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Abstract. The present paper contains a review of the main results of Yerevan research group
in tomography of planar bounded convex domains. The applications of these problems are known
in both geometric and computer tomography. Complicated geometrical patterns occur in many
areas of science. Their analysis requires creation of mathematical models and development of
special mathematical tools. The corresponding area of mathematical research is called Stochastic
Geometry. Among more popular applications are Stereology and Tomography. The methods of
form analysis are based on analysis of the objects as figures, i.e. as subsets of the plane. For these
sets, geometrical characteristics are considered that are independent of the position and
orientation of the figures (hence they coincide for congruent figures). Classical examples are area
and perimeter of a figure. In the last century German mathematician W. Blaschke formulated the
problem of investigation of bounded convex domains in the plane using probabilistic methods. In
particular, the problem of recognition of bounded convex domains by chord length distribution.
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Is there a one-to-one correspondence between bounded convex bodies D and their chord
length distribution functions F(x)? It was an old question of W. Blaschke whether the random

chord length determine the convex body D uniquely, up to a rigid motion (see [1]). This was
disproved by Mallow and Clark (see [2]), who constructed two non-congruent bounded convex 12-
gons with the same chord length distribution. Therefore, chord length distribution function Fp(x)

does not reconstruct convex bodies. One possible way of treating this problem is to consider
subclasses of the class of convex bodies for which the chord length distribution provides sufficient
information to distinguish between non-congruent members (see [3] and [4]). Gates (see [3])
showed that triangles and quadrangles can be reconstructed from their chord length distributions.

Another method consists of the consideration of chord length measurements not in the
completely mixed form of the distribution but in preserving information about the line which
generates the chord (see [5] and [10]). If for any line its precise location as well as the chord length
is known, that is the Radon transform occurs, the conditions under which sets can be reconstructed
uniquely have been studied in depth. The applications in both geometric and computer
tomography are well known (see [6] and [24]). For example, we can consider the case that the
orientation and the length of the chords are observed. We refer to it as the orientation-dependent
chord length distribution, that is for any fixed direction the distribution of the chord lengths is
considered.

A different question arises if one considers, for each direction u € $*7* (871 is the sphere of

unit radius centered at the origin) the distribution of the length of the uniform random chord of
the convex body D with direction u. Let D be a convex body in n-dimensional Euclidean space R,

that is a compact, convex subset of R”, with non-empty interior. The n-dimensional Lebesgue
measure in R® is denoted by L, (-}. If h € R", then D+h denotes the translate of D by h, that is
D+h={x+h heR", xeD]

The covariogram of a convex body D = R" is the function C(D,h}: R® — [0,], defined for
h €R" by ¢(D,h) =L,(DN(D+ h)).
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The covariogram C(D, h) is clearly unchanged with respect to translations and reflections of
D. This function was introduced by G. Matheron in his book [8] on random sets. In [9]
G. Matheron asked the following question and conjectured that a planar convex body is uniquely
determined (within the class of convex bodies) by its covariogram, up to translation and reflection.

In the plane, an affirmative answer to the covariogram problem for convex polygons was
given by Nagel (see [10]). Various partial results were obtained by several authors (see the
references in [11] and [12]), until Averkov and Bianchi (see [12]) finally settled the problem
completely for arbitrary convex bodies in the plane: Every planar convex body is determined within
all planar convex bodies by its covariogram, up to translations and reflections.

Very little is known regarding the covariogram problem when the space dimension is larger
than 2. It is known that centrally symmetric convex bodies in any dimension, are determined by
their covariogram, up to translations. This is a consequence of the fact that C(D,h) determines the
volume of D (=C(D, 0)) and its difference body D-D and of the Brunn-Minkowski inequality. This
inequality implies that among all convex bodies with the same difference body the centrally
symmetric one is the only set of the maximal volume (see [6]).

Examples show that convexity is essential in this characterization (see [13]). The authors of
[7] present a pair of non-congruent non-convex polygons with equal covariogram. Bianchi (see
[14]) found counterexamples to the covariogram conjecture in dimensions greater than or equal to
4, and a positive answer for three-dimensional polytopes (see [16]).

The general three-dimensional case is still open. For dimensions greater than or equal to 3,
most convex bodies, in the sense of Baire category, are determined by their covariogram; this was
proved by Goodey, Schneider and Weil (see [15]).

Determine a random line of direction u € $*~1. Given a convex domain D we define its

breadth function b(D, u) as the Lebesgue measure of the projection of D on the hyperplane with
direction u~ (u~ is the orthogonal complement to u).

A line parallel to u and intersecting D is intersected with hyperplanes with direction u~. Let
fix one of these hyperplanes and denote by z the corresponding intersection point. Thus we have
one-to-one correspondence between lines parallel to u and intersecting D and all points z.
Projecting D on the fixed hyperplane and assume that z has uniform distribution in the projection
of D in the fixed hyperplane with direction u~. We have defined the notion of line parallel to u.

Denote by F(u,x) orientation-dependent chord length distribution function. Determination

of a convex body D by these distributions, for all directions, is equivalent to the determination by
its covariogram. Matheron (see [8] and [9]) obtained relationship between Fp(u,x) and

covariogram:
Let u € $°7! and x = 0 such that the set DN(D + xu) contains interior points: In this case

C(D,xu) is differentiable in x and the following equation
E'Ct;:::i' =L, _(yveu :L(DNIl +vy)=x) (1)
Where [, +v denotes the line parallel to u through y. This formula allows some

interpretation of the covariogram problem. The right hand side of (1) gives the distribution of the
lengths of the chords of D which are parallel to u.
If we rewrite (1) by means of orientation-dependent chord length distribution, we get
A Dau)
P (1 —Fp(wx))- b(D,u)
and at the point x = 0 there exists right derivative.

Therefore, investigation of convex bodies is equivalent to investigation of their covariograms.
If we have covariogram for a convex body, then we can investigate properties of the convex body by
explicit form of the covariogram. Obtaining the explicit form of the covariogram for any convex
body is very difficult problem, but we can obtain covariograms for a subclass of convex bodies.
These forms help us to solve many probabilistic problems, in particular calculate explicit forms of
chord length distribution functions Fy (x) and Fp(u,x) (see, for instance, [17]).
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There exist one-to-one mapping between the set of all bounded convex bodies D and their
F; (u, x) chord length distribution functions up to translations and reflection.

The explicit form of covariogram for subclasses of convex bodies allows us to obtain new
properties of covariogram and generalized these results we can answer the question what functions
will be covariograms of convex bodies. Similar problems have been suggested by Bianchi (see [16]
and [18]).

In the case n=2 we can use the generalized Pleijel identity (see [20]) to determine
covariograms and oriented-dependent chord length distributions for subclasses of convex bodies.

In the generalized Pleijel identity integration is over arbitrary locally finite, bundleless
measure in the space G (a measure is called bundleless, if the measure of a bundle of lines through
the point P is equal to zero for any point P in the plane): In the space G there exists a unique (up to
a constant) measure, which is invariant with respect to translations and rotations: Denote by dg
the element of the invariant measure. It is known that

dg = dpdo,
where dp is the one dimensional Lebesgue measure, and do is a uniform measure in $*. For a
convex body D we set

[D]={geGgnD =0}
It is obtained in [20] that

(D)1~ ()] =5 | (@)~ x(@)llsin( ~] dg -

1
-3 | &x@1-ix(@ Isine - w)| cota, cota,dg
[D]

where o and «a, are the angles between the boundary of D and the line g, at the endpoints of

;((g) = g N D which lie in one half-plane with respect to the line g and inside of D and & (x) is
the Dirac delta-function.

In the paper [17] is proved that for any finite subset A from S, there are two non-congruent
domains for which orientation-dependent chord length distribution functions coincide for any
direction from A. Moreover, in [17] explicit forms for covariogram and orientation-dependent
chord length distribution function F, (1w, x) for arbitrary triangle are obtained. Finally, if we have
the values of F,(w, x) for everywhere dense set from S* then we can uniquely recognized the

triangle with respect to translations and reflections (see [17] and [22] and [23]). Thus,
investigating covariograms of convex bodies we investigate the geometric properties of them.

Find the explicit form of covariogram for subclass of convex domains: Using the explicit form
of covariogram and Materon’s formula find Fy(u,x) for the corresponding subclass of convex

bodies. Construct algorithms to reconstruct convex body by its covariogram for finite number of
directions (see [18]) (the same problem for chord length distribution function Fy, (1, x) (see [19])

in finite number of directions has negative solution (see [17]):
The explicit forms for Covariogram of a triangle and for Fy (u, x) follows that their can be

written in the form (see [17]):

C(D,xu) = L,(D)(1 — ———)?

Cmpx i)

x
I-i'."‘.ll'-t' (1Lj
where t,,....(1) is the maximal chord length in direction u.

In the last 3 years our group has obtained important results to calculate explicit forms of chord
length distribution functions Fj, (x) and Fj, (u, x) for different convex bodies. In particular, if D is a

lens (this problem has important applications in crystallography). An algorithm for calculation of

Fpl(u,x) =
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values of F,(x) for any bounded convex polygon is constructed. The program for effective
implementation of this algorithm is constructed. For any triangle explicit forms of Fj(x) and
F, (u, x) are obtained (see [17], [19]-[24].

References:

1. Luis A. Santalo, Integral geometry and geometric probability (Addision -Wesley, Reading,
MA, 2004).

2. Mallows C. and Clark J., " "Linear-intercept distributions do not characterize plane sets”, J.
Appl. Prob., vol. 7, pp. 240-244, 1970; (Correction vol. 6, pp. 208-209, 1971).

3. Gates, J., ~“Recognition of triangles and quadrilaterals by chord length distribution”, J.
Appl. Prob., vol. 19, pp. 873-879, 1982.

4. Waksman, P., ~“Plane polygons and conjecture of Blaschke’s”, Adv. Appl. Prob., vol. 17, pp.
774-793, 1985.

5. Schneider R. and Weil W., Stochastic and Integral Geometry, Springer-Verlag Berlin
Heidelberg, 2008.

6. Gardner R. J., Geometric Tomography, Cambridge University Press, Cambridge, UK, 2nd
ed., 2006.

7. Gardner R. J., Gronche P. and Zong C., ~~Sums, projections and selection of lattice sets
and the discrete covariogram”, Discrete Compt. Geom., vol. 34, pp. 391 — 409, 2005.

8. Matheron G., Random Sets and Integral Geometry (Wiley, New York 1975).

9. Matheron G., ~"Le covariogramme g\'eometrique des compacts convexes de R~"2",
Technical report 2/86, Centre de G\'eostatistique, Ecole des Mines de Paris, vol. 54, 1986.

10. Nagel W., “Orientation-dependent chord lenght distributions characterize convex
polygons” Appl. Prob., 30, no. 3, p. 730 — 736, 1993.

11. Averkov, G. and Bianchi, G.,” "Retriving convex bodies from restricted covariogram
functions”, Adv. Appl. Prob., vol. 39, pp. 613-629, 2007.

12. Bianchi G. and Averkov G., “Confirmation of Matheron's Conjecture on the covariogram
of a planar convex body” Journal of the European Mathematical Society 11, 1187-1202, 2009.

13. Benassi C., Bianchi G. and D’Ercole G., "Covariogram of non-convex sets” University
College London, Volume 56, p. 267-284, 2010.

14. Bianchi G., “Matheron’s conjecture for the covariogram problem” J. London Math. Soc.
(2), vol. 71, p. 203-220, 2005.

15. Goodey P., Schneider R. and Weil W., ~~0On the determination of convex bodies by
projection functions”, Bull. London Math. Soc., vol. 29, pp. 82-88, 1997.

16. Bianchi G., “Some known results and open problems related to the covariogram”,
Universita di Firenze, Cortona, 2011.

17. Gasparyan A. G. and Ohanyan V. K., ~“Recognition of triangles by covariogram”, Journal
of Contemporary Mathematical Analysis (Armenian Academy of sciences), vol. 48, no. 3, 110-122,
2013.

18. Bianchi G., Gardner R. J. and Kiderlen M., “Phase retrieval for characteristic functions of
convex bodies and reconstruction from covariograms” Journal of the American Mathematical
Society, 2011.

19. Ohanyan V. K. and Aharonyan N. G., “Tomography of bounded convex domains”, SUTRA:
International Journal of Mathematical Science, vol. 2, no. 1, pp. 1-12, 2009.

20. Aharonyan N. G., ~“Generalized Pleijel identity”, Journal of Contemporary Math.Anal.
(Armenian Academy of Sciences), vol. 43, no. 5, pp. 3 — 14, 2008.

21. Ohanyan V. K., " “Combinatorial principles in Stochastic Geometry: A Review”, Journal
of Contemporary Mathematical Analysis (Armenian Academy of Sciences) vol. 43, no. 1, pp. 44-
60, 2008 (Distributed by Springer, see www.springerlink.com).

22. Harutyunyan, H. and Ohanyan, V.K., ~~Chord length distribution function for regular
polygons", Advances in Applied Probability, vol. 41, no. 2, pp. 358-366, 2009.

23. Harutyunyan, H., Ohanyan, V.K., ~"Chord length distribution function for convex
polygons", Sutra: International Journal of Mathematical Science Education, vol. 4, no. 2, pp. 1-15,
2011.

1095



http://www.springerlink.com/�

European Researcher, 2013, Vol.(48), N2 5-1

24. Gille W., Aharonyan N. G. and Haruttyunyan H. S., Chord length distribution of
pentagonal and hexagonal rods: relation to small-angle scattering, Journal of Applied
Cristallography, 42, pp. 326—328, 2009.

YK 519.2
Pacno3dHaBaHue BBINMYKJIBIX TeJI KOBapuorpaMmMaMu
Buxkrop Kapoesuu Oransan

EpeBaHckuil rocyaapcTBeHHBIN yHUBEPCUTET, ApMeHU
Epesan, yi1. Asteka ManyksHa, 1
JloxTop pr3uKo-MaTeMaTUUECKUX HAYK, IIpodeccop

AnHoTamusA. [lanHas paboTa COJEPKUT aHAJIN3 OCHOBHBIX pPe3yJIbTaTOB EpeBaHCKOU
HCCJIEI0BATELCKON TPYIIBI B TOMOTrpaduul IUIAHAPHBIX OTPAHUYEHHBIX BBIMYKJIBIX JIOMEHOB.
[Ipunoxenus 3TuX MpobsieM MU3BECTHBI U B F€OMETPUYECKOU TOMOTpAdUH U B KOMIIBIOTEPHOU
tomorpadun. CioXKHBIe TeoMeTpuueckue GUTyphl MPOUCXOAAT BO MHOTHX O0JIACTAX HAYKH.
Ux ananu3 TpebyeT cO3/aHUA MaTeMaTHYeCKUX MojieJiel U  pa3paboTKU  CHEeUaTbHbBIX
MaTeMaTUYeCKUX MHCTPYMeHTOB. COOTBETCTBYIOIIYI0 O0JIACTh MATEMATHUYECKOTO HCCJIEIOBAHUS
BBI3BIBAIOT CTOXACTUYECKOI reomerpueii. Cpenu 6oJiee MOIMyJIAPHBIX MPUIoKeHUN CTepeosiorus u
tomorpadusa. Metoas! aHau3a (popMbl OCHOBBIBAIOTCA Ha aHAIM3e 0OBEKTOB KaK YMCIIA, T.e. KaK
IIOJIMHO>KeCTBA IJIOCKOCTH. /{11 5TUX HaOOPOB reoMeTpHUUYECKHE XapaKTEPUCTUKU PacCMaTpPHUBAIOT,
KOTOPbIE HE3aBHUCHUMBI OT MO3ULIMU W OPUEHTAIIUU 4ucesl (CjIeZ[oBaTeIbHO, OHU COBIIQJIAIOT JJIA
KOHTPYSHTHBIX (uryp). Kiaccuueckue mpumepsl — 006JIacTh M IEPUMETP 4YHMCIa. B mociemHem
HEMEIIKOM MaTeMaTuke crosietuss B. biamke cdopmynupoBan mpobiieMy HcCieOBaHUA
OTPAHUYEHHBIX BBINMYKJIBIX JIOMEHOB B IUIOCKOCTH, HCIOJIb3ysd BEPOATHOCTHBIE METO/IbI.
B yactHOocTH TpoOJieMa pacmo3HAaBAHUS OTPAHUYEHHBIX BBIIMYKJIBIX JIOMEHOB paclpeiesieHueM
JUINHBI XOPZbI.

Karouessle cioBa: PacnpezneneHue JJIMHBL XOpAbl; KoBapuorpamma; Kiaccudukanusa
2010 MpeIMETOB MaTEMATHUKH BBITIYKJIOTO Tejia: 60D05; 52A22; 53C65.
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