application creates a 
number of values at installation, the space is allocated as contiguously as possible 
and as such the values can be found grouped together. In conjunction with the first 
attribute, this attribute states that if the first key is found then the orphans found in 
its group are likely to belong to that key as well. Figure 5 illustrates this case. 
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Figure 5: Group Allocation Strategy 

 
Figure 6: Internal/Leaf Key to Value Relations 

Formally, we define a group  to be a set of orphans  
where  and there does not exist a situation where 

. Expansion of the group is also stopped if a 
value with an identical name is found. 

Similarly,  is the probability of all orphans in g belonging to the key . 
Through experimentation, we have found that a group with two members is not 
likely to belong to the same key than any group with a higher number. 

4.3 Subkeys Number Relation 
In the tree like organisation of the registry, we use the term leaf to define those 
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keys that do not have any subkeys, ie. . These keys, found at 
the bottom of the registry hierarchy tend to store more values than those keys 
found higher up in the registry. There is not an enforced policy on how programs 
using the registry are meant to store its registry values but Microsoft recommends 
software vendors to follow the “HKCU\Software\Vendor\Program\Version” 
organisation for storing keys in the registry (Honeycutt, J. (2002)). This results in 
the leaf keys storing meaningful information such as values while the internal keys 
are used for organisational purposes. 

In the formal model, the pattern can be described as,  where 
. Namely, the probability of an orphan value belonging to key 

r is increased if the key contains a low number of subkeys. For simplicity, in our 
classifier we let  and assume that if a key has any subkeys then they 
do not have any values. 
Figure 6 illustrates the relationship between the number of values and the position 
of keys in the registry hierarchy of our test corpus. In the majority of cases, a key 
that does not have values would have subkeys. The user hives in particular contain 
the majority of values in the leaf keys rather than the internal keys. 

4.4 Value List Presence Relation 
Once a single value is identified, the value list of that key can also be found. A 
value list is a peripheral data structure and stores references to all the values of that 
key. The structure does not have an identifier and cannot be easily recognised 
when retrieved. However all the unidentified structures can be searched to see if 
any contain the address for the orphan value. Any unidentified structure that 
contains this address is likely to be a value list. The value list can be as small as 8 
bytes. Therefore, the list, in contrast to values, can be found far away from its key. 

Amount of Value List Slack 

Hive # of 
Keys 

With 
Slack 

Without 
Slack 

Slack 
(bytes) 

# of 
Pointers 

Pointers to Hidden 
Keys 

Software 43,212 7,818 30,529 33,060 304 7 

System 9,140 5,572 2,617 24,156 255 0 

Security 208 1 206 8 1 1 

SAM 75 8 66 32 0 0 

ntuser.dat 533 148 179 592 7 0 

Table 2: Amount of Value List slack 

In addition, the Value List continuously adds and deletes offsets of created and 
deleted values (Morgan, T. D. (2008)). Under certain conditions, offsets to deleted 
values are still present at the end of the list data structure in an area called Value 
List slack. Table 2 shows the amount of slack in a sample of hives in the test 



Journal of Digital Forensics, Security and Law, Vol. 4(2) 
 

50 
 

corpus. Note that some keys do not contain any value lists at all. As seen in the 
table, many keys do have value list slack and do contain many offsets that appear 
to be valid. Most of the offsets, however, are copies of active keys and do not point 
to hidden keys. Although the presence of any useful pointers is not common, the 
slack should not be disregarded in the process for correlating orphans. 

4.5 Value size 
Although the values in the registry have a variable structure, some valuable 
forensic keys have a predictable size that can be used to identify them if they are 
orphans. In particular, features of the Windows Operating System registry keys are 
known and can be used to identify them if they are found as orphans (Rubenking. 
N. J. (2009)). The “HKLM\Software\Microsoft\Windows\CurrentVersion\App 
Management\ARPCache\AppName” key, for example, stores information of each 
application displayed by the control panel of Windows. Each application has a 
‘SlowInfoCache’ value which includes important information on the application’s 
usage frequency, install size and last used time. The values have a constant size of 
552 bytes, the specific structure of which is known (Rubenking. N. J. (2009)). As 
well as the aforementioned data, the value also contains the name of the program it 
references and can be used to relate the value to the relevant key. 

4.6 Specific Value Content 
Similar to using the value size as an attribute, some important keys contain values 
that store a predictable type of content. The most important of these keys are the 
MRU (Most Recently Used) lists which store records of most recently opened 
files. MRUs are widespread in the registry and can provide vital clues to user 
activity (Farmer, D.J. and Burlington V. (2009)). Windows does not enforce a 
standard way of storing values in all MRU lists. Therefore it is possible to extract 
and identify the relation between an orphan MRU entry and its parent key. The 
identifying features of these values include the information type (binary or ASCII), 
the naming conventions, the type of data and the recording policy. A few important 
MRUs and the identifying features of their values are documented in Table 3. 



Journal of Digital Forensics, Security and Law, Vol. 4(2) 
 

51 
 

 
Table 3: Identifying features of MRU Values 

 
5. DATA MINING STAGE 

In this section we will use the attributes described above to create a decision tree 
classifier for deleted values. We use Decision Trees as an initial mining technique. 
Other algorithms such as association rules, clustering algorithms and neural 
networks will be applied in future work. The situation described in Section 2.3 
revealed that 72 deleted keys had all their values orphaned prior to being deleted. 
In this section we will use a decision tree classifier, illustrated in Figure 7, to re-
attach the orphans to their keys. 
The decision tree classifier described here represents our initial work in associating 
orphan values to keys. The classifier is based on structural attributes described 
above and exploits the manner in which the Configuration Manager allocates new 
structures. It does not take into account any of the content that the various data 
structures may hold and does not attempt to do any content analysis or similarity 
matching as described in the latter parts of Section 4. A clustering approach would 
be more suited for that stage of mining and is left for future work. 

5.1 Results 
As previously stated, 72 keys in the Real Player uninstallation had their values 
orphaned, totalling 146 values. 143 (98%) of these values were retrieved from 
deallocated space while the remaining 3 values were overwritten and could not be 
retrieved. The aim of the decision tree is to associate the 143 values back to their 
keys. The total number of orphans retrieved was 360. The decision tree should 
avoid these orphans and minimise false positives. 
The classifier first attempts to find the first value data structure after the key's data 
structure in the hive. The classifier associated 68 orphans to 68 keys in this way. 
However, it couldn't associate values to 4 keys. Of the 68 values, 63 of them were 
accurate and did indeed belong to the key prior to the uninstallation. 5 of the 
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orphans were incorrectly associated. The precision rate is therefore 93%. 
The classifier extends the association criteria by finding any groups that the first 
orphan belongs to. The groups are filtered out if they only contain two elements as 
we have found that  is maximised in larger groups. The classifier correctly 
associated 77 values to their corresponding keys and misclassified 11. The 
precision rate therefore is reduced to 86%. 
Before the orphans are associated to the keys, the classifier attempts to find the 
value list storing the offset to the value. If the value list is found, all of the values 
that it references will be associated to the key. As described in Section 4.4, the 
value list may not be found even if it did at one point list the orphan. Of the 68 
values found, 32 of them found value lists, 36 of them did not. 8 of the found value 
lists were incorrect. The precision rate is therefore 78% for value list searches. The 
found value lists classified 2 new orphans correctly and 2 incorrectly. As described 
above, the vast majority of value lists 97% only contained a single offset. 
In total 79 values were correctly associated by using the closest value and value list 
search heuristics, 13 were misclassified. Therefore, 55% of the orphans were 
associated correctly with a reliability of 84%. 
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Figure 7: Decision Tree Classifier 

 
6. SUMMARY AND CONCLUSION 

In this paper we have illustrated how values, once deleted from the registry, can be 
orphaned from their parent keys and cannot be easily re-associated to them. We 
have explored the effects of the Real Player uninstallation process on the registry 
and demonstrated how the uninstallation created orphans. The resulting orphans 
can make it difficult for the investigator to know the context of the retrieved 
registry entry and lay doubt in legal arguments. We have laid the formal theory and 
the ground work for the application of data mining techniques in retrieving and 
correlating these deleted data structures to the points in the registry that they were 
found. 
The formal theory is presented in the form of Finite State Machines. Using this 
model we have demonstrated that the amount of information retrieved from a 
deleted key depends on the state when it was deleted. However, values that once 
belonged to the key but that were deleted prior to the key can also be retrieved. The 
link between the key and its former value is not preserved and the association 
cannot be made trivially. The unlinked data structures are termed orphans and 
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require special processing to reattach them to their parent keys. 
Presented in this paper are a preliminary set of patterns in the organisation of the 
registry data structures. The patterns are encoded as attributes that can be used by 
classifiers to relate orphaned values to the most likely owner keys. Tests were 
carried out on sets of real world registries to analyse the validity of the attributes 
presented. A decision tree classifier was described and used as a preliminary Data 
Mining technique to associate orphan values to the most likely parent keys. 

7. FUTURE WORK 
The features presented here constitute the preliminary attributes discovered while 
manually reconstructing the registry keys. A more formal and in-depth feature 
extraction methodology will be developed to extract ever more accurate features to 
discriminate between keys. Future work will entail expanding on the data mining 
stages to further refine the accuracy of the classifier. Clustering of the values, 
based on the value's name and content, will be used to further associate the orphans 
with more accuracy. Data pre-processing stages will be expanded to clean and 
filter out any outliers and data structures that have been corrupted, for example if 
they are partially overwritten. 
The features presented in the classifier in Figure 7 are binary. A more accurate 
classifier would discriminate between continuous attributes. For example, in the 
subkey-number relation, in Section 4.3, if a key is found to contain subkeys it is 
assumed not to have any values. This feature does not take into account the 
position of the key in the global tree hierarchy. A key may be deep in the tree 
hierarchy and may contain both subkeys and values. The position of the key may 
dictate the probability of the key holding values even if it has subkeys. 
Content features are not used in the above decision classifier and is also left for 
future work. The content of the deleted keys can be used to find similar active keys 
and predict which values are missing from the deleted key based on the properties 
of the similar active one. This type of mining process is more suited to clustering. 
Outlier analysis in particular can be used to determine not which values belong to 
keys, but which values do not belong to them. The removal of these outliers can 
eliminate clutter to the investigator. 
Following hidden pointers to deleted data structure is prone to error. It is possible 
that the structure is a newer data structure belonging to some other key which was 
subsequently deleted. Although unlikely it cannot be disregarded, extra processing 
and checks are required to disprove this possibility. 
The Windows Vista operating system subtly changes the manner in which registry 
keys are stored (SWGDE (2008), Hargreaves, C. et al. (2008)). The MRU keys in 
particular are store in binary more frequently and stored more information that the 
corresponding keys in the XP operating system. Future work on the classifier will 
include a method for identifying these MRU keys in addition to their XP 
counterparts. 
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