Received: May 5, 2025. Revised: July 13, 2025. 336

International Journal of
Intelligent Engineering & Systems

INASS

http://www.inass.org/
Android Malware Detection Using a Modified Dwarf Mongoose Algorithm

Rawan Alabdallat'* Mosleh Abualhaj! Ahmad Abu-Shareha?

!Department of Networks and Cybersecurity, Al-Ahliyya Amman University, Amman, Jordan
2Department of Data Science and Artificial Intelligence, Al-Ahliyya Amman University, Amman, Jordan
* Corresponding author’s Email: alabdallatrawan80@gmail.com

Abstract: The ubiquity of mobile devices due to the advancement of Internet technology has increased the threat of
Android malware, which places users’ data, identities, and finances at risk of theft and cybercriminal activities.
Android malware detection (AMD), which uses machine learning, faces challenges with high-dimensional datasets,
leading to increased computation and reduced accuracy. Feature selection methods extract key features and eliminate
redundant data but are still susceptible to overlooking important features, leading to false positives or negatives. This
study aims to enhance AMD via a modified dwarf mongoose optimization algorithm (DMOA) for efficient feature
selection. The DMOA is improved with adaptive mechanisms, including crossover and mutation strategies, to explore
the solution space better. These enhancements help the DMOA avoid local optima and identify superior feature subsets
for more accurate malware detection. The CICAndMal2017 dataset is used to evaluate the effectiveness of different
machine learning classifiers. The experimental results demonstrate that the proposed modified DMOA model achieves
exceptional accuracy. The decision tree (DT), random forest (RF), and XGBoost models have 100% accuracy in binary
classification. Furthermore, the proposed modified DMOA consistently outperforms several existing AMD models —
including Particle Swarm Optimization (PSO), Multi-Verse Optimizer (MVO), Enhanced Moth Flame Optimizer
(EMFO), Aquila Optimizer, and Grey Wolf Optimizer (GWQO)— in terms of accuracy, based on results reported in
previous studies using the same dataset.

Keywords: Feature selection, Malware, Malware detection, Machine learning, Dwarf mongoose optimization

algorithm.

1. Introduction

The rapid development of the Internet has
increased the global use of mobile devices. As of
2022, the number of mobile network smartphone
subscriptions has reached 6.4 billion [1].
Approximately 70.93% of smartphone users use the
Android operating system [2]. The advancements in
Android applications, especially banking, e-
commerce, social sites, education, and entertainment,
have led Android to be a primary target of malware
developers. Due to their open-source nature and
compatibility with devices, Android applications are
particularly wvulnerable to malware attacks [3].
Malware is defined as malicious code that disrupts
and damages computer systems and the digital
infrastructure. They also damage mobile/electronic

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

devices, such as viruses, worms, trojans, backdoors,
ransomware, adware, and spyware. malware aims to
harm digital systems and steal valuable information,
thereby threatening system confidentiality, integrity,
and availability [4]. Malware attacks can also result
in serious consequences for businesses and
organizations, such as stealing information,
interfering with business processes, or damaging
reputation. On the basis of a Statista report, the
number of malware strains detected and spread
worldwide in 2023 reached 6.06 billion. A large
portion of these attacks are concentrated in the Asia-
Pacific region [5].

Several defense methods, mainly categorized into
signature- and behavior-based methods [6], have
been developed to detect Android malware. Machine
learning algorithms that use well-established
classification algorithms typically classify Android

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

applications as benign or malicious applications [7].
Machine learning has encountered problems in
malware detection because of the high
dimensionality of the data, which may increase the
computation time and reduce accuracy. The feature
selection process plays an important role in
addressing such concerns. Irrelevant and redundant
data can also be removed, enabling more efficient and
accurate learning models to detect malware
effectively [8]. Feature selection can be classified
into two main methods: wrapper methods and filter
methods. The wrapper-based method is the most
popular method for problem classification. Finding
the optimal feature subsets via a wrapper method is
difficult because it obtains only the smallest number
of subsets despite its high accuracy. Feature selection
poses challenges that result from the increased time
needed to determine optimal features in a high-
dimensional dataset [9].

AMD remains a critical challenge due to the rapid
growth of Android users and applications (Sabbah et
al., 2022). Although ML methods are widely used
(Nawshin et al., 2020), they often struggle with high-
dimensional datasets, causing longer computation
times and less accurate results (PER, 2021). Feature
selection helps reduce irrelevant data (Sangal &
Verma, 2020), but can still produce false positives
and negatives (Akinola et al., 2022). The evolving
nature of malware requires continuous adaptation and
new optimization techniques to handle large datasets
effectively and improve detection accuracy.
Traditional optimization algorithms often get stuck in
local optima, selecting poor feature subsets that limit
performance (Game & Vaze, 2020). Therefore,
advanced optimization methods are needed to
efficiently explore the search space and enhance
AMD systems without falling into local optima.

Metaheuristic algorithms are widely used for data
classification and optimization due to their simplicity,
flexibility, and independence of derivatives, enabling
them to avoid local optima [10]. A local optimum in
optimization problems refers to a state where the
objective function’s value is optimal, “either at a
minimum or maximum,” within a limited range of
nearby potential solutions [11]. Metaheuristic
algorithms are used to solve feature selection
problems, especially in high-dimensional datasets, in
which the best feature subset should be selected
promptly. Algorithms such as the firefly algorithm,
particle swarm optimization (PSO), Harris hawks
optimization (HHO), and the dwarf mongoose
optimization algorithm (DMOA), which are used to
find optimal feature subsets, can balance exploration
and exploitation to find optimal or near-optimal
feature subsets [9]. These algorithms thoroughly

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

337

investigate the promising search space during the
exploration phase. Local searches are conducted
during the exploitation phase to find potential
locations identified during exploration [10].

In this paper, a modified version of the DMOA is
used for feature selection to enhance the performance
of the AMD system. The modified DMOA method is
assessed via the CICAndMal2017 dataset, which is
frequently used to evaluate malware models. On the
basis of the nature of foraging in dwarf mongooses,
DMOAs maintain a balance between exploitation and
exploration. This capability enables DMOAs to
effectively discover subsets of features in high-
dimensional malware data [12].

The rest of the paper is organized as follows:
Section 2 discusses related works. Section 3 presents
the proposed model. Section 4 analyses the results.
Section 5 concludes the findings and provides
recommendations for future research.

2. Related works

This section discusses several previous studies
that have been used ML algorithms to detect and
categorize Android malware. Some researchers have
proposed combining nature-inspired wrapper-based
metaheuristics and machine-learning approaches to
detect malware on Android devices.

Hossain et al. [13] proposed a novel method for
Android ransomware detection via PSO algorithms
for traffic characteristic selection with DT and RF
classifiers for data traffic classification. The
CICAndMal2017 dataset was used and preprocessed
via normalization and oversampling to address class
imbalance. PSO-based feature selection was used to
optimize the detection accuracy. Their proposed
method achieved accuracy in detecting ransomware
attacks (81.58%).

Taher et al. [14] proposed a hybrid model for
detecting and classifying Android malware called
DroidDetectMW. Feature selection was performed
via metaheuristic optimization algorithms, including
MVO and enhanced moth flame optimization
(EMFO), and the most relevant features for
classification were identified. The detection phase
uses ML algorithms, such as RF and SVM, to
categorize the Android app’s behavior. The
CICANdMal2017 was used in the experiment.
Significant improvements in precision, recall, and
classification accuracy, especially in binary malware
classification (98.1% accuracy) and malware
category classification (96.9% accuracy), were
achieved.

Grace and Sughasiny [15] solved the growing
threat of malicious Android programs by using an

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

Aquila optimizer and a hybrid LSTM-SVM classifier
to detect malware. The method was evaluated on the
CICAndMal2017 dataset and achieved superior
performance results in terms of accuracy (0.97),
precision (0.94), recall (0.90), and F1_score (0.93).

Aldehim et al. [16] proposed Gauss-mapping
black widow optimization with the DL-enabled
Android malware classification (GBWODL-AMC)
method for AMD. GBWO was used for feature
selection, inspired by the movement of the black
widow spider. The deep extreme learning machine
(DELM) model was used for malware classification,
and the ant lion optimization (ALO) algorithm was
used to optimally select the model’s parameters. The
CICANdMal2017 dataset was used to test the
simulation analysis of the GBWODL-AMC approach.
The testing results revealed that the GBWODL-AMC
technique outperformed other malware detectors
(with a maximum accuracy of 98.59% in binary
classification, and 98.50% in multiclass
classification).

Alissa et al. [17] proposed a DWOML-RWD
method that combines dwarf mongoose optimization
with ML-driven ransomware detection. The
DWOML-RWD model selects features via the
enhanced krill herd optimization (EKHO) algorithm,
which employs dynamic oppositional-based learning
(QOBL). The method uses DWO with an extreme
learning machine (ELM) classifier to improve the
efficiency of ransomware detection. The DWOML-
RWD model was evaluated on a dataset of 840
samples. The results revealed high accuracy,
sensitivity, and specificity of 99.40% and false
positive and false negative rates of 0.60%.

PER [18] proposed a new technique known as the
bat optimization algorithm for wrapper-based feature
selection (BOAWFS) to classify application
permissions with AMD. BOAWEFS is a wrapper
classifier inspired by the echolocation principle
employed by bats to improve feature selection by
reducing the elevation dimension or noise in every
high-dimensional dataset. The method was tested on
the CICInvesAndMal2019 dataset, which comprises
both malware and benign applications. The BOWFS-
DT model achieved an accuracy of 93.73%, and
malware detection was enhanced.

Guendouz and Amine [19] proposed a novel
method called BDA-FS, which uses ML and the
dragonfly algorithm for feature selection to detect
Android malware. The features were extracted on the
basis of a dataset of 5000 malicious applications and
5000 benign applications. The features, which
included the Android permissions, were transformed
into feature vectors. The dragonfly algorithm was
used to select the most pertinent features. The RF, DT,

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

338

naive Bayes, SVM, and KNN classifiers were used
for classification. The proposed BDA-FS method
effectively detected Android malware. The highest
accuracy was 96.33% for the random forest classifier.

Smmarwar et al. [20] proposed a new AMD
method called OEL-AMD. The BGWO algorithm
was employed for feature selection and provided
optimal feature sets for the static and dynamic layers.
The proposed method was evaluated on the
CICInvesAndMal2019 dataset. The best
classification accuracy was 96.95% for binary
classification utilizing static layer features and
83.49% for multiclass classification utilizing
dynamic layer features. The results indicate the
effectiveness of the OEL-AMD method for AMD.

Naick et al. [21] proposed an AMD method with
swarm intelligence optimization algorithms (BES
and SFO). ML classifiers were used to analyze
application programming interface (API) calls. The
optimal features of the API calls were determined to
increase the detection accuracy. The BES and SFO
were used for feature selection. ML classifiers, which
included the DT, KNN, LR, SVM, and RF classifiers,
were used to evaluate the classification performance.
The method was tested on the API call sequence
dataset. The model achieved an accuracy of 98.92%.

Prasanna and Krishna [22] developed a feature
selection method that could differentiate between
malware and benign applications on the basis of API
calls. Wrapper-based swarm intelligence algorithms
were used to optimize the feature selection process
involving ALO and the WOA. Various ML methods,
such as SVM, RF, DT, GB, KNN, and LR, can
distinguish between malicious and benign features.
The RF classifier outperformed all the other
classifiers studied, with accuracies of 94.04% for the
WOA and 91.42% for ALO.

Despite the success of recent studies on AMD,
several issues warrant further exploration. Redundant
identification of information must be reduced while
maintaining high accuracy. For example, although
the GBWODL-AMC strategy Yields promising
results with high accuracy, sensitivity, and specificity
when it is applied to the CICAndMal2017 dataset,
notable challenges still exist. Combining GBWO for
feature selection, DELM for classification, and ALO
for parameter optimization increases the level of
complexity in the system. However, this hybrid
approach may result in high computation and
processing times, making it less suitable for real-time
applications. Additionally, as the aforementioned
approach is good at minimizing the feature set,
multiple algorithms tend to complicate integration
and optimization procedures. This issue further
affects the overall efficiency and scalability of the

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025. 339
Table 1. Summary of metaheuristic optimization algorithms in related works
Ref# Authors (Year) | Feature Selection Dataset Results Limitations
Algorithm
Ref[13] | Hossain et al. PSO CICAndMal2017 Accuracy: 81.58%. Focused only
(2022) on ransomware
Ref[14] | Taheretal. MVO, EMFO CICAndMal2017 Binary High
(2023) Classification: computational
Accuracy 98.1%, complexity
Multiclass due to hybrid
Classification: and multi-
Accuracy 96.9%. phase model
Ref[15] | Grace & Aquila Optimizer | CICAndMal2017 Accuracy: 97%, High
Sughasiny (2022) Precision:; 94%, computational
TPR: 90%, F1 complexity
Score:93%.
Ref[16] | Aldehim et al. GBWO CICAndMal2017 Binary Classification | High
(2023) Accuracy: 98.59%. computational
Multiclass cost and longer
Classification training time
Accuracy: 98.50%.
Ref[17] | Alissa et al. EKHO, DOBL 840 samples (specific | Accuracy: 99.40%. High
(2022) dataset not mentioned) computational
complexity
Ref[18] | PER (2021) BOAWFS CICInvesAndMal2019 | Accuracy: 93.73%. High
computational
cost and
complexity.
Ref[19] | Guendouz & Dragonfly 5000 malicious and Accuracy: 96.33% . Limited
Amine (2023) Algorithm 5000 benign apps Dataset
Ref[20] | Smmarwar et al. BGWO CICInvesAndMal2019 | Binary Classification | Requires a
(2022) Accuracy: 96.95%, large dataset
Multiclass for effective
Classification training.
Accuracy: 83.49%.
Ref[21] | Naick et al. BES, SFO API Call Sequence Accuracy: 98.92%. Relies on a
(2022) dataset limited subset
Ref[22] | Prasanna & ALO, WOA API Call Sequence WOA Accuracy: High
Krishna (2024) dataset 94.04%, ALO computational
Accuracy: 91.42%. cost

system. These factors highlight the need for efficient
solutions that balance performance with real-time
applicability and ease of implementation. This gap
has led to the introduction of a new perspective for
increasing detection accuracy, reducing the
computational burden, and enabling an optimal
balance between feature selection and classifier
performance.

Additionally, most of the work is dataset-specific
and is confined to those specific datasets for a
particular model to achieve high performance in
different real scenarios. Although metaheuristic
optimization algorithms are popular, research has yet
to be conducted in the area of feature selection that
uses the DMO algorithm for AMD. Table 2. 4
summarizes the metaheuristic optimization

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

algorithms used as feature selection methods for
AMD reported in the literature.

3. Methodology

This section reviews the utilized dataset, data
preprocessing steps, and feature selection with the
use of the modified DMOA algorithm. The
modifications to the DMOA Algorithm are also
discussed.

3.1 Dataset

This study uses an Android malware dataset
known as CICAndMal2017, which was developed by
the Canadian Center for Cybersecurity at the
University of New Brunswick [23, 24].

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025.

Revised: July 13, 2025.

Table 2. Feature names in the CICAndMal2017 dataset

340

Feature name # | Feature name # | Feature name # | Feature name
1 Flow ID 22 | Flow Packets/s 43 | Fwd Packets/s 64 | Fwd Avg Bulk Rate
2 | Source IP 23 | Flow IAT Mean 44 | Bwd Packets/s 65 | Bwd Avg Bytes/Bulk
3 | Source Port 24 | Flow IAT Std 45 | Min Packet Length | 66 | Bwd Avg Packets/Bulk
4 | Destination IP 25 | Flow IAT Max 46 | Max Packet Length | 67 | Bwd Avg Bulk Rate
5 | Destination Port 26 | Flow IAT Min 47 | Packet Length Mean | 68 | Subflow Fwd Packets
6 | Protocol 27 | Fwd IAT Total 48 | Packet Length Std 69 | Subflow Fwd Bytes
7 | Timestamp 28 | Fwd IAT Mean 49 | Packet Length 70 | Subflow Bwd Packets
Variance
8 | Flow Duration 29 | Fwd IAT Std 50 | FIN Flag Count 71 | Subflow Bwd Bytes
9 | Total Fwd Packets 30 | Fwd IAT Max 51 | SYN Flag Count 72 | Init_Win_bytes_forward
10 | Total Backward 31 | Fwd IAT Min 52 | RST Flag Count 73 | Init_Win_bytes_backward
Packets
11 | Total Length of Fwd | 32 | Bwd IAT Total 53 | PSH Flag Count 74 | act_data_pkt fwd
Packets
12 | Total Length of 33 | Bwd IAT Mean 54 | ACK Flag Count 75 | min_seg_size forward
Bwd Packets
13 | Fwd Packet Length | 34 | Bwd IAT Std 55 | URG Flag Count 76 | Active Mean
Max
14 | Fwd Packet Length | 35 | Bwd IAT Max 56 | CWE Flag Count 77 | Active Std
Min
15 | Fwd Packet Length | 36 | Bwd IAT Min 57 | ECE Flag Count 78 | Active Max
Mean
16 | Fwd Packet Length | 37 | Fwd PSH Flags 58 | Down/Up Ratio 79 | Active Min
Std
17 | Bwd Packet Length | 38 | Bwd PSH Flags 59 | Average Packet Size | 80 | Idle Mean
Max
18 | Bwd Packet Length | 39 | Fwd URG Flags 60 | Avg Fwd Segment 81 | Idle Std
Min Size
19 | Bwd Packet Length | 40 | Bwd URG Flags 61 | Avg Bwd Segment 82 | ldle Max
Mean Size
20 | Bwd Packet Length | 41 | Fwd Header Length | 62 | Fwd Avg 83 | Idle Min
Std Bytes/Bulk
21 | Flow Bytes/s 42 | Bwd Header Length | 63 | Fwd Avg
Packets/Bulk

The CICAndMal2017 dataset contains more than
10854 samples (4354 malware samples and 6500
benign samples) that were collected from different
sources.

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

The malware samples are further classified
into four primary families. The four subtypes
of malware (Ransomware, Adware,
Scareware, and SMSmalware) form 42
different attack types.

Adware is software that is designed to display
unwanted advertisements to increase clicks

and views. It comprises 104 applications,

including the Ewind, Koodous,

Feiwo,

Shuanet, Selfmite, and Gooligan families.

Ransomware is a malicious application that
seeks to prevent access to computer resources.
It comprises 101 applications for Android
devices, such as Charger, Jisut, Koler, and
WannaLocker.

Scareware is malware that compels users to
purchase unnecessary and potentially
malware applications. It comprises 102

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

applications, such as AndroidDefender,
FakeAV, and FakeApp.

e SMSmalware is an unauthorized call or text
message sent to others without the mobile
owner’s permission (Abuthawabeh &
Mahmoud, 2020). It consists of 99
applications, including Ji Fake, Bean Bot,
Nandrobox, Fake Mart, Fake Notify, and
SMS sniffer families.

The CICAndMal2017 dataset features provide
basic information about the behavior of malicious
and benign applications and detailed characteristics
of the network traffic flow in mobile devices. Such
features are crucial for understanding how various
malware types (ransomware, adware, scareware,
SMS malware, and other malware applications)
behave with network protocols and how to
distinguish them on the basis of network activity.
Table 2. presents the feature list and description of
the CICAndMal2017 dataset.

For this study, a subset of 34,000 records with 83
features was selected from the CICAndMal2017
dataset to reduce computational complexity and
training time while maintaining a balanced
representation of malware and benign samples. To
handle class imbalance, SMOTE was applied only to
the training data in a stratified manner, generating
synthetic samples based on feature similarities to
prevent overfitting. A 5-fold stratified cross-
validation was used throughout to ensure fair and
reliable evaluation, with SMOTE applied exclusively
on the training folds and validation data left
untouched to avoid data leakage. Final performance
metrics—including accuracy, precision, recall, and
F1-score—are reported as the average * standard
deviation across the folds, providing a realistic
assessment of the model’s generalization ability.

3.2 Data preprocessing

Data preprocessing is an essential step in the
proposed model. The process includes two main
steps: data transformation and data normalization.

a) Data Transformation

Data transformation is an important stage of the
preprocessing of ML models—it works as an encoder
to encode the given labels as categorical numbers. In
the case of malware classification, the label column
might contain categorical labels such as benign or
malicious labels, which can be transformed into
nominal feature vectors of 0 and 1 s for binary
classification. This transformation is crucial for data
preparation in most ML algorithms, as nearly all of
them utilize numerical data.

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

341

b) Normalization

Normalization is the process of rescaling values
or aligning values to a particular range, often between
0 and 1, and it plays a central role in models that use
absolute values for inputs to obtain accurate scaling
[13]. In this study, the main goal of the normalization
process is to ensure that each feature contributes
equally to the model’s performance, particularly
when the features have different units or scales. In the
context of the CICAndMal2017 dataset,
normalization was performed via min—-max scaling.
In particular, the data were centered around a mean
of 0 and scaled to a unit variance.

The min-max scaling is computed as Eq. (1):

X — XMin

()

X.S‘caled - XMax — Xmin
where Xcq1eq 1S the result of the min—max scaling
procedure, X is the original value, X, is the
minimum value, and X4, IS the maximum value in
the column. The min max scaler was utilized for 83
features.

3.3 Oversampling

In CICAndMal2017, the number of samples for
each type of malware differs considerably, creating
an imbalance in classification process. ML models
trained on imbalanced data tend to favor classes with
higher sample numbers, but this case might result in
biased predictions toward the dominant classes. This
bias also leads to artificially high accuracy and
misclassifies underrepresented classes, causing the
model to be ineffective on the test set, especially for
rare malware types.

Biases can be eliminated by oversampling, in
which an equal number of samples is created for each
type of malware. In this study, samples are duplicated
from the underrepresented classes to ensure a
balanced dataset while improving the model’s
effectiveness.

3.4 Feature selection

Feature selection is the process of selecting the
most relevant features from a large dataset for use in
a machine learning model. The model’s performance
is enhanced when the features selected provide the
most relevant features [25]. The DMOA is effective
for feature selection, especially when applied to high-
dimensional datasets [12], and is appropriate for
AMD. In this study, a modified version of the DMOA
was selected for feature selection. The DMOA

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

1. Initialize Population

o Create n_pop individuals, each represented as a
binary vector of length n_features.

o Each vector indicates which features are
selected (1) or not (0).

2. Set Initial Best Solution

o Evaluate the fitness of the initial population.

o Store the individual with the highest fitness
score as the best_solution.

3. For each iteration (1 to n_iter):
Step 1: Alpha Selection

o ldentify the alpha individual (the one with the

highest fitness) in the population.
Step 2: Crossover (Mate Selection)
o For each individual in the population:
1. Randomly select two parents from the
population.
2. Perform crossover at a random point to
create a child.
= Crossover Point: Random integer
between 1 and n_features - 1.
Step 3: Mutation

o With probability mutation_rate, mutate the
child by flipping bits at random feature indices.

Step 4: Scout Phase

o With probability scout_rate, introduce a new
random individual into the population to
enhance exploration.

Step 5: Babysitter Exchange

o Evaluate the new population.

o Ifthe best individual from the new population
has a higher fitness score than the
best_solution, update it.

o Remove L * n_pop individuals randomly to
maintain diversity.

4. Evaluate Fitness Metrics

o Calculate fitness scores for all individuals.

o Update best_solution if any individual
surpasses its current fitness score.

[~ Datiirn Ract Qnaliitinn

Figure. 1 Pseudocode of modified DMOA

incorporates mutation and crossover functions,
thereby improving the exploration of the solution
space and increasing the likelihood of finding optimal
feature sets.

3.4.1. Proposed modified DMOA

The DMOA is a type of stochastic, population-
based metaheuristic algorithm introduced by [26].
This approach draws inspiration from the social and
foraging behaviors of dwarf mongooses, also known
as Helogale. Although these animals forage in groups,
each mongoose meticulously searches for food

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

342

because feeding is not a collective effort; they exhibit
seminomadic behavior, creating sleeping mounds
near plentiful food sources and seeking out the next
available mound. The DMOA works by adopting a
sequence of structured phases that mimic the feeding
and social behaviors of these mongooses.

The DMOA is efficient for feature selection and
other forms of optimization tasks because of its
adaptive search ability. However, as with many
optimization techniques, the DMOA faces challenges
related to convergence to local optima. In this study,
the DMOA’s performance is improved by adding
adaptive mechanisms, such as crossover operations
and mutation strategies. These additions help the
system adjust and optimize itself, exploring solutions
more thoroughly for better outcomes. These
enhancements also help the system diversify the
search process, enabling the algorithm to avoid local
optima and identify superior feature subsets. Fig.1
outlines the pseudocode of the proposed modified
DMOA, and Fig. 2 details the specific modifications
introduced. The steps for the modified DMOA are
described as follows:

1. Initialize Population: The algorithm starts by
randomly generating an initial population of n_pop
individuals. Each individual is represented as a binary
vector. Each element in this vector corresponds to a
feature, where a value of 1 indicates that the feature
is selected, and a value of 0 indicates that it is not.
This binary representation is crucial for feature
selection in the optimization process.

2. Initial Best Solution: The algorithm evaluates
each individual’s fitness in the initial population
before entering the iterative optimization process.
The fitness function used in this evaluation is based
on two key factors: accuracy and the number of
features. The best solution is determined on the basis
of the highest fitness score, which is a combination of
these factors. This initial best solution serves as a
reference point for future comparisons, guiding the
optimization process to find the best set of features.

The fitness function (Fit) can be expressed as:

. no.of SF
Flt=axAccuracy—ﬂxW 2
where a and 8 are weighting parameters that control
the trade-off between accuracy and subset size. The
individual with the highest fitness score is recorded
as the initial best solution, serving as a benchmark for
subsequent iterations.

3. Iteration Loop (1 to n_iter): This loop runs
for a specified number of iterations, allowing the
algorithm to improve the population of solutions over
time. Each iteration includes several critical steps:

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

Modified -DMOA

Initialize Population

Generate n_pop individuals — Scout Phase
Set Initial Best Solution Babysitter Exchange

Alpha Selection
Find the best individual

. !

‘ Crossover ‘

!

‘ Mutation ‘

I

Figure. 2 Block diagram of the modified DMOA

Evaluate Fitness

Return best results

Step 1: Alpha Selection: The algorithm identifies
the alpha individual, which is the one with the highest
fitness score in the current population. This
individual represents the best feature set obtained
thus far, influencing the next generation of
individuals.

Step 2: Crossover (Mate Selection): For each
individual, randomly select two parent individuals
from the population and perform a single-point
crossover on their binary vectors to generate
offspring. The crossover point is chosen randomly
between 1 and npqyres — 1.

Step 3: Mutation: In a probability set with a given
mutation rate, the child may undergo mutation. In
particular, the bits at the feature indices are randomly
flipped in the child’s binary vector.

Step 4: Scout Phase: With the probability equal to
the scout rate, a new random individual is placed into
the population. This scout individual can explore the
new regions of the solution space and present better
solutions that were absent in the current population.

Step 5: Babysitter Exchange: The fitness of the
new population, “including any new individuals
created from crossover, mutation, or scouts,” is
evaluated. If the best individual in this new
population surpasses the fitness of the previously
recorded best solution, then the algorithm updates the

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

343

best solution. This exchange allows the algorithm to
retain the most promising solutions during
optimization.

4. Fitness Evaluation: Once all the iterations are
completed, the algorithm uses a fitness function to
evaluate each individual’s fitness in the final
population. This function assesses how well the
feature set of each individual performs in terms of
classification accuracy, providing a final measure of
performance.

5. Return to the Best Solution: The algorithm
returns the best solution, the individual with the
highest fitness score found during the iterations. The
final solution represents the optimal feature subset
selected using the modified DMOA.

3.5 Classification

The classification stage is a critical component of
the AMD model because it determines whether
network activity is benign or malicious. When the
most relevant features are identified, ML algorithms
can train classifiers using labelled data, enabling the
model to recognize malware-related patterns. The
likelihood of identifying the most effective approach
for classifying Android malware was increased by
applying several classifiers, including DT, RF, KNN,
and XGBoost. These classifiers were selected for
their relative strengths when dealing with the
CICANdMal2017 datasets.

3.6 Modifications to the DMOA algorithm

The original DMOA was inspired by the social
behavior and foraging strategies typical of dwarf
mongooses, including their sleeping mounds.
However, the changes in the present work involve
modifications of the DMOA algorithm to increase its
feature selection and optimization efficiency. The
main changes in the original DMOA are outlined
below.

A) Crossover Function

The crossover operator in the modified DMOA is
a major operator that is applied to form new solutions
on the basis of the information of two parent solutions.
In binary formula-based optimization problems,
feature selection crossover keeps the population large
and improves the exploitation of the solution space.
The crossover function has three stages. In the first
stage, a pair of candidate solutions is randomly
selected from the population. However, the best two
solutions are excluded from the selection process, and
genetic diversity is encouraged while avoiding
premature convergence. The second stage involves
selecting a random crossover point within the binary

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

representation of the parent solutions. The offspring
are created by combining the two parent solutions at
this crossover point. This stage allows the creation of
a new solution that inherits traits from both parents.
In this manner, the likelihood of finding a better
solution is increased in subsequent generations.

In the third and final stages, the newly generated
offspring are integrated into the population. This
outcome is achieved by replacing one of the least fit
solutions in the population with offspring. Depending
on the algorithm’s implementation, the fitness of the
offspring might be compared with that of the
population. Finally, the best individual solutions are
selected for the next generation. The crossover
function is applied to search for improved
combinations of features; in this study, it is used to
improve the results of classification tasks in areas
such as malware detection. By merging subsets of the
features, the algorithm can select the best result
between exploration and exploitation.

B) Mutation

The mutation process is one of the essential parts
of the optimization mechanism in the modified
DMOA. Mutation occurs after the crossover
operation: it creates new offspring from two parents’
solutions. The primary aim of mutation is to
randomly modify some of the offspring’s genetic
material, thereby ensuring that the population does
not become homogeneous. The mutation occurs with
a probability defined by the mutation_rate parameter,
which determines how often a child solution
undergoes mutation. When a child is selected for
mutation, the algorithm randomly selects a set of
indices in the child’s solution (representing the
features selected) and flips their values. This bit-
flipping process is the critical operation of mutation,
where 0 becomes a 1 and vice versa.

The mutation prevents the algorithm from
becoming stuck in suboptimal solutions by
introducing small, random changes that might lead to
better solutions. When bits in the binary
representation of the feature set are flipped, mutation
can explore new areas of the solution space that may
not have been reached via crossover alone.
Subsequently, the algorithm can balance exploration
for “searching for new solutions” and exploitation for
“refining the best solutions.” Through mutation, the
algorithm increases its chances of finding the optimal
set of features for the classification task, especially in
complex problems such as malware detection.

Table 3 summarizes the hyperparameter settings
used for the modified DMOA in this study, along
with the selection strategies applied. These values
were determined based on empirical tuning and

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

344

Table 3. Hyperparameters of the Modified DMOA

Parmeters | Value Selection strategy
Empirically tuned based
N“mbef of 30 on preliminary
populations :
experiments
Fixed value ensuring
Numt_;er of 100 convergence without
Iterations L
overfitting
Mutation 05 Standard value for
Rate ' binary metaheuristics
c Enhances genetic
rossover Single point | diversity during
Type .
reproduction
Accuracy-
Fitness based with Balances accuracy and
Function subset size dimensionality
penalty

preliminary experimentation to ensure convergence
and generalization.

4. Implementation and results

This section presents the implementation process
and discusses the results of implementing the model
via various ML algorithms and compares these
results with those of other metaheuristic algorithm
models.

4.1 Implementation

The study was conducted in a Windows
environment via the VSC IDE, which provides a
comprehensive set of tools for developing, testing,
and debugging code. The most recent Python version
(V3.12) was used for model implementation and
evaluation because of its extensive support for ML
and the availability of many data analysis packages.

The modified DMOA was applied to select the
most relevant features based on a fitness function that
considers accuracy and the number of selected
features. The fitness function was defined to calculate
the error rate (err), considering both the prediction
accuracy and the number of selected features (SF). A
lower fitness value (error rate) indicates a better
feature subset.

err=a* (1 Aceuraes)+ f (W)@

As a result, 40 features were selected for binary
classification from the original 83 features. The
selected features were 2, 6, 8, 9, 12, 16, 17, 19, 21,
23, 25, 26, 27, 28, 29, 31, 32, 34, 35, 37, 38, 39, 40,

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

41, 45, 48, 50, 52, 56, 57, 59, 61, 62, 63, 71, 72, 73,
74,75, and 79.

The performance of the system was evaluated
using metrics such as accuracy, precision, recall, F1
score and convergence time to measure the
effectiveness and efficiency of the malware detection
approach. The results provide insights into the
model’s classification, effectiveness, and efficiency.
A confusion matrix (CM) was also used to provide a
detailed breakdown of the model’s predictions across
different classes. It offers a thorough analysis of true
positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN). The mathematical
formulations of the evaluation metrics are defined as
follows:

Accuracy = @ 4)

Precision = % ©)

Recall = % (6)

P Seore = St et 0
4.2 Results

The model was evaluated using ML algorithms.

The algorithms used are DT, RF, KNN, and XGBoost.

The DT classifier achieved perfect performance in
binary classification of malware and benign samples,
with an accuracy of 1.00, precision of 1.00, recall of
1.00, F1 score of 1.00, and specificity of 1.00. It
recorded zero false positives and false negatives,
indicating that all samples were correctly classified.
The convergence time was 173.59 seconds,
demonstrating the model’s efficiency in detecting
Android malware. Similarly, the XGBoost classifier
also achieved perfect performance with an accuracy
of 1.00, precision of 1.00, recall of 1.00, and F1 score
of 1.00. However, due to the boosting mechanism, the
convergence time was significantly higher, taking
425.08 seconds to train and converge. The RF
classifier also performed exceptionally well, with an
accuracy of 1.00, precision of 1.00, recall of 1.00, and
F1 score of 1.00. There were no misclassifications,
and the convergence time was 233.72 seconds,
suggesting good efficiency. Although some
classifiers achieved perfect performance in our cross-
validation experiments, we acknowledge that such
results may not generalize to other datasets or real-
time environments. Fig.3 shows the CM for the
DT,RF,and XGBoost classifiers, including the

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

345

Confusion Matrix

5000

4000

BENIGN

3000

True label

- 2000

MALWARE

- 1000

1
BENIGN MALWARE

Predicted label

Figure. 3 CM for DT, RF, and XGBoost

Confusion Matrix
5000

4000

BENIGN

3000

True label

- 2000

MALWARE

-1000

1
BENIGN

MALWARE
Predicted label

Figure. 4 KNN classifier CM

corresponding values of TP, TN, FP, and FN values
for each class.

In contrast, the KNN classifier, while still
performing well, showed slightly lower results, with
an accuracy of 0.9888, precision of 0.9866, recall of
0.9888, and F1 score of 0.9866. The convergence
time for KNN was notably higher, taking 1331.20
seconds due to the computational complexity of
distance calculations during prediction. Fig.4 depicts
the CM for the KNN classifier and the corresponding
TP, TN, FP, and FN values for each class. The binary
classification results are summarized in Table 4,
which compares the performance of the classifiers.

The evaluation of the proposed modified DMOA,
which uses various ML algorithms, has proven the
effectiveness of the proposed modified DMOA in
enhancing feature selection for AMD. Compared
with the original DMOA, all classifiers achieved
consistent performance improvements in accuracy.

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

Table 4. Binary classification results for all classifiers

Classif | Accur | Precisi | F1- Recall | Time
ier acy on score (s)

RF 1.000 | 1.000 | 1.000 | 1.000 | 233.72
DT 1.000 | 1.000 | 1.000 | 1.000 | 173.59
XGBo | 1.000 | 1.000 | 1.000 | 1.000 | 425.08
ost

KNN |0.988 | 0.986 |0.986 |0.989 | 1331.2

Fig.5 shows the accuracy of the ML algorithms when
the proposed modified DMOA is used. The proposed
modified DMOA algorithm attained improvements in
accuracy across the DT, RF, XGBoost and KNN
algorithms in malware binary classification. The RF,
DT, and XGBoost algorithms had the most
significant improvements, achieving perfect accuracy
scores of 1.0 when the modified DMOA was applied,
in contrast to their original accuracy scores of 0.9992,
0.9367, and 0.9835, respectively, for the original
DMOA. These results highlight the significant
enhancement in the performance of these algorithms
in the classification of malware instances via the
modified DMOA. Although the KNN algorithm
shows only a modest improvement (from 0.9814 to
0.9888), the findings still indicate the positive impact
of the modified DMOA on the algorithm’s
effectiveness in malware classification.

In terms of precision, the proposed modified
DMOA demonstrates constant improvements in
precision for the ML algorithms. DT, RF and

346

XGBoost had perfect precision scores of 1.00. The
precision of the KNN in the modified DMOA
(0.9866) is slightly greater than that of the original
DMOA (0.9814), indicating a minor improvement
(Fig. 6). The F1 score demonstrates notable
improvements across several ML algorithms with the
modified DMOA. DT, RF and XGBoost achieved
perfect F1 scores of 1.00, increasing from 0.9315 and
0.9820, respectively, in the original DMOA. RF
obtained an F1 score of 1.00, compared with 0.9861
in the original DMOA. KNN in the modified DMOA
yielded an F1 score of 0.9866, showing a slight
improvement over the original DMOA’s 0.9814.
Fig.7 provides a comparative visualization of the F1
scores between the proposed modified DMOA and
the original DMOA for binary classification.

Fig.8 shows a comparison of the convergence
times between the proposed modified DMOA and the
original DMOA in binary classification. The
convergence time reflects the efficiency of the
proposed modified DMOA. All the ML algorithms
achieved better convergence times. The DT
convergence time was reduced to 173.59 from 700.55
in the original DMOA, and the RF’s time decreased
to 233.72 from 983.83. XGBoost significantly
decreased to 425.08 from 1583.82, and KNN
decreased to 1331.20 from 1835.59. These findings
suggest that the proposed modified DMOA
significantly enhances the performance of the
classifiers, particularly in terms of classification
accuracy and efficiency, thereby demonstrating its
effectiveness in Android malware detection using the
CICANdMal2017 dataset.

Accuracy Comparison

1.02

Accuracy

0.99972 1.0000 1.0000

1.00 A
0.9888
0:9835 0.9814

0.98 -

0.96

0.94 0.9367

0.92

0.90

Original
Em Modified
1.0000

XGBoost

Figure. 5 Accuracy comparison of the proposed modified DMOA and the or|g|nal DMOA

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

347

Precision Comparison

1.02

Precision

Original
EEE Modified
1.0000 1.0000 1.0000
1.00 A
0.9861 0.9866
0.9821 0.9814

0.98 4

0.96 |

0.94 0.9369

0.92

0.90

RF XGBoost KNN

Figure. 6 Precision comparison of the proposed modified DMOA and the original DMOA.

F1 Score Comparison

1.02

F1 Score

1.0000 1.0000

1.00 ~

0.9861 0.9866
0.9820 0.9814
0.98 4
0.96
0.94 4
0.9315
0.92 4
0.90

Original
H Modified
1.0000

XGBoost

Figure. 7 F1 score comparison of the proposed modified DMOA and the original DMOA

The proposed modified DMOA model was
compared with other AMD models. All the following
studies utilized the CICAndMal2017 dataset for their
models. Table 5. shows a comparison between the
proposed modified DMOA results and the other
AMD models. A comparative analysis of the
proposed model against other AMD models in binary
and multiclass classification is also provided. The
strengths and weaknesses of each approach in terms
of accuracy, precision, F1 score, and convergence
time were explored.

The proposed model outperforms other models
with a perfect score of 100% in accuracy, precision,

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

and recall for binary classification. A notable
comparison is with the GBWO model of Aldehim et
al. [16], which achieved an accuracy of 98.59%; the
proposed modified DMOA model scored 100%. Thus,
the proposed modified DMOA model sets a new
benchmark in binary malware classification with its
perfect score. Similarly, the proposed model
outperforms all the compared models in multiclass
classification. RF has an overall accuracy of 100%,
surpassing the GBWO model of Aldehim et al. [16],
with a score of 98.50%, and the MVVO and EMFO
models of Taher et al. [14], with a score of 96.9%.
Fig.9 presents an accuracy comparison between the

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025.

Revised:

July 13, 2025.

348

Convergence Time Comparison

P Original

1750 1 HEE Modified

1500 +

1250 +

1000 4

750 A

Time (seconds)

250

0 -

RF

DT

1835.59

1583.82

XGBoost KNN

Figure. 8 Convergence time comparison of the proposed modified DMOA and the original DMOA

Comparison of Accuracy

Accuracy (%)

81.58%

98.1%

PSO MVO+ EMFO

0,
98.59% 100%

Aquila GBWO Modified
Optimizer DMOA

Figure. 9 Accuracy comparison between the proposed modified DMOA and other models

Table 5. Performance comparison of the proposed

Modified DMOA model with existing Android malware

detection models on the CICAndMal2017 dataset

proposed modified DMOA and other models in the
binary classification of malware. The proposed
model outperforms all the other models, achieving a

Ref | Algorithm | Accuracy | Precision | F1 perfect accuracy score of 100% when the DT, RF and
Score XGBoost classifiers are used. The modified DMOA
[13] PSO 81.58% effectively and accurately classified malware,
surpassing the performance of other existing models
[14] MVO, 98.1%, |- - in the task.
EMFO
[15] Aquila 97% 94% 93% 5. Conclusion
Optimizer . o
[16] GBWO 9859% |- 96.48% This study_ employed the modified DMOA for
feature selection and successfully developed an
This Modified | 100% 100% 100% gﬁj[ectl':/e ML mgttjel forIAl':/IIE[)H The ;:II(I:AndfMaIZON
work | DMOA ataset was used to evaluate the model's performance.
International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025 DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

Several algorithms were applied to binary
classification tasks, with the proposed model
demonstrating exceptional results—achieving 100%
accuracy using DT, RF, and XGBoost classifiers. The
modified DMOA consistently improved accuracy,
precision, F1 score, recall, and convergence time
across all ML algorithms. These improvements are
attributed to the method’s ability to better identify the
most relevant features while minimizing redundant
and noisy data, which helps the classifiers perform
more efficiently and accurately. The results confirm
that the proposed model outperforms existing
approaches on the CICAndMal2017 dataset, setting
new benchmarks in binary classification and
extending the application of DMOA in AMD. Future
work could focus on enhancing the performance of
the proposed model by combining multiple ML
algorithms. However, this integration should be
undertaken carefully to prevent reintroducing
complexities, ensuring that the model remains
straightforward and effective. Testing on distinct
Android datasets might include testing the proposed
ML model on multiple datasets to prove its
applicability in Android systems. Finally, the
model’s performance could be examined in real-
world scenarios, such as integration into existing
cybersecurity systems. Finally, a detailed ablation
study is planned to quantify the individual impact of
the crossover and mutation operations introduced in
the modified DMOA, which may support further
optimization of the algorithm’s performance.

Conflicts of Interest
The authors declare no conflict of interest.

Author Contributions

Following are the contributions of the authors:
conceptualization, Mosleh Abualhaj; methodology,
Rawan Alabdallat and Mosleh Abualhaj; software,
Rawan Alabdallat; validation, Rawan Alabdallat and
Ahmad Abu-Shareha; formal analysis, Rawan
Alabdallat; investigation, Rawan Alabdallat;
resources, Mosleh Abualhaj; data curation, Rawan
Alabdallat; writing—original draft preparation,
Rawan Alabdallat; writing—review and editing,
Mosleh Abualhaj and Ahmad Abu-Shareha;
visualization, Rawan Alabdallat; supervision,
Mosleh Abualhaj; project administration, Mosleh
Abualhaj; funding acquisition, Mosleh Abualhaj.

References

[1] Statista, “Annual number of malware attacks
worldwide from 2015 to 2023”, [Online].

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

349

Available:
https://www.statista.com/statistics/873097/mal
ware-attacks-per-year-worldwide/ [Accessed:
Dec. 24, 2024].

[2] D. Soi, A. Sanna, D. Maiorca, and G. Giacinto,
“Enhancing Android malware detection
explainability through function call graph apis”,
Journal of Information Security and
Applications, VVol. 80, pp. 103691, 2024.

[3] C. R. Palma, Malware detection in android
applications with machine learning techniques,
2023.

[4] M. A.H. Saeed, “Malware in computer systems:
Problems and solutions”, International Journal
on Informatics for Development (1JID), Vol. 9,
No. 1, pp. 1-8, 2020.

[5] A. Petrosyan, “Malware - Statistics & Facts”,
[Online]. Available:
https://www.statista.com/topics/8338/malware/
#topicOverview [Accessed: Dec. 24, 2024].

[6] H. H. R. Manzil and S. M. Naik, “Detection
approaches for Android malware: Taxonomy
and review analysis”, Expert Systems with
Applications, Vol. 238, pp. 122255, 2024.

[7] N.Z. Gorment, A. Selamat, L. K. Cheng, and O.
Krejcar, ‘“Machine learning algorithm for
malware detection: Taxonomy, current
challenges, and future directions”, IEEE Access,
Vol. 11, pp. 141045-141089, 2023.

[8] J. Cai, J. Luo, S. Wang, and S. Yang, “Feature
selection in machine learning: A new
perspective”, Neurocomputing, Vol. 300, pp.
70-79, 2018.

[9] O. A. Akinola, J. O. Agushaka, and A. E.
Ezugwu, “Binary dwarf mongoose optimizer for
solving high-dimensional feature selection
problems”, PLOS ONE, Vol. 17, No. 10, pp.
e0274850, 2022.

[10] P. Agrawal, H. F. Abutarboush, T. Ganesh, and
A. W. Mohamed, “Metaheuristic algorithms on
feature selection: A survey of one decade of
research (2009-2019)”, IEEE Access, Vol. 9, pp.
26766-26791, 2021.

[11] S. M. Abdullah and A. Ahmed, “Hybrid bare
bones fireworks algorithm for load flow
analysis of islanded microgrids”, Handbook of
Research on Fireworks Algorithms and Swarm
Intelligence, pp. 283-314, 2020.

[12] M. A. Elaziz, A. A. Ewees, M. A. Al-Qaness, S.
Alshathri, and R. A. Ibrahim, “Feature selection
for high dimensional datasets based on
guantum-based dwarf mongoose optimization”,
Mathematics, Vol. 10, No. 23, pp. 4565, 2022.

[13] M. S. Hossain, N. Hasan, M. A. Samad, H. M.
Shakhawat, J. Karmoker, F. Ahmed, and K.

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

Choi, “Android ransomware detection from
traffic analysis using metaheuristic feature
selection”, IEEE Access, Vol. 10, pp. 128754-
128763, 2022.

[14] F. Taher, O. AlFandi, M. Al-Kfairy, H. Al
Hamadi, and S. Alrabaee, “DroidDetectMW: a
hybrid intelligent model for android malware
detection”, Applied Sciences, Vol. 13, No. 13,
pp. 7720, 2023.

[15] M. Grace and M. Sughasiny, “Malware
detection for Android application using Aquila
optimizer and Hybrid LSTM-SVM classifier”,
EAl Endorsed Transactions on Scalable
Information Systems, Vol. 10, No. 1, 2022.

[16] G. Aldehim, M. A. Arasi, M. Khalid, S. S.
Aljameel, R. Marzouk, H. Mohsen, and S. S.
Ibrahim, “Gauss-mapping black widow
optimization with deep extreme learning
machine for android malware classification
model”, IEEE Access, Vol. 11, pp. 87062-87070,
2023.

[17] K. Alissa, H. Elkamchouchi, D. Tarmissi, A.
Yafoz, R. Alsini, O. Alghushairy, and M. Al
Duhayyim, “Dwarf mongoose optimization
with machine-learning-driven ransomware
detection in internet of things environment”,
Applied Sciences, Vol. 12, No. 19, pp. 9513,
2022.

[18] O. P. Per, “Bat optimization algorithm for
wrapper-based ~ feature selection and
performance improvement of Android malware
detection”, IET Netw., Vol. 10, pp. 131-140,
2021.

[19] M. Guendouz and A. Amine, “A new feature
selection method based on dragonfly algorithm
for android malware detection using machine
learning techniques”, International Journal of
Information Security and Privacy (1JISP), Vol.
17, No. 1, pp. 1-18, 2023.

[20] S. K. Smmarwar, G. P. Gupta, S. Kumar, and P.
Kumar, “An optimized and efficient android
malware detection framework for future
sustainable computing”, Sustainable Energy
Technologies and Assessments, Vol. 54, pp.
102852, 2022.

[21] S. Naick, P. Bethapudi, and S. P. R. Reddy,
“Malware detection in android mobile devices
by applying swarm intelligence optimization
and machine learning for APl calls”,
International Journal of Intelligent Systems and
Applications in Engineering, Vol. 10, No. 3, pp.
67-74, 2022.

[22] T. L. Prasanna and M. M. Krishna, “Integrating
swarm intelligence with machine learning
techniques for Android malware detection

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

350

through API call analysis”, Int. J. Comput. Sci.
Trends Technol. (1JCST), Vol. 12, No. 2, pp. 1-
6, 2024.

[23] University of New Brunswick (UNB),
“CICAndMal2017 dataset”, [Online].
Available:

https://www.unb.ca/cic/datasets/andmal2017.ht
ml [Accessed: Oct. 26, 2024].

[24] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A.
A. Ghorbani, “Toward developing a systematic
approach to generate benchmark android
malware datasets and classification”, In: Proc.
of 2018 International Carnahan Conference on
Security Technology (ICCST), pp. 1-7, 2018.

[25] J. Barrera-Garcia, F. Cisternas-Caneo, B.
Crawford, M. Gémez Sanchez, and R. Soto,
“Feature selection problem and metaheuristics:
a systematic literature review about its
formulation, evaluation and applications”,
Biomimetics, Vol. 9, No. 1, pp. 9, 2023.

[26] J. O. Agushaka, A. E. Ezugwu, and L. Abualigah,
“Dwarf mongoose optimization algorithm”,
Computer Methods in Applied Mechanics and
Engineering, Vol. 391, pp. 114570, 2022.

[27] M. M. Abualhaj, S. Al-Khatib, M. O. Hiari, and
Q. Y. Shambour, “Enhancing spam detection
using hybrid of Harris Hawks and firefly
optimization algorithms”, Journal of Soft
Computing and Data Mining (JSCDM), Vol. 35,
No. 2, pp. 161-174, 2024.

[28] M. M. Abualhaj, M. O. Hiari, A. Alsaaidah, M.
Al-Zyoud, and S. Al-Khatib, “Spam feature
selection using firefly metaheuristic algorithm”,
Journal of Applied Data Sciences, Vol. 5, No. 4,
pp. 1692-1700, 2024.

[29] M. M. Abualhaj, A. A. Abu-Shareha, S. N.
Alkhatib, Q. Y. Shambour, and A. M. Alsaaidah,
“Detecting spam using Harris Hawks optimizer
as a feature selection algorithm”, Bulletin of
Electrical Engineering and Informatics (BEEI),
Vol. 14, No. 3, pp. 111-119, 2025.

[30] Y. Sanjalawe, S. Fraihat, S. Al-E’Mari, M.
Abualhaj, S. Makhadmeh, and E. Alzubi, “A
review of 6G and Al convergence: Enhancing
communication networks with artificial
intelligence”, IEEE Open Journal of the
Communications Society, Vol. 6, pp. 2308-2355,
2025.

[31] Y. Sanjalawe, S. Fraihat, M. Abualhaj, S. R. Al-
E’Mari, and E. Alzubi, “Hybrid deep learning
for human fall detection: A synergistic approach
using YOLOV8 and time-space transformers”,
IEEE Access, Vol. 13, pp. 41336-41366, 2025.

[32] Y. Sanjalawe, S. Al-E’mari, S. Fraihat, M.
Abualhaj, and E. Alzubi, “A deep learning-

DOI: 10.22266/ijies2025.0930.21

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

Received: May 5, 2025. Revised: July 13, 2025.

driven multi-layered steganographic approach
for enhanced data security”, Scientific Reports,
Vol. 15, No. 1, 2025.

[33] M. M. Abualhaj, Q. Y. Shambour, A. A. Abu-
Shareha, S. N. Al-Khatib, and A. Amer,
“Enhancing malware detection through self-
union feature selection using gray wolf
optimizer”, Indonesian Journal of Electrical

Engineering and Computer Science, VVol. 37, No.

1, pp. 197-205, 2025.

[34] S. Fraihat, Q. Shambour, M. A. Al-Betar, and S.
N. Makhadmeh, “Variational autoencoders-
based algorithm for multi-criteria
recommendation systems”, Algorithms, Vol. 17,
No. 12, pp. 561, 2024.

[35] Q. Shambour, N. Qandeel, Y. Alrabanah, A.
Abumariam, and M. K. Shambour, “Artificial
intelligence techniques for early autism
detection in toddlers: A comparative analysis”,
Journal of Applied Data Sciences, Vol. 5, No. 4,
pp. 1754-1764, 2024.

[36] M. Madi, F. Jarghon, Y. Fazea, O. Almomani,
and A. Saaidah, “Comparative analysis of
classification techniques for network fault
management”, Turkish Journal of Electrical
Engineering and Computer Sciences, Vol. 28,
No. 3, pp. 1442-1457, 2020.

[37] A. H. Mohammad, T. Alwada’n, O. Almomani,
S. Smadi, and N. ElOmari, “Bio-inspired hybrid
feature selection model for intrusion detection”,
Computers, Materials and Continua, Vol. 73,
No. 1, pp. 133-150, 2022.

[38] A. Almomani, I. Akour, A. M. Manasrah, O.
Almomani, M. Alauthman, E. Abdullah, A. Al
Shwait, and R. Al Sharaa, “Ensemble-based
approach for efficient intrusion detection in
network traffic”, Intelligent Automation & Soft
Computing, Vol. 37, No. 2, 2023.

International Journal of Intelligent Engineering and Systems, Vol.18, No.8, 2025

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

License details: https://creativecommons.org/licenses/by-sa/4.0/

351

DOI: 10.22266/ijies2025.0930.21

