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Abstract 
Although the issue of streams with non-crossing trajectories of particle motions ranging from 

chaotic, random with irregular current lines, has been given a lot of attention, it still remains 
unresolved. The study features a relevant issue for hydromechanics, which is precise values 
determination of the Lower Critical Reynolds Number. It is suggested to put forward an updated 
approach to the use of energetic analysis for analytical calculation of the Reynolds Resolving 
Equation. The assessment of transition to mean motion from pulsation to the direction of laminar 
flows was fulfilled. 
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Introduction 
The study features an illustration of researched steady direct motion of incompressible 

viscous fluid in the direction X caused by the pressure between two parallel walls (у=±b0.).  On the 
walls, the conditions for the adhesion and the equality to zero of the derivatives of velocity for all 
coordinates are created. Conditions are created for the pulsating motion of periodicity of a 

perturbation for the coordinate x with the period  and the condition of the symmetry of the 
turbulent stress. 

 
Definition 
As a result of integration of the energy equation for Reynolds relative molar motion [3] the 

discriminating equation that defines the energy transition of the relative molar motion to the 
energy of the mean molar motion and heat has following form: 
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where ,  , dots over symbols denote derivatives for y, 2   ,— the wave number of 

pulsations, -  kinematics coefficient of viscosity. Included in the formula (1) the derivative of the 

mean velocity V  in the direction across the flow, 
dV

dy
.in contrast to Reynolds [3] is determined 

not from the Poiseuille law for laminar flows, but from the turbulent profile of velocity distribution 
[4] 
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Integrating by parts the right side of the discriminating equation (1) and taking into account 
the conditions of the symmetry of pulsation we obtain the discriminating equation in the following 
form: 
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where E1 - the transition energy of the mean molar motion in heat is defined by the equation :  
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E2 - the energy of transition from mean molar motion to the relative molar is defined by the 
equation: 
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In accordance with the boundary conditions the amplitudes of the pulsations can be written 

as fallowing: 
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Result 
As a result of integration of the equations (3) and (4) we          obtain:   
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where o2b
L 


 .  

After substitution in the discriminating equation (2) of expressions (5), (6) and known from 

[4] relations of transition from dynamic velocity *V  to mean velocity V   we obtain: 
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Conclusion 
The minimum of the expression (7) is determined by the value Lmin=1,62, of which gives 

Remin=2000. This means that for the reverse flow transition from turbulent to laminar the 
discriminating equation, defining the low value of the critical Reynolds number is expressed 
through the pulsation frequency and the dimension of a stream near the wall surface. Similar 
calculations can be made for other types of flow. 

 
References:  
1. Liepmann H.W. (1979) The Rise and Fall of Ideas in Turbulence Amer. Sci. 67, 2. 221—228. 
2. Jackson D., Launder B. (2007) Osborne Reynolds and the publication of his papers on 

turbulent flow. Annual. Review of Fluid Mechanics. 39. 19–35. 
3 . Reynolds O. (1895) On the dynamical theory of incompressible viscous fluids and the 

determination of the criterion. Philosophical Transactions of the Royal Society of London. A. 186, 
123-164. 

4. Nigmatulin R.I., Solovyev A.A. (2012) Fundamentals of fluid mechanics. Moscow: Littera, 
400 p. (in Russian) 

 
 

  


