
Received: May 5, 2025. Revised: July 13, 2025. 336

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Android Malware Detection Using a Modified Dwarf Mongoose Algorithm

Rawan Alabdallat1* Mosleh Abualhaj1 Ahmad Abu-Shareha2

1Department of Networks and Cybersecurity, Al-Ahliyya Amman University, Amman, Jordan

2Department of Data Science and Artificial Intelligence, Al-Ahliyya Amman University, Amman, Jordan

* Corresponding author’s Email: alabdallatrawan80@gmail.com

Abstract: The ubiquity of mobile devices due to the advancement of Internet technology has increased the threat of

Android malware, which places users’ data, identities, and finances at risk of theft and cybercriminal activities.

Android malware detection (AMD), which uses machine learning, faces challenges with high-dimensional datasets,

leading to increased computation and reduced accuracy. Feature selection methods extract key features and eliminate

redundant data but are still susceptible to overlooking important features, leading to false positives or negatives. This

study aims to enhance AMD via a modified dwarf mongoose optimization algorithm (DMOA) for efficient feature

selection. The DMOA is improved with adaptive mechanisms, including crossover and mutation strategies, to explore

the solution space better. These enhancements help the DMOA avoid local optima and identify superior feature subsets

for more accurate malware detection. The CICAndMal2017 dataset is used to evaluate the effectiveness of different

machine learning classifiers. The experimental results demonstrate that the proposed modified DMOA model achieves

exceptional accuracy. The decision tree (DT), random forest (RF), and XGBoost models have 100% accuracy in binary

classification. Furthermore, the proposed modified DMOA consistently outperforms several existing AMD models —

including Particle Swarm Optimization (PSO), Multi-Verse Optimizer (MVO), Enhanced Moth Flame Optimizer

(EMFO), Aquila Optimizer, and Grey Wolf Optimizer (GWO)— in terms of accuracy, based on results reported in

previous studies using the same dataset.

Keywords: Feature selection, Malware, Malware detection, Machine learning, Dwarf mongoose optimization

algorithm.

1. Introduction

The rapid development of the Internet has

increased the global use of mobile devices. As of

2022, the number of mobile network smartphone

subscriptions has reached 6.4 billion [1].

Approximately 70.93% of smartphone users use the

Android operating system [2]. The advancements in

Android applications, especially banking, e-

commerce, social sites, education, and entertainment,

have led Android to be a primary target of malware

developers. Due to their open-source nature and

compatibility with devices, Android applications are

particularly vulnerable to malware attacks [3].

Malware is defined as malicious code that disrupts

and damages computer systems and the digital

infrastructure. They also damage mobile/electronic

devices, such as viruses, worms, trojans, backdoors,

ransomware, adware, and spyware. malware aims to

harm digital systems and steal valuable information,

thereby threatening system confidentiality, integrity,

and availability [4]. Malware attacks can also result

in serious consequences for businesses and

organizations, such as stealing information,

interfering with business processes, or damaging

reputation. On the basis of a Statista report, the

number of malware strains detected and spread

worldwide in 2023 reached 6.06 billion. A large

portion of these attacks are concentrated in the Asia-

Pacific region [5].

Several defense methods, mainly categorized into

signature- and behavior-based methods [6], have

been developed to detect Android malware. Machine

learning algorithms that use well-established

classification algorithms typically classify Android

Received: May 5, 2025. Revised: July 13, 2025. 337

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

applications as benign or malicious applications [7].

Machine learning has encountered problems in

malware detection because of the high

dimensionality of the data, which may increase the

computation time and reduce accuracy. The feature

selection process plays an important role in

addressing such concerns. Irrelevant and redundant

data can also be removed, enabling more efficient and

accurate learning models to detect malware

effectively [8]. Feature selection can be classified

into two main methods: wrapper methods and filter

methods. The wrapper-based method is the most

popular method for problem classification. Finding

the optimal feature subsets via a wrapper method is

difficult because it obtains only the smallest number

of subsets despite its high accuracy. Feature selection

poses challenges that result from the increased time

needed to determine optimal features in a high-

dimensional dataset [9].

AMD remains a critical challenge due to the rapid

growth of Android users and applications (Sabbah et

al., 2022). Although ML methods are widely used

(Nawshin et al., 2020), they often struggle with high-

dimensional datasets, causing longer computation

times and less accurate results (PER, 2021). Feature

selection helps reduce irrelevant data (Sangal &

Verma, 2020), but can still produce false positives

and negatives (Akinola et al., 2022). The evolving

nature of malware requires continuous adaptation and

new optimization techniques to handle large datasets

effectively and improve detection accuracy.

Traditional optimization algorithms often get stuck in

local optima, selecting poor feature subsets that limit

performance (Game & Vaze, 2020). Therefore,

advanced optimization methods are needed to

efficiently explore the search space and enhance

AMD systems without falling into local optima.

Metaheuristic algorithms are widely used for data

classification and optimization due to their simplicity,

flexibility, and independence of derivatives, enabling

them to avoid local optima [10]. A local optimum in

optimization problems refers to a state where the

objective function’s value is optimal, “either at a

minimum or maximum,” within a limited range of

nearby potential solutions [11]. Metaheuristic

algorithms are used to solve feature selection

problems, especially in high-dimensional datasets, in

which the best feature subset should be selected

promptly. Algorithms such as the firefly algorithm,

particle swarm optimization (PSO), Harris hawks

optimization (HHO), and the dwarf mongoose

optimization algorithm (DMOA), which are used to

find optimal feature subsets, can balance exploration

and exploitation to find optimal or near-optimal

feature subsets [9]. These algorithms thoroughly

investigate the promising search space during the

exploration phase. Local searches are conducted

during the exploitation phase to find potential

locations identified during exploration [10].

In this paper, a modified version of the DMOA is

used for feature selection to enhance the performance

of the AMD system. The modified DMOA method is

assessed via the CICAndMal2017 dataset, which is

frequently used to evaluate malware models. On the

basis of the nature of foraging in dwarf mongooses,

DMOAs maintain a balance between exploitation and

exploration. This capability enables DMOAs to

effectively discover subsets of features in high-

dimensional malware data [12].

The rest of the paper is organized as follows:

Section 2 discusses related works. Section 3 presents

the proposed model. Section 4 analyses the results.

Section 5 concludes the findings and provides

recommendations for future research.

2. Related works

This section discusses several previous studies

that have been used ML algorithms to detect and

categorize Android malware. Some researchers have

proposed combining nature-inspired wrapper-based

metaheuristics and machine-learning approaches to

detect malware on Android devices.

Hossain et al. [13] proposed a novel method for

Android ransomware detection via PSO algorithms

for traffic characteristic selection with DT and RF

classifiers for data traffic classification. The

CICAndMal2017 dataset was used and preprocessed

via normalization and oversampling to address class

imbalance. PSO-based feature selection was used to

optimize the detection accuracy. Their proposed

method achieved accuracy in detecting ransomware

attacks (81.58%).

Taher et al. [14] proposed a hybrid model for

detecting and classifying Android malware called

DroidDetectMW. Feature selection was performed

via metaheuristic optimization algorithms, including

MVO and enhanced moth flame optimization

(EMFO), and the most relevant features for

classification were identified. The detection phase

uses ML algorithms, such as RF and SVM, to

categorize the Android app’s behavior. The

CICAndMal2017 was used in the experiment.

Significant improvements in precision, recall, and

classification accuracy, especially in binary malware

classification (98.1% accuracy) and malware

category classification (96.9% accuracy), were

achieved.

Grace and Sughasiny [15] solved the growing

threat of malicious Android programs by using an

Received: May 5, 2025. Revised: July 13, 2025. 338

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Aquila optimizer and a hybrid LSTM-SVM classifier

to detect malware. The method was evaluated on the

CICAndMal2017 dataset and achieved superior

performance results in terms of accuracy (0.97),

precision (0.94), recall (0.90), and F1_score (0.93).

Aldehim et al. [16] proposed Gauss-mapping

black widow optimization with the DL-enabled

Android malware classification (GBWODL-AMC)

method for AMD. GBWO was used for feature

selection, inspired by the movement of the black

widow spider. The deep extreme learning machine

(DELM) model was used for malware classification,

and the ant lion optimization (ALO) algorithm was

used to optimally select the model’s parameters. The

CICAndMal2017 dataset was used to test the

simulation analysis of the GBWODL-AMC approach.

The testing results revealed that the GBWODL-AMC

technique outperformed other malware detectors

(with a maximum accuracy of 98.59% in binary

classification, and 98.50% in multiclass

classification).

Alissa et al. [17] proposed a DWOML-RWD

method that combines dwarf mongoose optimization

with ML-driven ransomware detection. The

DWOML-RWD model selects features via the

enhanced krill herd optimization (EKHO) algorithm,

which employs dynamic oppositional-based learning

(QOBL). The method uses DWO with an extreme

learning machine (ELM) classifier to improve the

efficiency of ransomware detection. The DWOML-

RWD model was evaluated on a dataset of 840

samples. The results revealed high accuracy,

sensitivity, and specificity of 99.40% and false

positive and false negative rates of 0.60%.

PER [18] proposed a new technique known as the

bat optimization algorithm for wrapper-based feature

selection (BOAWFS) to classify application

permissions with AMD. BOAWFS is a wrapper

classifier inspired by the echolocation principle

employed by bats to improve feature selection by

reducing the elevation dimension or noise in every

high-dimensional dataset. The method was tested on

the CICInvesAndMal2019 dataset, which comprises

both malware and benign applications. The BOWFS-

DT model achieved an accuracy of 93.73%, and

malware detection was enhanced.

Guendouz and Amine [19] proposed a novel

method called BDA-FS, which uses ML and the

dragonfly algorithm for feature selection to detect

Android malware. The features were extracted on the

basis of a dataset of 5000 malicious applications and

5000 benign applications. The features, which

included the Android permissions, were transformed

into feature vectors. The dragonfly algorithm was

used to select the most pertinent features. The RF, DT,

naïve Bayes, SVM, and KNN classifiers were used

for classification. The proposed BDA-FS method

effectively detected Android malware. The highest

accuracy was 96.33% for the random forest classifier.

Smmarwar et al. [20] proposed a new AMD

method called OEL-AMD. The BGWO algorithm

was employed for feature selection and provided

optimal feature sets for the static and dynamic layers.

The proposed method was evaluated on the

CICInvesAndMal2019 dataset. The best

classification accuracy was 96.95% for binary

classification utilizing static layer features and

83.49% for multiclass classification utilizing

dynamic layer features. The results indicate the

effectiveness of the OEL-AMD method for AMD.

Naick et al. [21] proposed an AMD method with

swarm intelligence optimization algorithms (BES

and SFO). ML classifiers were used to analyze

application programming interface (API) calls. The

optimal features of the API calls were determined to

increase the detection accuracy. The BES and SFO

were used for feature selection. ML classifiers, which

included the DT, KNN, LR, SVM, and RF classifiers,

were used to evaluate the classification performance.

The method was tested on the API call sequence

dataset. The model achieved an accuracy of 98.92%.

Prasanna and Krishna [22] developed a feature

selection method that could differentiate between

malware and benign applications on the basis of API

calls. Wrapper-based swarm intelligence algorithms

were used to optimize the feature selection process

involving ALO and the WOA. Various ML methods,

such as SVM, RF, DT, GB, KNN, and LR, can

distinguish between malicious and benign features.

The RF classifier outperformed all the other

classifiers studied, with accuracies of 94.04% for the

WOA and 91.42% for ALO.

Despite the success of recent studies on AMD,

several issues warrant further exploration. Redundant

identification of information must be reduced while

maintaining high accuracy. For example, although

the GBWODL-AMC strategy yields promising

results with high accuracy, sensitivity, and specificity

when it is applied to the CICAndMal2017 dataset,

notable challenges still exist. Combining GBWO for

feature selection, DELM for classification, and ALO

for parameter optimization increases the level of

complexity in the system. However, this hybrid

approach may result in high computation and

processing times, making it less suitable for real-time

applications. Additionally, as the aforementioned

approach is good at minimizing the feature set,

multiple algorithms tend to complicate integration

and optimization procedures. This issue further

affects the overall efficiency and scalability of the

Received: May 5, 2025. Revised: July 13, 2025. 339

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Table 1. Summary of metaheuristic optimization algorithms in related works

Ref# Authors (Year) Feature Selection

Algorithm

Dataset Results Limitations

Ref[13] Hossain et al.

(2022)

PSO CICAndMal2017 Accuracy: 81.58%. Focused only

on ransomware

Ref[14] Taher et al.

(2023)

 MVO, EMFO CICAndMal2017 Binary

Classification:

Accuracy 98.1%,

Multiclass

Classification:

Accuracy 96.9%.

High

computational

complexity

due to hybrid

and multi-

phase model

Ref[15] Grace &

Sughasiny (2022)

Aquila Optimizer CICAndMal2017 Accuracy: 97%,

Precision: 94%,

TPR: 90%, F1

Score:93%.

High

computational

complexity

Ref[16] Aldehim et al.

(2023)

GBWO CICAndMal2017 Binary Classification

Accuracy: 98.59%.

Multiclass

Classification

Accuracy: 98.50%.

High

computational

cost and longer

training time

Ref[17] Alissa et al.

(2022)

EKHO, DOBL 840 samples (specific

dataset not mentioned)

Accuracy: 99.40%. High

computational

complexity

Ref[18] PER (2021) BOAWFS CICInvesAndMal2019 Accuracy: 93.73%. High

computational

cost and

complexity.

Ref[19] Guendouz &

Amine (2023)

Dragonfly

Algorithm

5000 malicious and

5000 benign apps

Accuracy: 96.33% . Limited

Dataset

Ref[20] Smmarwar et al.

(2022)

 BGWO CICInvesAndMal2019 Binary Classification

Accuracy: 96.95%,

Multiclass

Classification

Accuracy: 83.49%.

Requires a

large dataset

for effective

training.

Ref[21] Naick et al.

(2022)

BES, SFO API Call Sequence

dataset

Accuracy: 98.92%. Relies on a

limited subset

Ref[22] Prasanna &

Krishna (2024)

ALO, WOA API Call Sequence

dataset

WOA Accuracy:

94.04%, ALO

Accuracy: 91.42%.

High

computational

cost

system. These factors highlight the need for efficient

solutions that balance performance with real-time

applicability and ease of implementation. This gap

has led to the introduction of a new perspective for

increasing detection accuracy, reducing the

computational burden, and enabling an optimal

balance between feature selection and classifier

performance.

Additionally, most of the work is dataset-specific

and is confined to those specific datasets for a

particular model to achieve high performance in

different real scenarios. Although metaheuristic

optimization algorithms are popular, research has yet

to be conducted in the area of feature selection that

uses the DMO algorithm for AMD. Table 2. 4

summarizes the metaheuristic optimization

algorithms used as feature selection methods for

AMD reported in the literature.

3. Methodology

This section reviews the utilized dataset, data

preprocessing steps, and feature selection with the

use of the modified DMOA algorithm. The

modifications to the DMOA Algorithm are also

discussed.

3.1 Dataset

This study uses an Android malware dataset

known as CICAndMal2017, which was developed by

the Canadian Center for Cybersecurity at the

University of New Brunswick [23, 24].

Received: May 5, 2025. Revised: July 13, 2025. 340

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Table 2. Feature names in the CICAndMal2017 dataset

Feature name # Feature name # Feature name # Feature name

1 Flow ID 22 Flow Packets/s 43 Fwd Packets/s 64 Fwd Avg Bulk Rate

2 Source IP 23 Flow IAT Mean 44 Bwd Packets/s 65 Bwd Avg Bytes/Bulk

3 Source Port 24 Flow IAT Std 45 Min Packet Length 66 Bwd Avg Packets/Bulk

4 Destination IP 25 Flow IAT Max 46 Max Packet Length 67 Bwd Avg Bulk Rate

5 Destination Port 26 Flow IAT Min 47 Packet Length Mean 68 Subflow Fwd Packets

6 Protocol 27 Fwd IAT Total 48 Packet Length Std 69 Subflow Fwd Bytes

7 Timestamp 28 Fwd IAT Mean 49 Packet Length

Variance

70 Subflow Bwd Packets

8 Flow Duration 29 Fwd IAT Std 50 FIN Flag Count 71 Subflow Bwd Bytes

9 Total Fwd Packets 30 Fwd IAT Max 51 SYN Flag Count 72 Init_Win_bytes_forward

10 Total Backward

Packets

31 Fwd IAT Min 52 RST Flag Count 73 Init_Win_bytes_backward

11 Total Length of Fwd

Packets

32 Bwd IAT Total 53 PSH Flag Count 74 act_data_pkt_fwd

12 Total Length of

Bwd Packets

33 Bwd IAT Mean 54 ACK Flag Count 75 min_seg_size_forward

13 Fwd Packet Length

Max

34 Bwd IAT Std 55 URG Flag Count 76 Active Mean

14 Fwd Packet Length

Min

35 Bwd IAT Max 56 CWE Flag Count 77 Active Std

15 Fwd Packet Length

Mean

36 Bwd IAT Min 57 ECE Flag Count 78 Active Max

16 Fwd Packet Length

Std

37 Fwd PSH Flags 58 Down/Up Ratio 79 Active Min

17 Bwd Packet Length

Max

38 Bwd PSH Flags 59 Average Packet Size 80 Idle Mean

18 Bwd Packet Length

Min

39 Fwd URG Flags 60 Avg Fwd Segment

Size

81 Idle Std

19 Bwd Packet Length

Mean

40 Bwd URG Flags 61 Avg Bwd Segment

Size

82 Idle Max

20 Bwd Packet Length

Std

41 Fwd Header Length 62 Fwd Avg

Bytes/Bulk

83 Idle Min

21 Flow Bytes/s 42 Bwd Header Length 63 Fwd Avg

Packets/Bulk

The CICAndMal2017 dataset contains more than

10854 samples (4354 malware samples and 6500

benign samples) that were collected from different

sources.

• The malware samples are further classified

into four primary families. The four subtypes

of malware (Ransomware, Adware,

Scareware, and SMSmalware) form 42

different attack types.

• Adware is software that is designed to display

unwanted advertisements to increase clicks

and views. It comprises 104 applications,

including the Ewind, Koodous, Feiwo,

Shuanet, Selfmite, and Gooligan families.

• Ransomware is a malicious application that

seeks to prevent access to computer resources.

It comprises 101 applications for Android

devices, such as Charger, Jisut, Koler, and

WannaLocker.

• Scareware is malware that compels users to

purchase unnecessary and potentially

malware applications. It comprises 102

Received: May 5, 2025. Revised: July 13, 2025. 341

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

applications, such as AndroidDefender,

FakeAV, and FakeApp.

• SMSmalware is an unauthorized call or text

message sent to others without the mobile

owner’s permission (Abuthawabeh &

Mahmoud, 2020). It consists of 99

applications, including Ji Fake, Bean Bot,

Nandrobox, Fake Mart, Fake Notify, and

SMS sniffer families.

The CICAndMal2017 dataset features provide

basic information about the behavior of malicious

and benign applications and detailed characteristics

of the network traffic flow in mobile devices. Such

features are crucial for understanding how various

malware types (ransomware, adware, scareware,

SMS malware, and other malware applications)

behave with network protocols and how to

distinguish them on the basis of network activity.

Table 2. presents the feature list and description of

the CICAndMal2017 dataset.

For this study, a subset of 34,000 records with 83

features was selected from the CICAndMal2017

dataset to reduce computational complexity and

training time while maintaining a balanced

representation of malware and benign samples. To

handle class imbalance, SMOTE was applied only to

the training data in a stratified manner, generating

synthetic samples based on feature similarities to

prevent overfitting. A 5-fold stratified cross-

validation was used throughout to ensure fair and

reliable evaluation, with SMOTE applied exclusively

on the training folds and validation data left

untouched to avoid data leakage. Final performance

metrics—including accuracy, precision, recall, and

F1-score—are reported as the average ± standard

deviation across the folds, providing a realistic

assessment of the model’s generalization ability.

3.2 Data preprocessing

Data preprocessing is an essential step in the

proposed model. The process includes two main

steps: data transformation and data normalization.

a) Data Transformation

Data transformation is an important stage of the

preprocessing of ML models—it works as an encoder

to encode the given labels as categorical numbers. In

the case of malware classification, the label column

might contain categorical labels such as benign or

malicious labels, which can be transformed into

nominal feature vectors of 0 and 1 s for binary

classification. This transformation is crucial for data

preparation in most ML algorithms, as nearly all of

them utilize numerical data.

b) Normalization

Normalization is the process of rescaling values

or aligning values to a particular range, often between

0 and 1, and it plays a central role in models that use

absolute values for inputs to obtain accurate scaling

[13]. In this study, the main goal of the normalization

process is to ensure that each feature contributes

equally to the model’s performance, particularly

when the features have different units or scales. In the

context of the CICAndMal2017 dataset,

normalization was performed via min–max scaling.

In particular, the data were centered around a mean

of 0 and scaled to a unit variance.

The min–max scaling is computed as Eq. (1):

𝑋𝑆𝑐𝑎𝑙𝑒𝑑 =
𝑋 − 𝑋𝑀𝑖𝑛

𝑋𝑀𝑎𝑥 − 𝑋𝑀𝑖𝑛
 (1)

where 𝑋𝑆𝑐𝑎𝑙𝑒𝑑 is the result of the min–max scaling

procedure, 𝑋 is the original value, 𝑋𝑀𝑖𝑛 is the

minimum value, and 𝑋𝑀𝑎𝑥 is the maximum value in

the column. The min max scaler was utilized for 83

features.

3.3 Oversampling

In CICAndMal2017, the number of samples for

each type of malware differs considerably, creating

an imbalance in classification process. ML models

trained on imbalanced data tend to favor classes with

higher sample numbers, but this case might result in

biased predictions toward the dominant classes. This

bias also leads to artificially high accuracy and

misclassifies underrepresented classes, causing the

model to be ineffective on the test set, especially for

rare malware types.

Biases can be eliminated by oversampling, in

which an equal number of samples is created for each

type of malware. In this study, samples are duplicated

from the underrepresented classes to ensure a

balanced dataset while improving the model’s

effectiveness.

3.4 Feature selection

Feature selection is the process of selecting the

most relevant features from a large dataset for use in

a machine learning model. The model’s performance

is enhanced when the features selected provide the

most relevant features [25]. The DMOA is effective

for feature selection, especially when applied to high-

dimensional datasets [12], and is appropriate for

AMD. In this study, a modified version of the DMOA

was selected for feature selection. The DMOA

Received: May 5, 2025. Revised: July 13, 2025. 342

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Figure. 1 Pseudocode of modified DMOA

incorporates mutation and crossover functions,

thereby improving the exploration of the solution

space and increasing the likelihood of finding optimal

feature sets.

3.4.1. Proposed modified DMOA

The DMOA is a type of stochastic, population-

based metaheuristic algorithm introduced by [26].

This approach draws inspiration from the social and

foraging behaviors of dwarf mongooses, also known

as Helogale. Although these animals forage in groups,

each mongoose meticulously searches for food

because feeding is not a collective effort; they exhibit

seminomadic behavior, creating sleeping mounds

near plentiful food sources and seeking out the next

available mound. The DMOA works by adopting a

sequence of structured phases that mimic the feeding

and social behaviors of these mongooses.

The DMOA is efficient for feature selection and

other forms of optimization tasks because of its

adaptive search ability. However, as with many

optimization techniques, the DMOA faces challenges

related to convergence to local optima. In this study,

the DMOA’s performance is improved by adding

adaptive mechanisms, such as crossover operations

and mutation strategies. These additions help the

system adjust and optimize itself, exploring solutions

more thoroughly for better outcomes. These

enhancements also help the system diversify the

search process, enabling the algorithm to avoid local

optima and identify superior feature subsets. Fig.1

outlines the pseudocode of the proposed modified

DMOA, and Fig. 2 details the specific modifications

introduced. The steps for the modified DMOA are

described as follows:

1. Initialize Population: The algorithm starts by

randomly generating an initial population of n_pop

individuals. Each individual is represented as a binary

vector. Each element in this vector corresponds to a

feature, where a value of 1 indicates that the feature

is selected, and a value of 0 indicates that it is not.

This binary representation is crucial for feature

selection in the optimization process.

2. Initial Best Solution: The algorithm evaluates

each individual’s fitness in the initial population

before entering the iterative optimization process.

The fitness function used in this evaluation is based

on two key factors: accuracy and the number of

features. The best solution is determined on the basis

of the highest fitness score, which is a combination of

these factors. This initial best solution serves as a

reference point for future comparisons, guiding the

optimization process to find the best set of features.

The fitness function (𝐹𝑖𝑡) can be expressed as:

𝐹𝑖𝑡 = 𝛼 × 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝛽 ×
𝑛𝑜. 𝑜𝑓 𝑆𝐹

𝑇𝑜𝑡𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
 (2)

where 𝛼 and 𝛽 are weighting parameters that control

the trade-off between accuracy and subset size. The

individual with the highest fitness score is recorded

as the initial best solution, serving as a benchmark for

subsequent iterations.

3. Iteration Loop (1 to n_iter): This loop runs

for a specified number of iterations, allowing the

algorithm to improve the population of solutions over

time. Each iteration includes several critical steps:

1. Initialize Population

o Create n_pop individuals, each represented as a

binary vector of length n_features.

o Each vector indicates which features are

selected (1) or not (0).

2. Set Initial Best Solution

o Evaluate the fitness of the initial population.

o Store the individual with the highest fitness

score as the best_solution.

3. For each iteration (1 to n_iter):

 Step 1: Alpha Selection

o Identify the alpha individual (the one with the

highest fitness) in the population.

 Step 2: Crossover (Mate Selection)

o For each individual in the population:

1. Randomly select two parents from the

population.

2. Perform crossover at a random point to

create a child.

▪ Crossover Point: Random integer

between 1 and n_features - 1.

 Step 3: Mutation

o With probability mutation_rate, mutate the

child by flipping bits at random feature indices.

 Step 4: Scout Phase

o With probability scout_rate, introduce a new

random individual into the population to

enhance exploration.

 Step 5: Babysitter Exchange

o Evaluate the new population.

o If the best individual from the new population

has a higher fitness score than the

best_solution, update it.

o Remove L * n_pop individuals randomly to

maintain diversity.

4. Evaluate Fitness Metrics

o Calculate fitness scores for all individuals.

o Update best_solution if any individual

surpasses its current fitness score.

5. Return Best Solution

Received: May 5, 2025. Revised: July 13, 2025. 343

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Figure. 2 Block diagram of the modified DMOA

Step 1: Alpha Selection: The algorithm identifies

the alpha individual, which is the one with the highest

fitness score in the current population. This

individual represents the best feature set obtained

thus far, influencing the next generation of

individuals.

Step 2: Crossover (Mate Selection): For each

individual, randomly select two parent individuals

from the population and perform a single-point

crossover on their binary vectors to generate

offspring. The crossover point is chosen randomly

between 1 and 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 − 1.

Step 3: Mutation: In a probability set with a given

mutation rate, the child may undergo mutation. In

particular, the bits at the feature indices are randomly

flipped in the child’s binary vector.

Step 4: Scout Phase: With the probability equal to

the scout rate, a new random individual is placed into

the population. This scout individual can explore the

new regions of the solution space and present better

solutions that were absent in the current population.

Step 5: Babysitter Exchange: The fitness of the

new population, “including any new individuals

created from crossover, mutation, or scouts,” is

evaluated. If the best individual in this new

population surpasses the fitness of the previously

recorded best solution, then the algorithm updates the

best solution. This exchange allows the algorithm to

retain the most promising solutions during

optimization.

4. Fitness Evaluation: Once all the iterations are

completed, the algorithm uses a fitness function to

evaluate each individual’s fitness in the final

population. This function assesses how well the

feature set of each individual performs in terms of

classification accuracy, providing a final measure of

performance.

5. Return to the Best Solution: The algorithm

returns the best solution, the individual with the

highest fitness score found during the iterations. The

final solution represents the optimal feature subset

selected using the modified DMOA.

3.5 Classification

The classification stage is a critical component of

the AMD model because it determines whether

network activity is benign or malicious. When the

most relevant features are identified, ML algorithms

can train classifiers using labelled data, enabling the

model to recognize malware-related patterns. The

likelihood of identifying the most effective approach

for classifying Android malware was increased by

applying several classifiers, including DT, RF, KNN,

and XGBoost. These classifiers were selected for

their relative strengths when dealing with the

CICAndMal2017 datasets.

3.6 Modifications to the DMOA algorithm

The original DMOA was inspired by the social

behavior and foraging strategies typical of dwarf

mongooses, including their sleeping mounds.

However, the changes in the present work involve

modifications of the DMOA algorithm to increase its

feature selection and optimization efficiency. The

main changes in the original DMOA are outlined

below.

A) Crossover Function

The crossover operator in the modified DMOA is

a major operator that is applied to form new solutions

on the basis of the information of two parent solutions.

In binary formula-based optimization problems,

feature selection crossover keeps the population large

and improves the exploitation of the solution space.

The crossover function has three stages. In the first

stage, a pair of candidate solutions is randomly

selected from the population. However, the best two

solutions are excluded from the selection process, and

genetic diversity is encouraged while avoiding

premature convergence. The second stage involves

selecting a random crossover point within the binary

Received: May 5, 2025. Revised: July 13, 2025. 344

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

representation of the parent solutions. The offspring

are created by combining the two parent solutions at

this crossover point. This stage allows the creation of

a new solution that inherits traits from both parents.

In this manner, the likelihood of finding a better

solution is increased in subsequent generations.

In the third and final stages, the newly generated

offspring are integrated into the population. This

outcome is achieved by replacing one of the least fit

solutions in the population with offspring. Depending

on the algorithm’s implementation, the fitness of the

offspring might be compared with that of the

population. Finally, the best individual solutions are

selected for the next generation. The crossover

function is applied to search for improved

combinations of features; in this study, it is used to

improve the results of classification tasks in areas

such as malware detection. By merging subsets of the

features, the algorithm can select the best result

between exploration and exploitation.

B) Mutation
The mutation process is one of the essential parts

of the optimization mechanism in the modified

DMOA. Mutation occurs after the crossover

operation: it creates new offspring from two parents’

solutions. The primary aim of mutation is to

randomly modify some of the offspring’s genetic

material, thereby ensuring that the population does

not become homogeneous. The mutation occurs with

a probability defined by the mutation_rate parameter,

which determines how often a child solution

undergoes mutation. When a child is selected for

mutation, the algorithm randomly selects a set of

indices in the child’s solution (representing the

features selected) and flips their values. This bit-

flipping process is the critical operation of mutation,

where 0 becomes a 1 and vice versa.

The mutation prevents the algorithm from

becoming stuck in suboptimal solutions by

introducing small, random changes that might lead to

better solutions. When bits in the binary

representation of the feature set are flipped, mutation

can explore new areas of the solution space that may

not have been reached via crossover alone.

Subsequently, the algorithm can balance exploration

for “searching for new solutions” and exploitation for

“refining the best solutions.” Through mutation, the

algorithm increases its chances of finding the optimal

set of features for the classification task, especially in

complex problems such as malware detection.
Table 3 summarizes the hyperparameter settings

used for the modified DMOA in this study, along

with the selection strategies applied. These values

were determined based on empirical tuning and

Table 3. Hyperparameters of the Modified DMOA

Parmeters Value Selection strategy

Number of

populations
30

Empirically tuned based

on preliminary

experiments

Number of

Iterations
100

Fixed value ensuring

convergence without

overfitting

Mutation

Rate
0.5

Standard value for

binary metaheuristics

Crossover

Type
Single point

Enhances genetic

diversity during

reproduction

Fitness

Function

Accuracy-

based with

subset size

penalty

Balances accuracy and

dimensionality

preliminary experimentation to ensure convergence

and generalization.

4. Implementation and results

This section presents the implementation process

and discusses the results of implementing the model

via various ML algorithms and compares these

results with those of other metaheuristic algorithm

models.

4.1 Implementation

The study was conducted in a Windows

environment via the VSC IDE, which provides a

comprehensive set of tools for developing, testing,

and debugging code. The most recent Python version

(V3.12) was used for model implementation and

evaluation because of its extensive support for ML

and the availability of many data analysis packages.

The modified DMOA was applied to select the

most relevant features based on a fitness function that

considers accuracy and the number of selected

features. The fitness function was defined to calculate

the error rate (err), considering both the prediction

accuracy and the number of selected features (SF). A

lower fitness value (error rate) indicates a better

feature subset.

err=α * (1 - Accuracy)+ β* (
No. of SF

max No. of F
) (3)

As a result, 40 features were selected for binary

classification from the original 83 features. The

selected features were 2, 6, 8, 9, 12, 16, 17, 19, 21,

23, 25, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 40,

Received: May 5, 2025. Revised: July 13, 2025. 345

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

41, 45, 48, 50, 52, 56, 57, 59, 61, 62, 63, 71, 72, 73,

74, 75, and 79.

The performance of the system was evaluated

using metrics such as accuracy, precision, recall, F1

score and convergence time to measure the

effectiveness and efficiency of the malware detection

approach. The results provide insights into the

model’s classification, effectiveness, and efficiency.

A confusion matrix (CM) was also used to provide a

detailed breakdown of the model’s predictions across

different classes. It offers a thorough analysis of true

positives (TP), true negatives (TN), false positives

(FP), and false negatives (FN). The mathematical

formulations of the evaluation metrics are defined as

follows:

Accuracy =
(T P + TN)

N
 (4)

Precision =
(T P)

(T P + FP)
 (5)

Recall =
(TP)

(TP + FN)
 (6)

F1 Score =
2*(Precision * Recall)

(Precision + Recall)
 (7)

4.2 Results

The model was evaluated using ML algorithms.

The algorithms used are DT, RF, KNN, and XGBoost.

The DT classifier achieved perfect performance in

binary classification of malware and benign samples,

with an accuracy of 1.00, precision of 1.00, recall of

1.00, F1 score of 1.00, and specificity of 1.00. It

recorded zero false positives and false negatives,

indicating that all samples were correctly classified.

The convergence time was 173.59 seconds,

demonstrating the model’s efficiency in detecting

Android malware. Similarly, the XGBoost classifier

also achieved perfect performance with an accuracy

of 1.00, precision of 1.00, recall of 1.00, and F1 score

of 1.00. However, due to the boosting mechanism, the

convergence time was significantly higher, taking

425.08 seconds to train and converge. The RF

classifier also performed exceptionally well, with an

accuracy of 1.00, precision of 1.00, recall of 1.00, and

F1 score of 1.00. There were no misclassifications,

and the convergence time was 233.72 seconds,

suggesting good efficiency. Although some

classifiers achieved perfect performance in our cross-

validation experiments, we acknowledge that such

results may not generalize to other datasets or real-

time environments. Fig.3 shows the CM for the

DT,RF,and XGBoost classifiers, including the

Figure. 3 CM for DT, RF, and XGBoost

Figure. 4 KNN classifier CM

corresponding values of TP, TN, FP, and FN values

for each class.

In contrast, the KNN classifier, while still

performing well, showed slightly lower results, with

an accuracy of 0.9888, precision of 0.9866, recall of

0.9888, and F1 score of 0.9866. The convergence

time for KNN was notably higher, taking 1331.20

seconds due to the computational complexity of

distance calculations during prediction. Fig.4 depicts

the CM for the KNN classifier and the corresponding

TP, TN, FP, and FN values for each class. The binary

classification results are summarized in Table 4,

which compares the performance of the classifiers.

The evaluation of the proposed modified DMOA,

which uses various ML algorithms, has proven the

effectiveness of the proposed modified DMOA in

enhancing feature selection for AMD. Compared

with the original DMOA, all classifiers achieved

consistent performance improvements in accuracy.

Received: May 5, 2025. Revised: July 13, 2025. 346

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Table 4. Binary classification results for all classifiers

Classif

ier

Accur

acy

Precisi

on

F1-

score

Recall Time

(s)

RF 1.000 1.000 1.000 1.000 233.72

DT 1.000 1.000 1.000 1.000 173.59

XGBo

ost

1.000 1.000 1.000 1.000 425.08

KNN 0.988 0.986 0.986 0.989 1331.2

Fig.5 shows the accuracy of the ML algorithms when

the proposed modified DMOA is used. The proposed

modified DMOA algorithm attained improvements in

accuracy across the DT, RF, XGBoost and KNN

algorithms in malware binary classification. The RF,

DT, and XGBoost algorithms had the most

significant improvements, achieving perfect accuracy

scores of 1.0 when the modified DMOA was applied,

in contrast to their original accuracy scores of 0.9992,

0.9367, and 0.9835, respectively, for the original

DMOA. These results highlight the significant

enhancement in the performance of these algorithms

in the classification of malware instances via the

modified DMOA. Although the KNN algorithm

shows only a modest improvement (from 0.9814 to

0.9888), the findings still indicate the positive impact

of the modified DMOA on the algorithm’s

effectiveness in malware classification.

In terms of precision, the proposed modified

DMOA demonstrates constant improvements in

precision for the ML algorithms. DT, RF and

XGBoost had perfect precision scores of 1.00. The

precision of the KNN in the modified DMOA

(0.9866) is slightly greater than that of the original

DMOA (0.9814), indicating a minor improvement

(Fig. 6). The F1 score demonstrates notable

improvements across several ML algorithms with the

modified DMOA. DT, RF and XGBoost achieved

perfect F1 scores of 1.00, increasing from 0.9315 and

0.9820, respectively, in the original DMOA. RF

obtained an F1 score of 1.00, compared with 0.9861

in the original DMOA. KNN in the modified DMOA

yielded an F1 score of 0.9866, showing a slight

improvement over the original DMOA’s 0.9814.

Fig.7 provides a comparative visualization of the F1

scores between the proposed modified DMOA and

the original DMOA for binary classification.

Fig.8 shows a comparison of the convergence

times between the proposed modified DMOA and the

original DMOA in binary classification. The

convergence time reflects the efficiency of the

proposed modified DMOA. All the ML algorithms

achieved better convergence times. The DT

convergence time was reduced to 173.59 from 700.55

in the original DMOA, and the RF’s time decreased

to 233.72 from 983.83. XGBoost significantly

decreased to 425.08 from 1583.82, and KNN

decreased to 1331.20 from 1835.59. These findings

suggest that the proposed modified DMOA

significantly enhances the performance of the

classifiers, particularly in terms of classification

accuracy and efficiency, thereby demonstrating its

effectiveness in Android malware detection using the

CICAndMal2017 dataset.

Figure. 5 Accuracy comparison of the proposed modified DMOA and the original DMOA

Received: May 5, 2025. Revised: July 13, 2025. 347

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Figure. 6 Precision comparison of the proposed modified DMOA and the original DMOA.

Figure. 7 F1 score comparison of the proposed modified DMOA and the original DMOA

The proposed modified DMOA model was

compared with other AMD models. All the following

studies utilized the CICAndMal2017 dataset for their

models. Table 5. shows a comparison between the

proposed modified DMOA results and the other

AMD models. A comparative analysis of the

proposed model against other AMD models in binary

and multiclass classification is also provided. The

strengths and weaknesses of each approach in terms

of accuracy, precision, F1 score, and convergence

time were explored.

The proposed model outperforms other models

with a perfect score of 100% in accuracy, precision,

and recall for binary classification. A notable

comparison is with the GBWO model of Aldehim et

al. [16], which achieved an accuracy of 98.59%; the

proposed modified DMOA model scored 100%. Thus,

the proposed modified DMOA model sets a new

benchmark in binary malware classification with its

perfect score. Similarly, the proposed model

outperforms all the compared models in multiclass

classification. RF has an overall accuracy of 100%,

surpassing the GBWO model of Aldehim et al. [16],

with a score of 98.50%, and the MVO and EMFO

models of Taher et al. [14], with a score of 96.9%.

Fig.9 presents an accuracy comparison between the

Received: May 5, 2025. Revised: July 13, 2025. 348

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Figure. 8 Convergence time comparison of the proposed modified DMOA and the original DMOA

Figure. 9 Accuracy comparison between the proposed modified DMOA and other models

Table 5. Performance comparison of the proposed

Modified DMOA model with existing Android malware

detection models on the CICAndMal2017 dataset

Ref Algorithm Accuracy Precision F1

Score

[13] PSO 81.58%

[14] MVO,

EMFO

98.1%, - -

[15] Aquila

Optimizer

97% 94% 93%

[16] GBWO 98.59% - 96.48%

This

work

Modified

DMOA

100% 100% 100%

proposed modified DMOA and other models in the

binary classification of malware. The proposed

model outperforms all the other models, achieving a

perfect accuracy score of 100% when the DT, RF and

XGBoost classifiers are used. The modified DMOA

effectively and accurately classified malware,

surpassing the performance of other existing models

in the task.

5. Conclusion

This study employed the modified DMOA for

feature selection and successfully developed an

effective ML model for AMD. The CICAndMal2017

dataset was used to evaluate the model's performance.

Received: May 5, 2025. Revised: July 13, 2025. 349

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Several algorithms were applied to binary

classification tasks, with the proposed model

demonstrating exceptional results—achieving 100%

accuracy using DT, RF, and XGBoost classifiers. The

modified DMOA consistently improved accuracy,

precision, F1 score, recall, and convergence time

across all ML algorithms. These improvements are

attributed to the method’s ability to better identify the

most relevant features while minimizing redundant

and noisy data, which helps the classifiers perform

more efficiently and accurately. The results confirm

that the proposed model outperforms existing

approaches on the CICAndMal2017 dataset, setting

new benchmarks in binary classification and

extending the application of DMOA in AMD. Future

work could focus on enhancing the performance of

the proposed model by combining multiple ML

algorithms. However, this integration should be

undertaken carefully to prevent reintroducing

complexities, ensuring that the model remains

straightforward and effective. Testing on distinct

Android datasets might include testing the proposed

ML model on multiple datasets to prove its

applicability in Android systems. Finally, the

model’s performance could be examined in real-

world scenarios, such as integration into existing

cybersecurity systems. Finally, a detailed ablation

study is planned to quantify the individual impact of

the crossover and mutation operations introduced in

the modified DMOA, which may support further

optimization of the algorithm’s performance.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

Following are the contributions of the authors:

conceptualization, Mosleh Abualhaj; methodology,

Rawan Alabdallat and Mosleh Abualhaj; software,

Rawan Alabdallat; validation, Rawan Alabdallat and

Ahmad Abu-Shareha; formal analysis, Rawan

Alabdallat; investigation, Rawan Alabdallat;

resources, Mosleh Abualhaj; data curation, Rawan

Alabdallat; writing—original draft preparation,

Rawan Alabdallat; writing—review and editing,

Mosleh Abualhaj and Ahmad Abu-Shareha;

visualization, Rawan Alabdallat; supervision,

Mosleh Abualhaj; project administration, Mosleh

Abualhaj; funding acquisition, Mosleh Abualhaj.

References

[1] Statista, “Annual number of malware attacks

worldwide from 2015 to 2023”, [Online].

Available:

https://www.statista.com/statistics/873097/mal

ware-attacks-per-year-worldwide/ [Accessed:

Dec. 24, 2024].

[2] D. Soi, A. Sanna, D. Maiorca, and G. Giacinto,

“Enhancing Android malware detection

explainability through function call graph apis”,

Journal of Information Security and

Applications, Vol. 80, pp. 103691, 2024.

[3] C. R. Palma, Malware detection in android

applications with machine learning techniques,

2023.

[4] M. A. H. Saeed, “Malware in computer systems:

Problems and solutions”, International Journal

on Informatics for Development (IJID), Vol. 9,

No. 1, pp. 1-8, 2020.

[5] A. Petrosyan, “Malware - Statistics & Facts”,

[Online]. Available:

https://www.statista.com/topics/8338/malware/

#topicOverview [Accessed: Dec. 24, 2024].

[6] H. H. R. Manzil and S. M. Naik, “Detection

approaches for Android malware: Taxonomy

and review analysis”, Expert Systems with

Applications, Vol. 238, pp. 122255, 2024.

[7] N. Z. Gorment, A. Selamat, L. K. Cheng, and O.

Krejcar, “Machine learning algorithm for

malware detection: Taxonomy, current

challenges, and future directions”, IEEE Access,

Vol. 11, pp. 141045-141089, 2023.

[8] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature

selection in machine learning: A new

perspective”, Neurocomputing, Vol. 300, pp.

70-79, 2018.

[9] O. A. Akinola, J. O. Agushaka, and A. E.

Ezugwu, “Binary dwarf mongoose optimizer for

solving high-dimensional feature selection

problems”, PLOS ONE, Vol. 17, No. 10, pp.

e0274850, 2022.

[10] P. Agrawal, H. F. Abutarboush, T. Ganesh, and

A. W. Mohamed, “Metaheuristic algorithms on

feature selection: A survey of one decade of

research (2009-2019)”, IEEE Access, Vol. 9, pp.

26766-26791, 2021.

[11] S. M. Abdullah and A. Ahmed, “Hybrid bare

bones fireworks algorithm for load flow

analysis of islanded microgrids”, Handbook of

Research on Fireworks Algorithms and Swarm

Intelligence, pp. 283-314, 2020.

[12] M. A. Elaziz, A. A. Ewees, M. A. Al-Qaness, S.

Alshathri, and R. A. Ibrahim, “Feature selection

for high dimensional datasets based on

quantum-based dwarf mongoose optimization”,

Mathematics, Vol. 10, No. 23, pp. 4565, 2022.

[13] M. S. Hossain, N. Hasan, M. A. Samad, H. M.

Shakhawat, J. Karmoker, F. Ahmed, and K.

Received: May 5, 2025. Revised: July 13, 2025. 350

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Choi, “Android ransomware detection from

traffic analysis using metaheuristic feature

selection”, IEEE Access, Vol. 10, pp. 128754-

128763, 2022.

[14] F. Taher, O. AlFandi, M. Al-Kfairy, H. Al

Hamadi, and S. Alrabaee, “DroidDetectMW: a

hybrid intelligent model for android malware

detection”, Applied Sciences, Vol. 13, No. 13,

pp. 7720, 2023.

[15] M. Grace and M. Sughasiny, “Malware

detection for Android application using Aquila

optimizer and Hybrid LSTM-SVM classifier”,

EAI Endorsed Transactions on Scalable

Information Systems, Vol. 10, No. 1, 2022.

[16] G. Aldehim, M. A. Arasi, M. Khalid, S. S.

Aljameel, R. Marzouk, H. Mohsen, and S. S.

Ibrahim, “Gauss-mapping black widow

optimization with deep extreme learning

machine for android malware classification

model”, IEEE Access, Vol. 11, pp. 87062-87070,

2023.

[17] K. Alissa, H. Elkamchouchi, D. Tarmissi, A.

Yafoz, R. Alsini, O. Alghushairy, and M. Al

Duhayyim, “Dwarf mongoose optimization

with machine-learning-driven ransomware

detection in internet of things environment”,

Applied Sciences, Vol. 12, No. 19, pp. 9513,

2022.

[18] O. P. Per, “Bat optimization algorithm for

wrapper-based feature selection and

performance improvement of Android malware

detection”, IET Netw., Vol. 10, pp. 131-140,

2021.

[19] M. Guendouz and A. Amine, “A new feature

selection method based on dragonfly algorithm

for android malware detection using machine

learning techniques”, International Journal of

Information Security and Privacy (IJISP), Vol.

17, No. 1, pp. 1-18, 2023.

[20] S. K. Smmarwar, G. P. Gupta, S. Kumar, and P.

Kumar, “An optimized and efficient android

malware detection framework for future

sustainable computing”, Sustainable Energy

Technologies and Assessments, Vol. 54, pp.

102852, 2022.

[21] S. Naick, P. Bethapudi, and S. P. R. Reddy,

“Malware detection in android mobile devices

by applying swarm intelligence optimization

and machine learning for API calls”,

International Journal of Intelligent Systems and

Applications in Engineering, Vol. 10, No. 3, pp.

67-74, 2022.

[22] T. L. Prasanna and M. M. Krishna, “Integrating

swarm intelligence with machine learning

techniques for Android malware detection

through API call analysis”, Int. J. Comput. Sci.

Trends Technol. (IJCST), Vol. 12, No. 2, pp. 1-

6, 2024.

[23] University of New Brunswick (UNB),

“CICAndMal2017 dataset”, [Online].

Available:

https://www.unb.ca/cic/datasets/andmal2017.ht

ml [Accessed: Oct. 26, 2024].

[24] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A.

A. Ghorbani, “Toward developing a systematic

approach to generate benchmark android

malware datasets and classification”, In: Proc.

of 2018 International Carnahan Conference on

Security Technology (ICCST), pp. 1-7, 2018.

[25] J. Barrera-García, F. Cisternas-Caneo, B.

Crawford, M. Gómez Sánchez, and R. Soto,

“Feature selection problem and metaheuristics:

a systematic literature review about its

formulation, evaluation and applications”,

Biomimetics, Vol. 9, No. 1, pp. 9, 2023.

[26] J. O. Agushaka, A. E. Ezugwu, and L. Abualigah,

“Dwarf mongoose optimization algorithm”,

Computer Methods in Applied Mechanics and

Engineering, Vol. 391, pp. 114570, 2022.

[27] M. M. Abualhaj, S. Al-Khatib, M. O. Hiari, and

Q. Y. Shambour, “Enhancing spam detection

using hybrid of Harris Hawks and firefly

optimization algorithms”, Journal of Soft

Computing and Data Mining (JSCDM), Vol. 35,

No. 2, pp. 161-174, 2024.

[28] M. M. Abualhaj, M. O. Hiari, A. Alsaaidah, M.

Al-Zyoud, and S. Al-Khatib, “Spam feature

selection using firefly metaheuristic algorithm”,

Journal of Applied Data Sciences, Vol. 5, No. 4,

pp. 1692-1700, 2024.

[29] M. M. Abualhaj, A. A. Abu-Shareha, S. N.

Alkhatib, Q. Y. Shambour, and A. M. Alsaaidah,

“Detecting spam using Harris Hawks optimizer

as a feature selection algorithm”, Bulletin of

Electrical Engineering and Informatics (BEEI),

Vol. 14, No. 3, pp. 111-119, 2025.

[30] Y. Sanjalawe, S. Fraihat, S. Al-E’Mari, M.

Abualhaj, S. Makhadmeh, and E. Alzubi, “A

review of 6G and AI convergence: Enhancing

communication networks with artificial

intelligence”, IEEE Open Journal of the

Communications Society, Vol. 6, pp. 2308-2355,

2025.

[31] Y. Sanjalawe, S. Fraihat, M. Abualhaj, S. R. Al-

E’Mari, and E. Alzubi, “Hybrid deep learning

for human fall detection: A synergistic approach

using YOLOv8 and time-space transformers”,

IEEE Access, Vol. 13, pp. 41336-41366, 2025.

[32] Y. Sanjalawe, S. Al-E’mari, S. Fraihat, M.

Abualhaj, and E. Alzubi, “A deep learning-

Received: May 5, 2025. Revised: July 13, 2025. 351

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

driven multi-layered steganographic approach

for enhanced data security”, Scientific Reports,

Vol. 15, No. 1, 2025.

[33] M. M. Abualhaj, Q. Y. Shambour, A. A. Abu-

Shareha, S. N. Al-Khatib, and A. Amer,

“Enhancing malware detection through self-

union feature selection using gray wolf

optimizer”, Indonesian Journal of Electrical

Engineering and Computer Science, Vol. 37, No.

1, pp. 197-205, 2025.

[34] S. Fraihat, Q. Shambour, M. A. Al-Betar, and S.

N. Makhadmeh, “Variational autoencoders-

based algorithm for multi-criteria

recommendation systems”, Algorithms, Vol. 17,

No. 12, pp. 561, 2024.

[35] Q. Shambour, N. Qandeel, Y. Alrabanah, A.

Abumariam, and M. K. Shambour, “Artificial

intelligence techniques for early autism

detection in toddlers: A comparative analysis”,

Journal of Applied Data Sciences, Vol. 5, No. 4,

pp. 1754-1764, 2024.

[36] M. Madi, F. Jarghon, Y. Fazea, O. Almomani,

and A. Saaidah, “Comparative analysis of

classification techniques for network fault

management”, Turkish Journal of Electrical

Engineering and Computer Sciences, Vol. 28,

No. 3, pp. 1442-1457, 2020.

[37] A. H. Mohammad, T. Alwada’n, O. Almomani,

S. Smadi, and N. ElOmari, “Bio-inspired hybrid

feature selection model for intrusion detection”,

Computers, Materials and Continua, Vol. 73,

No. 1, pp. 133-150, 2022.

[38] A. Almomani, I. Akour, A. M. Manasrah, O.

Almomani, M. Alauthman, E. Abdullah, A. Al

Shwait, and R. Al Sharaa, “Ensemble-based

approach for efficient intrusion detection in

network traffic”, Intelligent Automation & Soft

Computing, Vol. 37, No. 2, 2023.

