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Abstract: The ubiquity of mobile devices due to the advancement of Internet technology has increased the threat of 

Android malware, which places users’ data, identities, and finances at risk of theft and cybercriminal activities. 

Android malware detection (AMD), which uses machine learning, faces challenges with high-dimensional datasets, 

leading to increased computation and reduced accuracy. Feature selection methods extract key features and eliminate 

redundant data but are still susceptible to overlooking important features, leading to false positives or negatives. This 

study aims to enhance AMD via a modified dwarf mongoose optimization algorithm (DMOA) for efficient feature 

selection. The DMOA is improved with adaptive mechanisms, including crossover and mutation strategies, to explore 

the solution space better. These enhancements help the DMOA avoid local optima and identify superior feature subsets 

for more accurate malware detection. The CICAndMal2017 dataset is used to evaluate the effectiveness of different 

machine learning classifiers. The experimental results demonstrate that the proposed modified DMOA model achieves 

exceptional accuracy. The decision tree (DT), random forest (RF), and XGBoost models have 100% accuracy in binary 

classification. Furthermore, the proposed modified DMOA consistently outperforms several existing AMD models — 

including Particle Swarm Optimization (PSO), Multi-Verse Optimizer (MVO), Enhanced Moth Flame Optimizer 

(EMFO), Aquila Optimizer, and Grey Wolf Optimizer (GWO)— in terms of accuracy, based on results reported in 

previous studies using the same dataset. 

Keywords: Feature selection, Malware, Malware detection, Machine learning, Dwarf mongoose optimization 

algorithm. 

 

 

1. Introduction 

The rapid development of the Internet has 

increased the global use of mobile devices. As of 

2022, the number of mobile network smartphone 

subscriptions has reached 6.4 billion [1]. 

Approximately 70.93% of smartphone users use the 

Android operating system [2]. The advancements in 

Android applications, especially banking, e-

commerce, social sites, education, and entertainment, 

have led Android to be a primary target of malware 

developers. Due to their open-source nature and 

compatibility with devices, Android applications are 

particularly vulnerable to malware attacks [3]. 

Malware is defined as malicious code that disrupts 

and damages computer systems and the digital 

infrastructure. They also damage mobile/electronic 

devices, such as viruses, worms, trojans, backdoors, 

ransomware, adware, and spyware. malware aims to 

harm digital systems and steal valuable information, 

thereby threatening system confidentiality, integrity, 

and availability [4]. Malware attacks can also result 

in serious consequences for businesses and 

organizations, such as stealing information, 

interfering with business processes, or damaging 

reputation. On the basis of a Statista report, the 

number of malware strains detected and spread 

worldwide in 2023 reached 6.06 billion. A large 

portion of these attacks are concentrated in the Asia-

Pacific region [5].  

Several defense methods, mainly categorized into 

signature- and behavior-based methods [6], have 

been developed to detect Android malware. Machine 

learning algorithms that use well-established 

classification algorithms typically classify Android 
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applications as benign or malicious applications [7]. 

Machine learning has encountered problems in 

malware detection because of the high 

dimensionality of the data, which may increase the 

computation time and reduce accuracy. The feature 

selection process plays an important role in 

addressing such concerns. Irrelevant and redundant 

data can also be removed, enabling more efficient and 

accurate learning models to detect malware 

effectively [8]. Feature selection can be classified 

into two main methods: wrapper methods and filter 

methods. The wrapper-based method is the most 

popular method for problem classification. Finding 

the optimal feature subsets via a wrapper method is 

difficult because it obtains only the smallest number 

of subsets despite its high accuracy. Feature selection 

poses challenges that result from the increased time 

needed to determine optimal features in a high-

dimensional dataset [9]. 

AMD remains a critical challenge due to the rapid 

growth of Android users and applications (Sabbah et 

al., 2022). Although ML methods are widely used 

(Nawshin et al., 2020), they often struggle with high-

dimensional datasets, causing longer computation 

times and less accurate results (PER, 2021). Feature 

selection helps reduce irrelevant data (Sangal & 

Verma, 2020), but can still produce false positives 

and negatives (Akinola et al., 2022). The evolving 

nature of malware requires continuous adaptation and 

new optimization techniques to handle large datasets 

effectively and improve detection accuracy. 

Traditional optimization algorithms often get stuck in 

local optima, selecting poor feature subsets that limit 

performance (Game & Vaze, 2020). Therefore, 

advanced optimization methods are needed to 

efficiently explore the search space and enhance 

AMD systems without falling into local optima. 

Metaheuristic algorithms are widely used for data 

classification and optimization due to their simplicity, 

flexibility, and independence of derivatives, enabling 

them to avoid local optima [10]. A local optimum in 

optimization problems refers to a state where the 

objective function’s value is optimal, “either at a 

minimum or maximum,” within a limited range of 

nearby potential solutions [11]. Metaheuristic 

algorithms are used to solve feature selection 

problems, especially in high-dimensional datasets, in 

which the best feature subset should be selected 

promptly. Algorithms such as the firefly algorithm, 

particle swarm optimization (PSO), Harris hawks 

optimization (HHO), and the dwarf mongoose 

optimization algorithm (DMOA), which are used to 

find optimal feature subsets, can balance exploration 

and exploitation to find optimal or near-optimal 

feature subsets [9]. These algorithms thoroughly 

investigate the promising search space during the 

exploration phase. Local searches are conducted 

during the exploitation phase to find potential 

locations identified during exploration [10]. 

In this paper, a modified version of the DMOA is 

used for feature selection to enhance the performance 

of the AMD system. The modified DMOA method is 

assessed via the CICAndMal2017 dataset, which is 

frequently used to evaluate malware models. On the 

basis of the nature of foraging in dwarf mongooses, 

DMOAs maintain a balance between exploitation and 

exploration. This capability enables DMOAs to 

effectively discover subsets of features in high-

dimensional malware data [12]. 

The rest of the paper is organized as follows: 

Section 2 discusses related works. Section 3 presents 

the proposed model. Section 4 analyses the results. 

Section 5 concludes the findings and provides 

recommendations for future research. 

2. Related works    

This section discusses several previous studies 

that have been used ML algorithms to detect and 

categorize Android malware. Some researchers have 

proposed combining nature-inspired wrapper-based 

metaheuristics and machine-learning approaches to 

detect malware on Android devices.  

Hossain et al. [13] proposed a novel method for 

Android ransomware detection via PSO algorithms 

for traffic characteristic selection with DT and RF 

classifiers for data traffic classification. The 

CICAndMal2017 dataset was used and preprocessed 

via normalization and oversampling to address class 

imbalance. PSO-based feature selection was used to 

optimize the detection accuracy. Their proposed 

method achieved accuracy in detecting ransomware 

attacks (81.58%). 

Taher et al. [14] proposed a hybrid model for 

detecting and classifying Android malware called 

DroidDetectMW. Feature selection was performed 

via metaheuristic optimization algorithms, including 

MVO and enhanced moth flame optimization 

(EMFO), and the most relevant features for 

classification were identified. The detection phase 

uses ML algorithms, such as RF and SVM, to 

categorize the Android app’s behavior. The 

CICAndMal2017 was used in the experiment. 

Significant improvements in precision, recall, and 

classification accuracy, especially in binary malware 

classification (98.1% accuracy) and malware 

category classification (96.9% accuracy), were 

achieved. 

Grace and Sughasiny [15] solved the growing 

threat of malicious Android programs by using an 
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Aquila optimizer and a hybrid LSTM-SVM classifier 

to detect malware. The method was evaluated on the 

CICAndMal2017 dataset and achieved superior 

performance results in terms of accuracy (0.97), 

precision (0.94), recall (0.90), and F1_score (0.93).  

Aldehim et al. [16] proposed Gauss-mapping 

black widow optimization with the DL-enabled 

Android malware classification (GBWODL-AMC) 

method for AMD. GBWO was used for feature 

selection, inspired by the movement of the black 

widow spider. The deep extreme learning machine 

(DELM) model was used for malware classification, 

and the ant lion optimization (ALO) algorithm was 

used to optimally select the model’s parameters. The 

CICAndMal2017 dataset was used to test the 

simulation analysis of the GBWODL-AMC approach. 

The testing results revealed that the GBWODL-AMC 

technique outperformed other malware detectors 

(with a maximum accuracy of 98.59% in binary 

classification, and 98.50% in multiclass 

classification). 

Alissa et al. [17] proposed a DWOML-RWD 

method that combines dwarf mongoose optimization 

with ML-driven ransomware detection. The 

DWOML-RWD model selects features via the 

enhanced krill herd optimization (EKHO) algorithm, 

which employs dynamic oppositional-based learning 

(QOBL). The method uses DWO with an extreme 

learning machine (ELM) classifier to improve the 

efficiency of ransomware detection. The DWOML-

RWD model was evaluated on a dataset of 840 

samples. The results revealed high accuracy, 

sensitivity, and specificity of 99.40% and false 

positive and false negative rates of 0.60%.  

PER [18] proposed a new technique known as the 

bat optimization algorithm for wrapper-based feature 

selection (BOAWFS) to classify application 

permissions with AMD. BOAWFS is a wrapper 

classifier inspired by the echolocation principle 

employed by bats to improve feature selection by 

reducing the elevation dimension or noise in every 

high-dimensional dataset. The method was tested on 

the CICInvesAndMal2019 dataset, which comprises 

both malware and benign applications. The BOWFS-

DT model achieved an accuracy of 93.73%, and 

malware detection was enhanced.  

Guendouz and Amine [19] proposed a novel 

method called BDA-FS, which uses ML and the 

dragonfly algorithm for feature selection to detect 

Android malware. The features were extracted on the 

basis of a dataset of 5000 malicious applications and 

5000 benign applications. The features, which 

included the Android permissions, were transformed 

into feature vectors. The dragonfly algorithm was 

used to select the most pertinent features. The RF, DT, 

naïve Bayes, SVM, and KNN classifiers were used 

for classification. The proposed BDA-FS method 

effectively detected Android malware. The highest 

accuracy was 96.33% for the random forest classifier. 

Smmarwar et al. [20] proposed a new AMD 

method called OEL-AMD. The BGWO algorithm 

was employed for feature selection and provided 

optimal feature sets for the static and dynamic layers. 

The proposed method was evaluated on the 

CICInvesAndMal2019 dataset. The best 

classification accuracy was 96.95% for binary 

classification utilizing static layer features and 

83.49% for multiclass classification utilizing 

dynamic layer features. The results indicate the 

effectiveness of the OEL-AMD method for AMD. 

Naick et al. [21] proposed an AMD method with 

swarm intelligence optimization algorithms (BES 

and SFO). ML classifiers were used to analyze 

application programming interface (API) calls. The 

optimal features of the API calls were determined to 

increase the detection accuracy. The BES and SFO 

were used for feature selection. ML classifiers, which 

included the DT, KNN, LR, SVM, and RF classifiers, 

were used to evaluate the classification performance. 

The method was tested on the API call sequence 

dataset. The model achieved an accuracy of 98.92%. 

Prasanna and Krishna [22] developed a feature 

selection method that could differentiate between 

malware and benign applications on the basis of API 

calls. Wrapper-based swarm intelligence algorithms 

were used to optimize the feature selection process 

involving ALO and the WOA. Various ML methods, 

such as SVM, RF, DT, GB, KNN, and LR, can 

distinguish between malicious and benign features. 

The RF classifier outperformed all the other 

classifiers studied, with accuracies of 94.04% for the 

WOA and 91.42% for ALO.  

Despite the success of recent studies on AMD, 

several issues warrant further exploration. Redundant 

identification of information must be reduced while 

maintaining high accuracy. For example, although 

the GBWODL-AMC strategy yields promising 

results with high accuracy, sensitivity, and specificity 

when it is applied to the CICAndMal2017 dataset, 

notable challenges still exist. Combining GBWO for 

feature selection, DELM for classification, and ALO 

for parameter optimization increases the level of 

complexity in the system. However, this hybrid 

approach may result in high computation and 

processing times, making it less suitable for real-time 

applications. Additionally, as the aforementioned 

approach is good at minimizing the feature set, 

multiple algorithms tend to complicate integration 

and optimization procedures. This issue further 

affects the overall efficiency and scalability of the  
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Table 1. Summary of metaheuristic optimization algorithms in related works 

Ref# Authors (Year) Feature Selection 

Algorithm 

Dataset Results Limitations 

Ref[13] Hossain et al. 

(2022) 

PSO CICAndMal2017 Accuracy: 81.58%.  Focused only 

on ransomware 

Ref[14] Taher et al. 

(2023) 

 MVO, EMFO CICAndMal2017 Binary 

Classification: 

Accuracy 98.1%,  

Multiclass 

Classification: 

Accuracy 96.9%. 

High 

computational 

complexity 

due to hybrid 

and multi-

phase model 

Ref[15] Grace & 

Sughasiny (2022) 

Aquila Optimizer CICAndMal2017 Accuracy: 97%, 

Precision: 94%, 

TPR: 90%, F1 

Score:93%. 

High 

computational 

complexity 

Ref[16] Aldehim et al. 

(2023) 

GBWO CICAndMal2017 Binary Classification 

Accuracy: 98.59%. 

Multiclass 

Classification 

Accuracy: 98.50%. 

High 

computational 

cost and longer 

training time 

Ref[17] Alissa et al. 

(2022) 

EKHO, DOBL 840 samples (specific 

dataset not mentioned) 

Accuracy: 99.40%. High 

computational 

complexity 

Ref[18] PER (2021)  BOAWFS CICInvesAndMal2019 Accuracy: 93.73%. High 

computational 

cost and 

complexity. 

Ref[19] Guendouz & 

Amine (2023) 

Dragonfly 

Algorithm 

5000 malicious and 

5000 benign apps 

Accuracy: 96.33% . Limited 

Dataset 

Ref[20] Smmarwar et al. 

(2022) 

 BGWO CICInvesAndMal2019 Binary Classification 

Accuracy: 96.95%, 

Multiclass 

Classification 

Accuracy: 83.49%. 

Requires a 

large dataset 

for effective 

training. 

Ref[21] Naick et al. 

(2022) 

BES, SFO API Call Sequence 

dataset 

Accuracy: 98.92%.  Relies on a 

limited subset  

Ref[22] Prasanna & 

Krishna (2024) 

ALO, WOA API Call Sequence 

dataset 

WOA Accuracy: 

94.04%, ALO 

Accuracy: 91.42%.  

High 

computational 

cost 

 

 

system. These factors highlight the need for efficient 

solutions that balance performance with real-time 

applicability and ease of implementation. This gap 

has led to the introduction of a new perspective for 

increasing detection accuracy, reducing the 

computational burden, and enabling an optimal 

balance between feature selection and classifier 

performance. 

Additionally, most of the work is dataset-specific 

and is confined to those specific datasets for a 

particular model to achieve high performance in 

different real scenarios. Although metaheuristic 

optimization algorithms are popular, research has yet 

to be conducted in the area of feature selection that 

uses the DMO algorithm for AMD. Table 2. 4 

summarizes the metaheuristic optimization 

algorithms used as feature selection methods for 

AMD reported in the literature. 

3. Methodology    

This section reviews the utilized dataset, data 

preprocessing steps, and feature selection with the 

use of the modified DMOA algorithm. The 

modifications to the DMOA Algorithm are also 

discussed. 

3.1 Dataset 

This study uses an Android malware dataset 

known as CICAndMal2017, which was developed by 

the Canadian Center for Cybersecurity at the 

University of New Brunswick [23, 24].  
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Table 2. Feature names in the CICAndMal2017 dataset 

# 
Feature name # Feature name # Feature name # Feature name 

1 Flow ID 22 Flow Packets/s 43 Fwd Packets/s 64 Fwd Avg Bulk Rate 

2 Source IP 23 Flow IAT Mean 44 Bwd Packets/s 65 Bwd Avg Bytes/Bulk 

3 Source Port 24 Flow IAT Std 45 Min Packet Length 66 Bwd Avg Packets/Bulk 

4 Destination IP 25 Flow IAT Max 46 Max Packet Length 67 Bwd Avg Bulk Rate 

5 Destination Port 26 Flow IAT Min 47 Packet Length Mean 68 Subflow Fwd Packets 

6 Protocol 27 Fwd IAT Total 48 Packet Length Std 69 Subflow Fwd Bytes 

7 Timestamp 28 Fwd IAT Mean 49 Packet Length 

Variance 

70 Subflow Bwd Packets 

8 Flow Duration 29 Fwd IAT Std 50 FIN Flag Count 71 Subflow Bwd Bytes 

9 Total Fwd Packets 30 Fwd IAT Max 51 SYN Flag Count 72 Init_Win_bytes_forward 

10 Total Backward 

Packets 

31 Fwd IAT Min 52 RST Flag Count 73 Init_Win_bytes_backward 

11 Total Length of Fwd 

Packets 

32 Bwd IAT Total 53 PSH Flag Count 74 act_data_pkt_fwd 

12 Total Length of 

Bwd Packets 

33 Bwd IAT Mean 54 ACK Flag Count 75 min_seg_size_forward 

13 Fwd Packet Length 

Max 

34 Bwd IAT Std 55 URG Flag Count 76 Active Mean 

14 Fwd Packet Length 

Min 

35 Bwd IAT Max 56 CWE Flag Count 77 Active Std 

15 Fwd Packet Length 

Mean 

36 Bwd IAT Min 57 ECE Flag Count 78 Active Max 

16 Fwd Packet Length 

Std 

37 Fwd PSH Flags 58 Down/Up Ratio 79 Active Min 

17 Bwd Packet Length 

Max 

38 Bwd PSH Flags 59 Average Packet Size 80 Idle Mean 

18 Bwd Packet Length 

Min 

39 Fwd URG Flags 60 Avg Fwd Segment 

Size 

81 Idle Std 

19 Bwd Packet Length 

Mean 

40 Bwd URG Flags 61 Avg Bwd Segment 

Size 

82 Idle Max 

20 Bwd Packet Length 

Std 

41 Fwd Header Length 62 Fwd Avg 

Bytes/Bulk 

83 Idle Min 

21 Flow Bytes/s 42 Bwd Header Length 63 Fwd Avg 

Packets/Bulk 

  

 

 

The CICAndMal2017 dataset contains more than 

10854 samples (4354 malware samples and 6500 

benign samples) that were collected from different 

sources. 

• The malware samples are further classified 

into four primary families. The four subtypes 

of malware (Ransomware, Adware, 

Scareware, and SMSmalware) form 42 

different attack types. 

• Adware is software that is designed to display 

unwanted advertisements to increase clicks 

and views. It comprises 104 applications, 

including the Ewind, Koodous, Feiwo, 

Shuanet, Selfmite, and Gooligan families. 

• Ransomware is a malicious application that 

seeks to prevent access to computer resources. 

It comprises 101 applications for Android 

devices, such as Charger, Jisut, Koler, and 

WannaLocker. 

• Scareware is malware that compels users to 

purchase unnecessary and potentially 

malware applications. It comprises 102 
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applications, such as AndroidDefender, 

FakeAV, and FakeApp. 

• SMSmalware is an unauthorized call or text 

message sent to others without the mobile 

owner’s permission (Abuthawabeh & 

Mahmoud, 2020). It consists of 99 

applications, including Ji Fake, Bean Bot, 

Nandrobox, Fake Mart, Fake Notify, and 

SMS sniffer families. 

The CICAndMal2017 dataset features provide 

basic information about the behavior of malicious 

and benign applications and detailed characteristics 

of the network traffic flow in mobile devices. Such 

features are crucial for understanding how various 

malware types (ransomware, adware, scareware, 

SMS malware, and other malware applications) 

behave with network protocols and how to 

distinguish them on the basis of network activity. 

Table 2. presents the feature list and description of 

the CICAndMal2017 dataset. 

For this study, a subset of 34,000 records with 83 

features was selected from the CICAndMal2017 

dataset to reduce computational complexity and 

training time while maintaining a balanced 

representation of malware and benign samples. To 

handle class imbalance, SMOTE was applied only to 

the training data in a stratified manner, generating 

synthetic samples based on feature similarities to 

prevent overfitting. A 5-fold stratified cross-

validation was used throughout to ensure fair and 

reliable evaluation, with SMOTE applied exclusively 

on the training folds and validation data left 

untouched to avoid data leakage. Final performance 

metrics—including accuracy, precision, recall, and 

F1-score—are reported as the average ± standard 

deviation across the folds, providing a realistic 

assessment of the model’s generalization ability. 

3.2 Data preprocessing 

Data preprocessing is an essential step in the 

proposed model. The process includes two main 

steps: data transformation and data normalization. 

 

a) Data Transformation 

Data transformation is an important stage of the 

preprocessing of ML models—it works as an encoder 

to encode the given labels as categorical numbers. In 

the case of malware classification, the label column 

might contain categorical labels such as benign or 

malicious labels, which can be transformed into 

nominal feature vectors of 0 and 1 s for binary 

classification. This transformation is crucial for data 

preparation in most ML algorithms, as nearly all of 

them utilize numerical data.  

 

b) Normalization 

Normalization is the process of rescaling values 

or aligning values to a particular range, often between 

0 and 1, and it plays a central role in models that use 

absolute values for inputs to obtain accurate scaling 

[13]. In this study, the main goal of the normalization 

process is to ensure that each feature contributes 

equally to the model’s performance, particularly 

when the features have different units or scales. In the 

context of the CICAndMal2017 dataset, 

normalization was performed via min–max scaling. 

In particular, the data were centered around a mean 

of 0 and scaled to a unit variance. 

The min–max scaling is computed as Eq. (1): 

 

𝑋𝑆𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑀𝑖𝑛

𝑋𝑀𝑎𝑥 − 𝑋𝑀𝑖𝑛
    (1) 

 

where 𝑋𝑆𝑐𝑎𝑙𝑒𝑑   is the result of the min–max scaling 

procedure, 𝑋  is the original value, 𝑋𝑀𝑖𝑛  is the 

minimum value, and 𝑋𝑀𝑎𝑥 is the maximum value in 

the column. The min max scaler was utilized for 83 

features. 

3.3 Oversampling 

In CICAndMal2017, the number of samples for 

each type of malware differs considerably, creating 

an imbalance in classification process. ML models 

trained on imbalanced data tend to favor classes with 

higher sample numbers, but this case might result in 

biased predictions toward the dominant classes. This 

bias also leads to artificially high accuracy and 

misclassifies underrepresented classes, causing the 

model to be ineffective on the test set, especially for 

rare malware types. 

Biases can be eliminated by oversampling, in 

which an equal number of samples is created for each 

type of malware. In this study, samples are duplicated 

from the underrepresented classes to ensure a 

balanced dataset while improving the model’s 

effectiveness. 

3.4 Feature selection 

Feature selection is the process of selecting the 

most relevant features from a large dataset for use in 

a machine learning model. The model’s performance 

is enhanced when the features selected provide the 

most relevant features [25]. The DMOA is effective 

for feature selection, especially when applied to high-

dimensional datasets [12], and is appropriate for 

AMD. In this study, a modified version of the DMOA 

was selected for feature selection. The DMOA  
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Figure. 1 Pseudocode of modified DMOA 

 

 

incorporates mutation and crossover functions, 

thereby improving the exploration of the solution 

space and increasing the likelihood of finding optimal 

feature sets. 

3.4.1. Proposed modified DMOA 

The DMOA is a type of stochastic, population-

based metaheuristic algorithm introduced by [26]. 

This approach draws inspiration from the social and 

foraging behaviors of dwarf mongooses, also known 

as Helogale. Although these animals forage in groups, 

each mongoose meticulously searches for food 

because feeding is not a collective effort; they exhibit 

seminomadic behavior, creating sleeping mounds 

near plentiful food sources and seeking out the next 

available mound. The DMOA works by adopting a 

sequence of structured phases that mimic the feeding 

and social behaviors of these mongooses. 

The DMOA is efficient for feature selection and 

other forms of optimization tasks because of its 

adaptive search ability. However, as with many 

optimization techniques, the DMOA faces challenges 

related to convergence to local optima. In this study, 

the DMOA’s performance is improved by adding 

adaptive mechanisms, such as crossover operations 

and mutation strategies. These additions help the 

system adjust and optimize itself, exploring solutions 

more thoroughly for better outcomes. These 

enhancements also help the system diversify the 

search process, enabling the algorithm to avoid local 

optima and identify superior feature subsets. Fig.1 

outlines the pseudocode of the proposed modified 

DMOA, and Fig. 2 details the specific modifications 

introduced. The steps for the modified DMOA are 

described as follows: 

1. Initialize Population: The algorithm starts by 

randomly generating an initial population of n_pop 

individuals. Each individual is represented as a binary 

vector. Each element in this vector corresponds to a 

feature, where a value of 1 indicates that the feature 

is selected, and a value of 0 indicates that it is not. 

This binary representation is crucial for feature 

selection in the optimization process. 

2. Initial Best Solution: The algorithm evaluates 

each individual’s fitness in the initial population 

before entering the iterative optimization process. 

The fitness function used in this evaluation is based 

on two key factors: accuracy and the number of 

features. The best solution is determined on the basis 

of the highest fitness score, which is a combination of 

these factors. This initial best solution serves as a 

reference point for future comparisons, guiding the 

optimization process to find the best set of features. 

The fitness function (𝐹𝑖𝑡) can be expressed as: 

 

𝐹𝑖𝑡 = 𝛼 × 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝛽 ×
𝑛𝑜. 𝑜𝑓 𝑆𝐹

𝑇𝑜𝑡𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
  (2) 

 

where 𝛼 and 𝛽 are weighting parameters that control 

the trade-off between accuracy and subset size. The 

individual with the highest fitness score is recorded 

as the initial best solution, serving as a benchmark for 

subsequent iterations. 

3. Iteration Loop (1 to n_iter): This loop runs 

for a specified number of iterations, allowing the 

algorithm to improve the population of solutions over 

time. Each iteration includes several critical steps: 

1. Initialize Population 

o Create n_pop individuals, each represented as a 

binary vector of length n_features. 

o Each vector indicates which features are 

selected (1) or not (0). 

2. Set Initial Best Solution 

o Evaluate the fitness of the initial population. 

o Store the individual with the highest fitness 

score as the best_solution. 

3. For each iteration (1 to n_iter): 

      Step 1: Alpha Selection 

o Identify the alpha individual (the one with the 

highest fitness) in the population. 

      Step 2: Crossover (Mate Selection) 

o For each individual in the population: 

1. Randomly select two parents from the 

population. 

2. Perform crossover at a random point to 

create a child. 

▪ Crossover Point: Random integer 

between 1 and n_features - 1. 

      Step 3: Mutation 

o With probability mutation_rate, mutate the 

child by flipping bits at random feature indices. 

    Step 4: Scout Phase 

o With probability scout_rate, introduce a new 

random individual into the population to 

enhance exploration. 

    Step 5: Babysitter Exchange 

o Evaluate the new population. 

o If the best individual from the new population 

has a higher fitness score than the 

best_solution, update it. 

o Remove L * n_pop individuals randomly to 

maintain diversity. 

4. Evaluate Fitness Metrics 

o Calculate fitness scores for all individuals. 

o Update best_solution if any individual 

surpasses its current fitness score. 

5. Return Best Solution 
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Figure. 2 Block diagram of the modified DMOA 

 

 

Step 1: Alpha Selection: The algorithm identifies 

the alpha individual, which is the one with the highest 

fitness score in the current population. This 

individual represents the best feature set obtained 

thus far, influencing the next generation of 

individuals. 

Step 2: Crossover (Mate Selection): For each 

individual, randomly select two parent individuals 

from the population and perform a single-point 

crossover on their binary vectors to generate 

offspring. The crossover point is chosen randomly 

between 1 and 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 − 1.  

Step 3: Mutation: In a probability set with a given 

mutation rate, the child may undergo mutation. In 

particular, the bits at the feature indices are randomly 

flipped in the child’s binary vector.  

Step 4: Scout Phase: With the probability equal to 

the scout rate, a new random individual is placed into 

the population. This scout individual can explore the 

new regions of the solution space and present better 

solutions that were absent in the current population. 

Step 5: Babysitter Exchange: The fitness of the 

new population, “including any new individuals 

created from crossover, mutation, or scouts,” is 

evaluated. If the best individual in this new 

population surpasses the fitness of the previously 

recorded best solution, then the algorithm updates the 

best solution. This exchange allows the algorithm to 

retain the most promising solutions during 

optimization. 

4.  Fitness Evaluation: Once all the iterations are 

completed, the algorithm uses a fitness function to 

evaluate each individual’s fitness in the final 

population. This function assesses how well the 

feature set of each individual performs in terms of 

classification accuracy, providing a final measure of 

performance. 

5. Return to the Best Solution: The algorithm 

returns the best solution, the individual with the 

highest fitness score found during the iterations. The 

final solution represents the optimal feature subset 

selected using the modified DMOA. 

3.5 Classification 

The classification stage is a critical component of 

the AMD model because it determines whether 

network activity is benign or malicious. When the 

most relevant features are identified, ML algorithms 

can train classifiers using labelled data, enabling the 

model to recognize malware-related patterns. The 

likelihood of identifying the most effective approach 

for classifying Android malware was increased by 

applying several classifiers, including DT, RF, KNN, 

and XGBoost. These classifiers were selected for 

their relative strengths when dealing with the 

CICAndMal2017 datasets. 

3.6 Modifications to the DMOA algorithm 

The original DMOA was inspired by the social 

behavior and foraging strategies typical of dwarf 

mongooses, including their sleeping mounds. 

However, the changes in the present work involve 

modifications of the DMOA algorithm to increase its 

feature selection and optimization efficiency. The 

main changes in the original DMOA are outlined 

below. 

 

A) Crossover Function 

The crossover operator in the modified DMOA is 

a major operator that is applied to form new solutions 

on the basis of the information of two parent solutions. 

In binary formula-based optimization problems, 

feature selection crossover keeps the population large 

and improves the exploitation of the solution space. 

The crossover function has three stages. In the first 

stage, a pair of candidate solutions is randomly 

selected from the population. However, the best two 

solutions are excluded from the selection process, and 

genetic diversity is encouraged while avoiding 

premature convergence. The second stage involves 

selecting a random crossover point within the binary 
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representation of the parent solutions. The offspring 

are created by combining the two parent solutions at 

this crossover point. This stage allows the creation of 

a new solution that inherits traits from both parents. 

In this manner, the likelihood of finding a better 

solution is increased in subsequent generations.  

In the third and final stages, the newly generated 

offspring are integrated into the population. This 

outcome is achieved by replacing one of the least fit 

solutions in the population with offspring. Depending 

on the algorithm’s implementation, the fitness of the 

offspring might be compared with that of the 

population. Finally, the best individual solutions are 

selected for the next generation. The crossover 

function is applied to search for improved 

combinations of features; in this study, it is used to 

improve the results of classification tasks in areas 

such as malware detection. By merging subsets of the 

features, the algorithm can select the best result 

between exploration and exploitation. 

 

B) Mutation 
The mutation process is one of the essential parts 

of the optimization mechanism in the modified 

DMOA. Mutation occurs after the crossover 

operation: it creates new offspring from two parents’ 

solutions. The primary aim of mutation is to 

randomly modify some of the offspring’s genetic 

material, thereby ensuring that the population does 

not become homogeneous. The mutation occurs with 

a probability defined by the mutation_rate parameter, 

which determines how often a child solution 

undergoes mutation. When a child is selected for 

mutation, the algorithm randomly selects a set of 

indices in the child’s solution (representing the 

features selected) and flips their values. This bit-

flipping process is the critical operation of mutation, 

where 0 becomes a 1 and vice versa.  

The mutation prevents the algorithm from 

becoming stuck in suboptimal solutions by 

introducing small, random changes that might lead to 

better solutions. When bits in the binary 

representation of the feature set are flipped, mutation 

can explore new areas of the solution space that may 

not have been reached via crossover alone. 

Subsequently, the algorithm can balance exploration 

for “searching for new solutions” and exploitation for 

“refining the best solutions.” Through mutation, the 

algorithm increases its chances of finding the optimal 

set of features for the classification task, especially in 

complex problems such as malware detection. 
Table 3 summarizes the hyperparameter settings 

used for the modified DMOA in this study, along 

with the selection strategies applied. These values 

were determined based on empirical tuning and 

Table 3. Hyperparameters of the Modified DMOA  

Parmeters Value  Selection strategy 

Number of 

populations 
30 

Empirically tuned based 

on preliminary 

experiments 

Number of 

Iterations 
100 

Fixed value ensuring 

convergence without 

overfitting 

Mutation 

Rate 
0.5 

Standard value for 

binary metaheuristics 

Crossover 

Type 
Single point 

Enhances genetic 

diversity during 

reproduction 

Fitness 

Function 

Accuracy-

based with 

subset size 

penalty 

Balances accuracy and 

dimensionality 

 

 

preliminary experimentation to ensure convergence 

and generalization. 

4. Implementation and results    

This section presents the implementation process 

and discusses the results of implementing the model 

via various ML algorithms and compares these 

results with those of other metaheuristic algorithm 

models. 

4.1 Implementation 

The study was conducted in a Windows 

environment via the VSC IDE, which provides a 

comprehensive set of tools for developing, testing, 

and debugging code. The most recent Python version 

(V3.12) was used for model implementation and 

evaluation because of its extensive support for ML 

and the availability of many data analysis packages. 

The modified DMOA was applied to select the 

most relevant features based on a fitness function that 

considers accuracy and the number of selected 

features. The fitness function was defined to calculate 

the error rate (err), considering both the prediction 

accuracy and the number of selected features (SF). A 

lower fitness value (error rate) indicates a better 

feature subset. 

 

err=α * (1 - Accuracy)+ β* (
No. of SF  

max No. of F
 )  (3) 

 

As a result, 40 features were selected for binary 

classification from the original 83 features. The 

selected features were 2, 6, 8, 9, 12, 16, 17, 19, 21, 

23, 25, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 40, 
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41, 45, 48, 50, 52, 56, 57, 59, 61, 62, 63, 71, 72, 73, 

74, 75, and 79. 

The performance of the system was evaluated 

using metrics such as accuracy, precision, recall, F1 

score and convergence time to measure the 

effectiveness and efficiency of the malware detection 

approach. The results provide insights into the 

model’s classification, effectiveness, and efficiency. 

A confusion matrix (CM) was also used to provide a 

detailed breakdown of the model’s predictions across 

different classes. It offers a thorough analysis of true 

positives (TP), true negatives (TN), false positives 

(FP), and false negatives (FN). The mathematical 

formulations of the evaluation metrics are defined as 

follows: 

 

Accuracy = 
(T P + TN) 

N
     (4) 

 

Precision = 
(T P ) 

(T P +  FP )
    (5) 

 

Recall = 
(TP ) 

(TP +  FN )
     (6) 

 

F1 Score = 
2*(Precision * Recall)

(Precision + Recall) 
    (7) 

 

4.2 Results 

The model was evaluated using ML algorithms. 

The algorithms used are DT, RF, KNN, and XGBoost. 

The DT classifier achieved perfect performance in 

binary classification of malware and benign samples, 

with an accuracy of 1.00, precision of 1.00, recall of 

1.00, F1 score of 1.00, and specificity of 1.00. It 

recorded zero false positives and false negatives, 

indicating that all samples were correctly classified. 

The convergence time was 173.59 seconds, 

demonstrating the model’s efficiency in detecting 

Android malware. Similarly, the XGBoost classifier 

also achieved perfect performance with an accuracy 

of 1.00, precision of 1.00, recall of 1.00, and F1 score 

of 1.00. However, due to the boosting mechanism, the 

convergence time was significantly higher, taking 

425.08 seconds to train and converge. The RF 

classifier also performed exceptionally well, with an 

accuracy of 1.00, precision of 1.00, recall of 1.00, and 

F1 score of 1.00. There were no misclassifications, 

and the convergence time was 233.72 seconds, 

suggesting good efficiency. Although some 

classifiers achieved perfect performance in our cross-

validation experiments, we acknowledge that such 

results may not generalize to other datasets or real-

time environments. Fig.3 shows the CM for the 

DT,RF,and XGBoost classifiers, including the  

 
Figure. 3 CM for DT, RF, and XGBoost 

 

 
Figure. 4 KNN classifier CM 

 

 

corresponding values of TP, TN, FP, and FN values 

for each class. 

In contrast, the KNN classifier, while still 

performing well, showed slightly lower results, with 

an accuracy of 0.9888, precision of 0.9866, recall of 

0.9888, and F1 score of 0.9866. The convergence 

time for KNN was notably higher, taking 1331.20 

seconds due to the computational complexity of 

distance calculations during prediction. Fig.4 depicts 

the CM for the KNN classifier and the corresponding 

TP, TN, FP, and FN values for each class. The binary 

classification results are summarized in Table 4, 

which compares the performance of the classifiers.  

The evaluation of the proposed modified DMOA, 

which uses various ML algorithms, has proven the 

effectiveness of the proposed modified DMOA in 

enhancing feature selection for AMD. Compared 

with the original DMOA, all classifiers achieved 

consistent performance improvements in accuracy. 
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Table 4. Binary classification results for all classifiers 

Classif

ier 

Accur

acy 

Precisi

on 

F1-

score 

Recall Time   

(s) 

RF 1.000 1.000 1.000 1.000 233.72 

DT 1.000 1.000 1.000 1.000 173.59 

XGBo

ost 

1.000 1.000 1.000 1.000 425.08 

KNN 0.988 0.986 0.986 0.989 1331.2 

 

 

Fig.5 shows the accuracy of the ML algorithms when 

the proposed modified DMOA is used. The proposed 

modified DMOA algorithm attained improvements in 

accuracy across the DT, RF, XGBoost and KNN 

algorithms in malware binary classification. The RF, 

DT, and XGBoost algorithms had the most 

significant improvements, achieving perfect accuracy 

scores of 1.0 when the modified DMOA was applied, 

in contrast to their original accuracy scores of 0.9992, 

0.9367, and 0.9835, respectively, for the original 

DMOA. These results highlight the significant 

enhancement in the performance of these algorithms 

in the classification of malware instances via the 

modified DMOA. Although the KNN algorithm 

shows only a modest improvement (from 0.9814 to 

0.9888), the findings still indicate the positive impact 

of the modified DMOA on the algorithm’s 

effectiveness in malware classification. 

In terms of precision, the proposed modified 

DMOA demonstrates constant improvements in 

precision for the ML algorithms. DT, RF and 

XGBoost had perfect precision scores of 1.00. The 

precision of the KNN in the modified DMOA 

(0.9866) is slightly greater than that of the original 

DMOA (0.9814), indicating a minor improvement 

(Fig. 6). The F1 score demonstrates notable 

improvements across several ML algorithms with the 

modified DMOA. DT, RF and XGBoost achieved 

perfect F1 scores of 1.00, increasing from 0.9315 and 

0.9820, respectively, in the original DMOA. RF 

obtained an F1 score of 1.00, compared with 0.9861 

in the original DMOA. KNN in the modified DMOA 

yielded an F1 score of 0.9866, showing a slight 

improvement over the original DMOA’s 0.9814. 

Fig.7 provides a comparative visualization of the F1 

scores between the proposed modified DMOA and 

the original DMOA for binary classification. 

Fig.8 shows a comparison of the convergence 

times between the proposed modified DMOA and the 

original DMOA in binary classification. The 

convergence time reflects the efficiency of the 

proposed modified DMOA. All the ML algorithms 

achieved better convergence times. The DT 

convergence time was reduced to 173.59 from 700.55 

in the original DMOA, and the RF’s time decreased 

to 233.72 from 983.83. XGBoost significantly 

decreased to 425.08 from 1583.82, and KNN 

decreased to 1331.20 from 1835.59. These findings 

suggest that the proposed modified DMOA 

significantly enhances the performance of the 

classifiers, particularly in terms of classification 

accuracy and efficiency, thereby demonstrating its 

effectiveness in Android malware detection using the 

CICAndMal2017 dataset. 

 

 

 
Figure. 5 Accuracy comparison of the proposed modified DMOA and the original DMOA 
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Figure. 6 Precision comparison of the proposed modified DMOA and the original DMOA. 

 

 

 
 

Figure. 7 F1 score comparison of the proposed modified DMOA and the original DMOA 

 

 

The proposed modified DMOA model was 

compared with other AMD models. All the following 

studies utilized the CICAndMal2017 dataset for their 

models. Table 5. shows a comparison between the 

proposed modified DMOA results and the other 

AMD models. A comparative analysis of the 

proposed model against other AMD models in binary 

and multiclass classification is also provided. The 

strengths and weaknesses of each approach in terms 

of accuracy, precision, F1 score, and convergence 

time were explored. 

The proposed model outperforms other models 

with a perfect score of 100% in accuracy, precision, 

and recall for binary classification. A notable 

comparison is with the GBWO model of Aldehim et 

al. [16], which achieved an accuracy of 98.59%; the 

proposed modified DMOA model scored 100%. Thus, 

the proposed modified DMOA model sets a new 

benchmark in binary malware classification with its 

perfect score. Similarly, the proposed model 

outperforms all the compared models in multiclass 

classification. RF has an overall accuracy of 100%, 

surpassing the GBWO model of Aldehim et al. [16], 

with a score of 98.50%, and the MVO and EMFO 

models of Taher et al. [14], with a score of 96.9%. 

Fig.9 presents an accuracy comparison between the  
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Figure. 8 Convergence time comparison of the proposed modified DMOA and the original DMOA 

 

 
Figure. 9 Accuracy comparison between the proposed modified DMOA and other models 

 

 
Table 5. Performance comparison of the proposed 

Modified DMOA model with existing Android malware 

detection models on the CICAndMal2017 dataset 

Ref Algorithm Accuracy Precision F1 

Score 

[13] PSO 81.58%   

[14] MVO, 

EMFO 

98.1%, - - 

[15] Aquila 

Optimizer 

97% 94% 93% 

[16] GBWO 98.59% - 96.48% 

This 

work 

Modified 

DMOA 

100% 100% 100% 

proposed modified DMOA and other models in the 

binary classification of malware. The proposed 

model outperforms all the other models, achieving a 

perfect accuracy score of 100% when the DT, RF and 

XGBoost classifiers are used. The modified DMOA 

effectively and accurately classified malware, 

surpassing the performance of other existing models 

in the task. 

5. Conclusion   

This study employed the modified DMOA for 

feature selection and successfully developed an 

effective ML model for AMD. The CICAndMal2017 

dataset was used to evaluate the model's performance. 
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Several algorithms were applied to binary 

classification tasks, with the proposed model 

demonstrating exceptional results—achieving 100% 

accuracy using DT, RF, and XGBoost classifiers. The 

modified DMOA consistently improved accuracy, 

precision, F1 score, recall, and convergence time 

across all ML algorithms. These improvements are 

attributed to the method’s ability to better identify the 

most relevant features while minimizing redundant 

and noisy data, which helps the classifiers perform 

more efficiently and accurately. The results confirm 

that the proposed model outperforms existing 

approaches on the CICAndMal2017 dataset, setting 

new benchmarks in binary classification and 

extending the application of DMOA in AMD. Future 

work could focus on enhancing the performance of 

the proposed model by combining multiple ML 

algorithms. However, this integration should be 

undertaken carefully to prevent reintroducing 

complexities, ensuring that the model remains 

straightforward and effective. Testing on distinct 

Android datasets might include testing the proposed 

ML model on multiple datasets to prove its 

applicability in Android systems. Finally, the 

model’s performance could be examined in real-

world scenarios, such as integration into existing 

cybersecurity systems. Finally, a detailed ablation 

study is planned to quantify the individual impact of 

the crossover and mutation operations introduced in 

the modified DMOA, which may support further 

optimization of the algorithm’s performance. 
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