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Abstract: Node tracking is one of the essential techniques in many military and cellular communication-related 

applications. Wireless Sensor Network (WSN) has a limited sensing range which influences target tracking and energy 

consumption.  Optimization models in target tracking are well-desired solutions, as they maintain good convergence 

and reliability. In this work, an efficient approach is developed to perform the target tracking in WSN. At first, the 

tracking reliability requirement is ensured by selecting the right functioning nodes in the WSN with the help of the 

Tiger Beetle Algorithm (TBA). The TBA adopts energy as an objective function for attaining better performance in 

the node selection process. The overall energy consumption of WSN is enhanced with the help of optimum selection 

of right functioning nodes which is used to prolong the network lifetime. After selecting the right functioning nodes, 

the target tracking is performed using the Iterated Unscented Kalman Filter (IUKF). Finally, evaluation is conducted 

to verify the performance of the developed optimized IUKF target tracking model. Root Mean Squared Error (RMSE) 

validation was performed in the suggested TBA-IUKF-based mobile target tracking model and accomplished 5.63, 

which is less than classical techniques. The proposed TBA-IUKF has achieved a minimal comparative energy 

consumption value of 12.5%, 10.3%, 14.8%, and 9.8% compared to existing optimization techniques. 

Keywords: Wireless sensor network, Target tracking, Functioning nodes selection, Tiger beetle algorithm, Iterated 

unscented Kalman filter. 

 

 

1. Introduction 

Wireless Sensor Networks (WSNs) services are well-

equipped and suitable for several communication-

related applications. WSN has a dynamic setup and is 

structured through low-cost and battery-operated 

sensory devices [1]. The sensor data is placed in 

different environments to capture the surrounding 

information and send it to the base station. Network 

lifetime is one of the primary concerns in building the 

WSN setup, especially for Target tracking-related 

applications [2]. Target tracking aims to trace the 

path of a moving target, and identify the position in 

the communication area. Target tracking requires 

continuous tracing and monitoring, and thus the 

energy of nodes must be carefully utilized. For 

building a successful target-tracking model, the 

effectiveness related to resource allotment, energy 

efficiency, device memory, tracking speed, and 

reliability plays an important role [3]. Target tracking 

is achieved in WSN through single-node target 

tracking or collaborative tracking. Single-node 

tracking requires high energy and fails to provide 

high-quality results; Collaborative tracking has high 

processing ability and accurately measures the 

trajectories and velocity of the moving target [4]. The 

target tracking model aims to identify the spatial 

coordinates of the moving target and successfully 

tracks the spatial path and trajectory. As WSN has a 



Received:  December 11, 2024.     Revised: March 8, 2025.                                                                                             375 

International Journal of Intelligent Engineering and Systems, Vol.18, No.4, 2025           DOI: 10.22266/ijies2025.0531.24 
 

This article is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.  

License details: https://creativecommons.org/licenses/by-sa/4.0/ 

dynamic architecture, when a moving target enters 

the system, every sensor must act and identify the 

motion of the target [5].  

Filter-based techniques have been proved well-

appropriate for achieving an effective target-tracking 

model [6]. Choosing the right filter-based techniques 

is necessary for target tracking, as challenges like 

different filter variants, large filter norms, and so on 

[7]. Maintaining the accuracy of the moving path is a 

prime concern in target tracking while retaining the 

maximum energy in nodes. Filter-based techniques 

like the Kalman filter and its variants have proven to 

be effective in target tracking of WSN. Particle filter-

based techniques have also been used in this scenario, 

but their ability to track multiple targets is 

compromised [8]. Estimating the non-linear and 

Gaussian system states is a necessary factor of the 

filtering techniques, and it can be achieved through 

Kalman filtering techniques [9]. As energy 

consumption is one of the major concerns in WSN, 

the operations of filtering-based techniques must be 

refined to improve energy-related metrics [10]. 

Selecting the right functioning node before using the 

filtering technique for target tracking improves the 

accuracy of the process, and also aids in reducing 

overall energy consumption. Optimization 

algorithms come in handy in selecting appropriate 

sensor nodes for tracking. This allows for 

overcoming the issues related to node failure, target 

recovery, improved coverage, and latency in target 

tracking. In this work, the challenges in target 

tracking are overcome through an optimization-based 

filtering approach, and an energy-efficient target 

tracking model is created.  

Towards creating an efficient target tracking 

system in WSN, the following contributions are 

presented in this work: 

To develop an effective filter-based target 

tracking technique, to maintain better energy 

efficiency. The proposed target tracking model 

ensures to selection of an optimal right functioning 

node, improves the speed and effectiveness of target 

tracking, and overcomes the noise, resource, and 

environment-related challenges. 

To develop the target tracking model through the 

Iterated Unscented Kalman Filter (IUKF) model 

incorporated with the Tiger Beetle Algorithm (TBA) 

optimization procedure. The TBA aids the IUKF by 

selecting the optimal right functioning node and 

increases the tracking ability of the target trajectory. 

Optimal selection improves the closeness in tracking 

the path and improves energy efficiency. The IUKF 

model addresses the nonlinear variations and reduces 

the error in target tracking.  

The remaining sections of this work have the 

following sections: Section 2 shows the recently 

developed target tracking models and the challenges 

associated with target tracking. Section 3 presents the 

general system model of target tracking, and briefs 

the architecture model of the proposed filter-based 

tracking model. Section 4 describes the selection 

procedure for the right functioning node and 

description of the proposed filtering model. The 

simulation and comparative results are explained in 

Section 5, a case study is discussed in Section 6 and 

the conclusion is presented in Section 7.  

2. Literature survey    

2.1 Related works 

In 2023, Madhavi et al. [11] presented a target-

tracking model by implementing the Particle Filter 

(PF) and Support Vector Machine (SVM). The model 

was created as an energy-efficient model without 

compromising the accuracy of target tracking. It 

aimed to resolve the localization problems and 

achieve suitable target tracking results. 

Experimentation showed the ability of the model to 

effectively target tracking and energy consumption.  

In 2023, Zhu et al. [12] designed a Recursive 

Robust Set-Membership Fusion Estimator (RSMFE) 

for tracking the target in mobile WSN. The model 

was well understandable for the locations with 

Unknown But Bounded (UBB) and had improved 

tracking accuracy. The location uncertainty was well-

tracked, and it achieved suitable results with high 

stability and accuracy. A new formula was developed 

for RSMFE to reduce the computational complexity 

through its novel decoupling and equivalent 

transformation strategies. The new fusion update 

ensured high tracking accuracy and reduced 

complexity. The effectiveness of the technique was 

measured through the different anchor location 

settings, and the results against the comparative 

techniques were better in terms of various tracking 

error measures.  

In 2021, Zhou et al. [13] used a new hierarchical 

tracking model designed through the Edge 

Intelligence (EI), and the model was well adaptable 

for Mobile Target Tracking with WSN (MTT-WSN). 

The proposed model was well aware of the location 

of the mobile nodes and thus was able to predict the 

location of the edge servers and moving nodes. The 

use of EI improved real-time tracking, as it used a 

resource allocation strategy for consecutive tracking. 

The optimal resource allocation was built into the 

model, and it improved the accuracy of the tracking 

scenario. The results of the model were compared to 
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reinforcement learning techniques, and the results 

indicated a better performance in real-time target 

tracking. The results of the scheme were better than 

the non-cooperative scheme, and it achieved 

significant tracking performance.  

In 2021, Zhu et al. [14] presented a target-

tracking strategy by analyzing the received signal 

strength. An adaptive environment was developed 

with the event-driven stimulator for presenting the 

locations of the moving target. The scenario was built 

for the resource constraint environment, and it 

achieved improved tracking performance through 

bounded modeling. The target location was identified 

through the adaptive event-triggered mechanism, 

which tracked the location of the moving target near 

anchors. This model thus provided accurate tracking 

and ease of communication. The entire process 

provided guaranteed localization accuracy and 

reduced overall computational complexity.  

In 2024, Khiadani and Hendessi [15] defined the 

protocol setup for energy-efficient tracking. The 

model initially adopted a Kalman filter for tracking 

the target position. The filter through its non-linear 

properties ensured high computation and also eased 

the tracking performance. The proposed selected a 

leader node for following the lead and tracking the 

position of the target. When the leader exhausted 

their energy, a new leader was selected, and the 

tracking task was continued. To achieve less 

computational complexity, the model performed 

target tracking in two different phases. The phase 

change ensured better tracking and energy constraints 

for WSN. 

In 2023, Zhu et al. [16] designed a novel mobile 

target tracking framework Environmentally Adaptive 

Event-driven Robust Square Root Cubature Kalman 

Filter (EAERCKF) technique for tracking the moving 

targets in the WSN. Initially, the scheduling 

procedure was executed using adaptive procedures 

for identifying the anchor distribution density 

between the moving objects. Later, the motion states 

of the moving targets were identified by EAERCKF 

and then different validations were executed in the 

suggested technique for identifying the target 

tracking efficiency over other techniques.    

In 2023, Khedr et al. [17] suggested a new 

Energy-Aware Radial Clustering Deep 

Convolutional Learning (EARC-ODCL) technique 

along with a Piecewise Regressive Multi-objective 

Golden Eagle Optimizer (PRMGOA). Here, the 

developed PRMGOA optimization technique was 

employed to choose the optimal cluster heads and 

then sensor node boundaries were identified by a 

convolutional network. Later, network congestion 

issues were identified using the piecewise linear 

regression technique, which helped to reduce the data 

loss. Later, different analyses were executed in the 

developed EARC-ODCL over classical mobile target 

tracking models.  

In 2024, Siva and Merline [18] recommended an 

efficient mobile target tracking framework named 

Ensemble Random Bayes Support Vector-based 

Random Electric Eel (ERBS-REE) for improving 

object detection efficiency. The major goal of the 

developed technique was to track the objects 

accurately without any error in WSN. Next, the target 

tracking procedure was executed by ensemble 

techniques. Moreover, a novel optimization strategy 

was employed for tuning the efficiency of the 

developed network. Then, different performance 

analyses were executed in the suggested technique to 

verify its efficiency over classical techniques. 

In 2024, Ramadevi et al. [19] proposed an 

energy-saving-based target-tracking framework for 

mobile WSNs with two different phases. In the initial 

phase, mobility target tracking procedures were 

performed by considering the Angle of Arrival 

(AOA) and Received Signal Strength (RSS) input 

factors, and in the next phase target movement 

prediction procedures were executed. Moreover, the 

Lion Mutated-Crow Search Algorithm (LM-CS) was 

used to execute the prediction procedures optimally. 

Then, different performance analyses were executed 

in the suggested framework over classical techniques. 

2.2 Problem statement 

Target tracking using WSN can be influenced by 

challenging environments, and different 

communication scenarios built through dynamic 

setup. The target tracking should match different 

quality of services, and ensure to retain maximum 

energy without compromising other services. Several 

advancements and complications presented in the 

classical mobile target tracking framework in WSN 

are offered in Table 1. 

From analyzing recent works, some research 

ideas can be gathered, and they are pointed out below: 

• WSN follows a dynamic structure, and thus 

the location of the sensor nodes, and 

communication link differs from time to time. 

Thus, it is computationally difficult to reach 

high localization accuracy. Target tracking 

through WSN should achieve high accuracy 

without compensating the energy and other 

QoS metrics. 

• Filter-based techniques have proven to be 

effective in WSN target tracking. Filtering 

techniques through their less complex design, 

and low cost, achieve less complex target 
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tracking. Also, the filtering techniques can 

better handle the non-linearity and state 

changes. As WSN lifetime is limited to 

battery life, it is necessary to design the target 

tracking model to be energy efficient.  

• Optimization algorithms are better in node 

selection and this can be applied for active 

target tracking. Using the optimization 

algorithms ensures better results of sensing, 

data processing, and communication. It is 

necessary to coordinate the target tracking 

through an optimization algorithm and 

improve the reliability.    

3. Mobile target tracking system in WSN 

with overall model description    

3.1 System model description 

Target tracking is a prime need in many 

applications like wildlife monitoring, rescue 

operations, military, radar and aviation services, 

communication services, and so on. WSN is one of 

the effective target tracking models as it tracks the 

moving target through its sensor devices. A moving 

target can enter and exit the sensor environment, and 

the sensor locates the target by sending information 

from the target. Target tracking through WSN is 

commonly adopted in surveillance-based 

applications. Sensor nodes establish wireless links 

between the sensors and sink node and notify the base 

station related to the location of the target. A general 

description of the target tracking model in WSN is 

represented in Fig.1. 

The sensors in the WSN module are mobile/static, 

and when a target enters the system, the sensor nodes 

track its position by calculating its coordinates. 

Consider the WSN sensing region with R static 

sensors, each sensor statistically dispersed in 

different locations, and it is arranged as Si : i=1, 2…R. 

The location of the sensor in WSN is noted through 

its coordinates, and for the sensor Si, the coordinate is 

given as (ui , vi). The coordinates can indicate the size 

of the sensor.  

Consider the moving target M entering the 

sensing environment and it starts to displace from one 

position to another. The location of the moving target 

is denoted by (uM , vM). WSN performs the target 

tracking through any mechanisms and aims to 

correctly predict the location of the target.  

The target tracking mechanism must take account 

of tracking error, as it defines the accuracy of the 

tracking process. The actual spot of the moving target 

is denoted as (uM, vM). After tracking the path of the 

target, the system aims to reduce the tracking error. 

The tracking error is identified from the deviation in 

the predicted location and the actual location. The 

target tracking system continuously tracks the path of 

the moving target for each time interval. The target 

tracking performance is denoted as in Eq. (1). 

 

𝑎𝑟𝑔    𝑚𝑖𝑛 𝑓𝑠
(𝑢̂𝑀,𝑣̂𝑀)

=  

1

𝑀
∑ √(𝑢̂𝑀 − 𝑢𝑀)2 − (𝑣𝑀 − 𝑣𝑀)2𝑗=1

𝑀                 (1) 

 

For target tracking, the original location (uM, vM) 

is considered to be a known instance.  

 
Table 1. Features and challenges of classical mobile target tracking models in WSN 

Author 

[citation] 

Methodology Features Challenges 

Madhavi 

et al. [11] 

PF-SVM • High target tracking efficiency 

•  Low energy consumption achieved through 

a reliable communication mechanism 

• Dynamic path alters the 

tracking efficiency. 

Zhu et al. 

[12] 

RSMFE • Achieves better stability and tracking 

accuracy 

• Less computational complexity  

• Does not guarantee anchor 

localization. 

Zhou et 

al. [13] 

MTT-WSN • Achieves real-time tracking. 

• Adopts rescheduling to reach the optimal 

target path. 

• Even though, consecutive 

target tracking is achieved; 

it faces challenges from 

dynamic constraints. 

Zhu et al. 

[14] 

Robust set 

membership fusion 

• Adaptive event-trigger reduces the overall 

computational complexity. 

• High localization accuracy. 

• Does not ease the 

communication burden 

within complex scenarios. 

Khiadani 

and 

Hendessi 

[15] 

Kalman filter • Achieves high precision target, and 

improves tracking accuracy. 

• Faces challenges in the 

initial phase of target 

tracking. 

•  High time complexity. 
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Figure. 1 Basic representation of target tracking model  

 

 
Figure. 2 Architectural illustration of proposed target 

tracking model for WSN 

 

3.2 Developed mobile target tracking system in 

WSN 

Target tracking in WSN requires high energy 

optimization, as the nodes in the sensing environment 

are limited to batteries. Developing an energy 

constraint target tracking model with high accuracy 

can aid in many monitoring and surveillance systems. 

Optimization algorithms have been effectively 

adopted in the routing mechanism of WSN, and have 

led to significant improvement in WSN quality 

metrics. Using the optimization for selecting the right 

optimal functioning node can reduce the complexity 

of the tracking, and also create an energy-aware 

target tracking model.  

The developed mobile target tracking in WSN is 

realized through two major phases 1) Selection of 

optimal right functioning node, and 2) Target 

tracking with the optimized WSN. When a moving 

target enters the system, the sensors begin to track the 

position of the target. Here, the right optimal 

functioning node is selected among various sensor 

nodes through the TBA optimization procedure. This 

ensures to reduction in the total number of active 

nodes involved in the target tracking, and thus 

gradually reduces the energy consumed in target 

tracking. TBA selects the optimal right functioning 

node through minimal energy consumption as its 

objective and thus realizes a high network lifetime for 

WSN. The optimal right functioning node selected by 

TBA engages in tracking the location of the target, 

and the entire tracking process will be handled 

through the IUKF technique. The IUKF mechanism 

aims to reduce the tracking error through its reliable 

tracking steps and create an energy-efficient tracking 

model. Fig.2 shows the architecture model of the 

proposed target tracking model for WSN. 

4. Optimal functioning node selection for 

iterated unscented Kalman filter-based 

mobile target tracking system in WS    

4.1 Optimal functioning node selection with TBA 

Optimal functioning node selection can improve 

the tracking ability and also sustain the energy 

requirement for target tracking. Nodes of WSN are 

battery operated, and thus using a single node for 

target tracking can result in loss of data and quality. 

When a single node performs the target tracking, it’s 

possible for excess energy consumption, as the 

sensing range of each sensor is limited. This can 

reduce the overall accuracy of target tracking and also 

reduce the lifetime of the network. One of the 

important needs in WSN-based target tracking is 

presenting an efficient target-tracking model without 

compromising the energy needs of the tracking 

system.  

Optimization plays a crucial role in selecting the 

nodes suitable for target tracking.  Selecting the right 

functioning node with minimal energy consumption 

is a prime need for target tracking. Here, the TBA 

[20] is involved in selecting the optimal right-

functioning node. The TBA algorithm has high 

convergence properties and also provides the optimal 

solution faster. As it mimics the hunting and 

deceptive characteristics, it has strong content for 

exploration and exploitation updates. Here, for 

selecting the right functioning node, the TBA 

engages in finding the optimized WSN with an 

optimal right functioning node with minimal energy 

consumption as its objective. In the mobile target 
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tracking framework, the TBA technique is employed 

to select the optimal nodes. Executing optimal node 

selection procedures in mobile target selection 

techniques aid in improving the performance of the 

network and helps to accomplish quick data 

transmission with higher reliability. Moreover, the 

TBA technique helps to minimize energy utilization 

and also improves the lifespan of the network. The 

TBA mechanism helps to choose the essential nodes 

according to their target position. Furthermore, the 

TBA technique helps to overcome the 

communication overhead issues by eliminating the 

redundant data transmission that aids in enhancing 

the communication among the network. Good node 

selection helps for tracing the targets in the mobile 

with node sensing performance enhancement without 

any error. The pseudo-code of TBA in generating the 

optimal right functioning node is presented as in 

Algorithm 1.  

 

Algorithm 1: TBA 

Input: Initialized data of WSN with R 

nodes  

Si : i= 1,2..R 

Output: Optimal right functioning node 

Sj
opt 

Parameters: Population size = 10; 

Chromosome length = 10; Maximum iteration: 

100  

Calculation of fitness through Eq. (2) 

 For  t < max 

 Perform the update based on the TBA 

algorithm. 

 End for 

Return to the Optimal right functioning 

node. Sj
opt 

 

The steps behind selecting the optimal right 

functioning node are as follows: 

1) Initialize the WSN data and the positions of the 

sensor nodes. Initialize the algorithm parameters and 

the iteration count. 

2) Find the fitness based on minimal energy 

consumption. The TBA procedure defines its 

objective function based on the minimization of 

energy consumption, and it is defined in Eq. (2). 

 

𝐹𝑖𝑡 =
𝑎𝑟𝑔 𝑚𝑎𝑥 (

1

𝐸𝐶
)

{𝑆𝑗
𝑜𝑝𝑡

}
                                         (2) 

 

𝐸𝑐 = 𝑃𝑡𝑟 ∗ 𝑇𝑡𝑟 + 𝑃𝑅𝑥 ∗ 𝑇𝑅𝑥

  

The energy consumption is defined based on the 

transmitted energy Ptr, received energy PRx, and time 

required for data transmission Ttr and data reception 

TRx.  

3) After computing the fitness, the TBA 

procedure begins and performs the solution update 

according to the general update rule. 

4) At the end of the procedure, the TBA defines 

the optimal right-functioning nodes as the return 

solution.  

4.2 Mobile target tracking using IUKF 

The IUKF [21] is used for performing mobile 

target tracking. The IUKF technique is the enhanced 

version of UKF, where different iterations are 

employed to execute the prediction process and also 

updating procedure is performed under the single 

filtering cycle that aids in accomplishing precise state 

validation outcomes in the mobile target tracking 

phase. The IUKF technique accomplishes superior 

state estimation results by observing the predicted 

state with extra information along with repeated 

updating while dealing the non-linear systems. IUKF 

mechanism is highly efficient in tracking the mobile 

target and also it easily collects and handles the non-

linearity for detecting the state without considering 

the Jacobians. In the IUKF, outcomes attained from 

prior iteration are used as input in the upcoming 

mobile target tracking phase. Using IUKF in the 

nonlinear system helped to improve the accuracy as 

well as robustness in the initial estimation stages. 

Moreover, the IUKF model aid in accomplishing 

superior convergence, and also it easily handles the 

non-Gaussian noise distributions while tracing the 

mobile targets. Observations displayed that the 

developed IUKF technique easily tracks the moving 

objects from the noisy environment and uncertain 

dynamics. 

Furthermore, The IUKF obtains more accurate 

state and covariance estimation than the UKF, 

especially for strongly complicated nonlinear 

systems. The theory proves that UKF can capture the 

true mean and covariance of state distribution with 

3rd-order accuracy for any nonlinearity using a set of 

sigma points. However, there is one drawback of 

UKF the number of sigma points is often not very 

large, so the sigma points cannot adequately represent 

complicated distributions. A natural idea of IUKF is 

to improve performance by embedding iteration 

processes into the UKF framework. Finally, the 

IUKF technique accurately predicted the movements 

in the mobile target tracking phase.    

Therefore, the implementation steps of IUKF can 

be summarized as follows: 
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Step 1: The optimal right functioning node 𝑆𝑗
𝑜𝑝𝑡

 

is provided to the IUKF. State estimates of the target 

location are initialized as 𝑚̂0, and its corresponding 

covariance matrix is defined as𝑐̂0, and its expression 

is defined in Eqs. (3) and (4).  

 

𝑚̂0 = 𝑌(𝑚0)     (3) 

 

𝑐̂0 = 𝑌((𝑚0 − 𝑚̂0)(𝑚0 − 𝑚̂0)𝑇)   (4) 

 

Step 2:  Consider the time step s, and for each 

time step, the state and covariance matrix are 

redefined accordingly as a UKF update. 

 

Step 3: Set the values of  𝑚̂𝑠,1 =  𝑚̂𝑠, and 𝑐𝑠,1 =
𝑐𝑠.  

Step 4: Now, new Sigma points Xn are generated, 

and it is expressed as in Eq. (5). 

 

𝑋𝑛 =  

[
𝑚𝑠,𝑛−1,  𝑚̂𝑠,𝑛−1 + (√(𝑎 + ∅)𝑐𝑠,𝑛−1)

𝑓
 ,    

𝑚̂𝑠,𝑛−1 − (√(𝑎 + ∅)𝑐𝑠,𝑛−1)
𝑓

]       (5) 

 

Step 5: Calculate the values of  𝑚̂𝑠,𝑛−1 and 𝑐𝑠,𝑛−1, 

for each iteration 𝑛.  

Step 6: Define the inequality for state and 

covariance update. 

Step 7: Based on inequality redefine the update, 

or else return the position of a target for each time 

instance.  

Based on the following steps, the IUKF identifies 

the state value of the moving target and engages in 

energy-efficient target tracking. The IUKF-based 

mobile target tracking model is offered in Fig. 3. 

5. Results and discussion   

5.1 Network setup 

The entire simulation of the proposed IUKF-

based target tracking model was implemented in 

MATLAB tool, and a necessary setup for the WSN 

model was created for target tracking. Evaluation of 

the target tracking through IUKF was compared with 

several recent models, and the robustness of the 

proposed IUKF with TBA was experimented with. 

Various optimization techniques employed for the 

validation of the mobile target tracking model in 

WSN were given as follows Golf Optimization 

Algorithm (GOA) [22], Namib Beetle Optimization 

Algorithm (NBOA) [23], Equilibrium Optimizer 

(EO) [24], Addax Optimization Algorithm (AOA)  

 
Figure. 3 Operation flow of developed IUKF-based 

mobile target tracking model  

 

[25] and TBA. Classical techniques employed for the 

analysis of mobile target tracking were PF-SVM [11], 

RSMFE [12], Kalman filter [15], MTT-WSN [13], 

and IUKF. Various newly designed mobile target 

tracking models were EAERCKF [16], EARC-

ODCL [17], ERBS-REE [18] and LM-CS [19]. For 

the mobile node target tracking, a simulation 

environment was created with varying sink nodes, 

and different other parameters initialized for 

evaluation are briefed through Table 2.     

5.2 Overview of comparative algorithms 

Presently, various heuristic optimization 

techniques like GOA [22], NBOA [23], EO [24], and 

AOA [25] are employed for tracking the mobile 

target in WSN. 

• GOA [22] is a widely known metaheuristic 

technique, which has the efficiency to 

overcome real-world issues. It needs minimal 

parameters and also tackles the local minimal 

issues. 

• NBOA [23] has the efficiency to minimize the 

dimension issues while selecting the features. 

Moreover, its validation cost is minimal with 

reduced training procedures.  

• EO [24] has a simple implementation 

procedure and also it offers higher 
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adaptability and stability in all complicated 

cases. In the exploitation and exploration 

phase, it offers superior balancing efficiency. 

• AOA [25] provides strong convergence over 

the global optimum regions and also needs 

minimal parameter tuning. Moreover, it 

provides higher robustness with quick 

convergence to the optimal solutions. 

Optimization techniques are employed to tackle 

the optimization-based issues presented in the 

network. Yet, these techniques are prone to several 

complications like minimal convergence, poor 

balancing issues in exploitation as well as exploration 

region, sensitivity to parameters initialization phase, 

higher consumption of time, and so on. The 

developed framework used the TBA technique for 

selecting the optimal nodes to verify the movements 

in the mobile target tracking model. The TBA 

technique is designed by including the hunting 

procedures of the tiger beetle to identify the optimal 

solutions. The TBA technique has the efficiency to 

handle the balancing among the exploitation and 

exploration phases. Moreover, the TBA mechanism 

offers better outcomes to overcome optimization-

based issues. Based on these several advantages, the 

TBA technique is considered in the developed 

research work. 

 
Table 2. WSN Parameters for developed mobile target 

tracking model 

Parameters Value 

Data count 1000 

Total number of 

sink nodes 

[3,4,5,8] 

Radius  25 

Field Dimension of 

WSN 

{100,100} 

Probability of node 

to become CH 

0.1 

Total data packets 1000 

Initial Energy 

considered  

0.3 

Energy spent by 

transmit and receive 

nodes 

0.00000005 

Efs 0.00000000001 

Emp 0.0000000000000013 

Data aggregation 

energy 

0.000000005 

Total % of 

advanced nodes  

0.1 

Alpha % 1 

5.3 Performance measures 

Different performance measures used in the 

developed TBA-IUKF-based mobile target tracking 

model are offered as follows. 

• The largest absolute value of several elements 

in a set is termed as Infinity Norm𝐴𝑔and it is 

provided in Eq. (6). 

 

𝐴𝑔 = 𝑚𝑎𝑥
1≤𝐶𝑀≤𝑌𝑗

|𝐸𝑚𝐶𝑀|                                        (6) 

 

• The average variations among the target and 

actual values are termed as Root Mean 

Squared Error (RMSE)𝑄𝑓and it is computed 

by Eq. (7). 

 

𝑄𝑓 = √
∑ (𝑅𝑑𝐶𝑀1−𝑃ℎ𝐶𝑀2)2𝑌𝑗

𝐶𝑀=1

𝑌𝑗
                         (7) 

 

• The measures used to validate the target 

tracking accuracy with time series analysis is 

known as Symmetric Mean Absolute 

Percentage Error (SMAPE) 𝐾𝑣is given in Eq. 

(8). 

 

𝐾𝑣 =
100%

𝑌𝑗
∑

|𝑃ℎ−𝑅𝑑|
(|𝑅𝑑|+|𝑃ℎ|)

2

𝑌𝑗
𝐶𝑀=1                                (8) 

 

• The mean used to validate the absolute error 

in the targeted values is known as Mean 

Absolute Scaled Error (MASE) 𝑈𝑔and it is 

computed by Eq. (9). 

 

𝑈𝑔 =
𝑃ℎ

1

𝑌𝑗−1
∑ |𝑅𝑑𝐶𝑀−𝑅𝑑𝐶𝑀−1|

𝑌𝑗
𝐶𝑀=2

                          (9) 

 

• The metric used to validate the average 

magnitude of the absolute errors among the 

target and original values is specified as Mean 

Absolute Error (MAE) 𝐽𝑟and it is verified by 

Eq. (10). 

 

𝐽𝑟 =
∑ |𝑃ℎ−𝑅𝑑|

𝑌𝑗
𝐶𝑀=1

𝑌𝑗
                                            (10) 

 

• The measure used to validate the distance 

among the vectors by summing the absolute 

values of every vector component is known as 

L1-Norm𝑁𝑡1and it is analyzed using Eq. (11) 

 

𝑁𝑡1 = ∑ |𝐸𝑚𝐶𝑀|𝑌𝑗
𝐶𝑀=1                                             (11) 
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(a)                                                                                           (b) 

 

 
(c)                                                                                            (d) 

Figure. 4 Performance analysis of developed TBA-IUKF-based target tracking model over classical techniques 

regarding: (a) MAE, (b) MASE, (c) MEP, and (d) RMSE 

 

 

• The average percentage of error among the 

target and original values is termed as Mean 

Percentage Error (MPE) 𝐵𝑦and it is offered in 

Eq. (12). 

 

𝐵𝑦 =
100%

𝑌𝑗
∑

𝑅𝑑−𝑃ℎ

𝑅𝑑

𝑌𝑗
𝐶𝑀=1                                   (12) 

 

• The metric used to validate the shortest span 

among the target and vector origin region is 

known as L2-Norm𝑁𝑡2and it is represented in 

Eq. (13). 

 

𝑁𝑡2 = √∑ |𝐸𝑚𝐶𝑀|2𝑌𝑗
𝐶𝑀=1                                        (13) 

 

Here, the mean values are specified as 𝐸𝑎 , 

computational values are denoted as𝐶𝑀, a matrix is 

indicated as𝐸𝑚, real values are given as𝑅𝑑, fitted 

points are termed as 𝑌𝑗 and predicted values are 

denoted as𝑃ℎ. 

5.4 Performance analysis of TBA-IUKF target 

tracking model for the varying variance of the 

process 

The variance of the process is one of the 

indicators for node target tracking. Different values 

of variance of the process show the ability to track for 

different noise factors and different tracking 

scenarios. Here, the graph in Fig. 4 shows the 

performance of different tracking models for 

different variance of process, and the performance of  
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(a)                                                                                              (b) 

Figure. 5 Comparative analysis of proposed TBA-IUKF-based target tracking model over existing models with  (a) 

Energy consumption, and (b) Residual energy 

 

                         
(a)                                                                                       (b) 

 

                          
(c)                                                                                       (d) 

 

 
  (e) 

Figure. 6 Convergence analysis on recommended TBA- IUKF-aided target tracking model with: 

(a) WSN node count as 40, (b) WSN node count as 60, (c) WSN node count as 80, (d) WSN node count as 100, and (e) 

WSN node count as 120 
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(a)                                                                                             (b) 

Figure.7 Algorithmic analysis of TBA-IUKF target tracking model for different nodes for: (a) Energy consumption and 

(b) Residual energy 

 

models is noted against the error metrics like MAE, 

MASE, MEP, and RMSE respectively. While 

selecting the variance of the process as 0.6, the 

proposed TBA-IUKF has shown a great performance 

with minimal values of MAE at less than 45.2%, 

53.2%, 14.8%, and 53.9% than PF-SVM, RSMFE, 

Kalman Filter, and IUKF respectively. Similarly for 

other error candidates like MASE, MEP, and RMSE, 

the proposed TBA-IUKF has achieved comparatively 

improved performance for different values of 

variance of process. 

5.5 Comparative analysis of TBA-IUKF-based 

target tracking model 

The target tracking models established through 

WSN should ensure great skills in preserving the 

energy of the nodes. As the optimal right-functioning 

node is selected for improving energy conservation, 

it can improve the overall lifetime of the network. 

Here, the proposed TBA-IUKF is compared through 

recent target tracking models based on energy-based 

metrics for choosing different node setups in WSN, 

and the results are shown in Fig. 5. The energy 

consumption and residual energy are important 

measures for improving the performance of the WSN. 

Here, the performance of the IUKF filter is measured 

through different node counts. For a node count of 

120, the proposed TBA-IUKF has achieved minimal 

comparative energy consumption values of 13.04%, 

16.66%, 20.1%, and 16.66% than PF-SVM, RSMFE, 

Kalman Filter, and IUKF respectively. For the same 

case, the residual energy achieved by the proposed 

TBA-IUKF is better as 5.88%, 2.85%, 3.44%, and 

3.44% than PF-SVM, RSMFE, Kalman Filter, and 

IUKF, accordingly. This shows the TBA-IUKF has 

combined achieved an effective target tracking, and 

improved the network lifetime. 

5.6 Convergence analysis of TBA-IUKF-based 

target tracking model for different node setup 

The convergence shows the performance of TBA 

in selecting optimal functioning nodes for TBA, and 

graphs under different node counts are provided as in 

Fig. 6. The proposed TBA-IUKF has jointly achieved 

a better energy consumption rate, and has achieved 

good performance through optimal functioning node 

selection. The node selection has reduced the 

complexity of the tracking scenario, and non-linear 

changes in the target path are successfully tracked. 

For varying node count, the proposed TBA-IUKF has 

performed better in comparison to the recent 

optimization models like GOA-IUKF, NBOA-IUKF, 

EO-IUKF, and AOA-IUKF respectively. For 

iteration, the performance of TBA is stable and thus 

improves the target tracking performance. 

5.7 Energy-based validation of TBA-IUKF-based 

mobile target tracking model 

The energy metrics are analyzed for the TBA-

IUKF against the recent optimization techniques and 

it is depicted in Fig. 7. For a node count of 120, the 

proposed TBA-IUKF has achieved minimal 

comparative energy consumption value of 12.5%, 

10.3%, 14.8%, and 9.8% than GOA-IUKF, NBOA-

IUKF, EO-IUKF, and AOA-IUKF respectively. 

Similarly, the residual energy achieved by the 

proposed TBA-IUKF is better at 7%, 10.3%, 14.8%, 

and 9.5% than GOA-IUKF, NBOA-IUKF, EO-IUKF, 

and AOA-IUKF respectively. This indicates the use 

of an optimization algorithm can have a major impact  
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Table 3. Statistical evaluation of proposed TBA-IUKF based mobile target tracking framework. 

Node count = 40 

Terms GOA-IUKF 

[22] 

NBOA-IUKF 

[23] EO-IUKF [24] 

AOA-IUKF 

[25] 

Proposed 

TBA-IUKF 

Best 11.566 11.571 11.582 11.613 11.325 

Worst 14.714 14.552 15.624 13.497 14.58 

Mean 11.716 11.657 11.715 11.728 11.486 

Median 11.572 11.571 11.582 11.613 11.325 

Standard 

Deviation 0.38272 0.42404 0.45151 0.36594 0.56187 

Node count = 60 

Best 11.625 11.666 11.601 11.546 11.322 

Worst 12.659 11.704 15.262 11.627 13.487 

Mean 11.695 11.69 11.734 11.579 11.344 

Median 11.625 11.704 11.678 11.562 11.322 

Standard 

Deviation 0.20498 0.01845 0.40703 0.038261 0.21644 

Node count = 80 

Best 11.673 11.553 11.568 11.578 11.3 

Worst 13.505 14.517 15.028 15.174 15.148 

Mean 12.199 11.861 11.671 11.614 11.339 

Median 12.047 11.722 11.568 11.578 11.3 

Standard 

Deviation 0.53183 0.49452 0.48634 0.35965 0.38473 

Node count = 100 

Best 11.606 11.612 11.621 11.561 11.302 

Worst 12.459 14.951 14.85 12.715 14.616 

Mean 11.771 11.849 11.797 11.783 11.443 

Median 11.715 11.612 11.818 11.863 11.302 

Standard 

Deviation 0.28333 0.68603 0.33345 0.25509 0.54726 

Node count = 120 

Best 11.665 11.618 11.675 11.677 11.351 

Worst 13.041 12.939 12.474 14.228 11.963 

Mean 11.896 11.796 11.751 11.775 11.369 

Median 11.693 11.693 11.675 11.677 11.351 

Standard 

Deviation 0.43222 0.28702 0.16546 0.26198 0.10505 

 

 

on the performance of target tracking, and it can 

actively reduce the total active nodes involved in 

target tracking, thereby reducing energy consumption.  

5.8 Statistical evaluation of proposed TBA-IUKF 

based mobile target tracking for different 

node setup 

Table 3 shows the statistical evaluation through 

best, worst, mean, median, and standard deviation 

measures for different node counts. In the developed 

framework, statistical validations are executed to 

verify the efficiency of the mobile target tracking 

technique using various optimization approaches. 

Executing statistical validation in the recommended 

target tracking technique helps to verify the node 

selection efficiency of the TBA-IUKF technique. The 

statistical analyses are executed by considering 50 

iterations. Once, the execution is done among the 50 

iterations, higher values are termed as the worst value, 

minimal values are considered as the best value, an 

average of 50 iterations is termed as mean and the 

middle value of 50 iterations is known as median. 

Here, 5 optimization techniques like GOA-IUKF,  
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Table 4. State-of-the-art evaluation of the proposed TBA-IUKF-based mobile target tracking model 

Terms PF-SVM 

[11] 

RSMFE 

[12] 

MTT-WSN 

[13] 

Kalman 

filter [15] 

Proposed 

TBA- IUKF 

MEP 49.137 47.626 47.167 46.096 34.718 

SMAPE 1.242 1.6149 0.92589 1.2609 0.49495 

MASE 147.97 138.55 156.89 139.78 122.96 

MAE 9.0421 12.713 13.786 11.195 3.9444 

RMSE 13.848 12.318 10.535 12.64 5.6369 

L1-Norm 601.07 542.11 609.62 679.19 447.27 

L2-Norm 81.645 83.259 85.558 85.767 69.611 

L-Infinity Norm 17.509 15.074 17.254 14.073 11.766 

 

 
Figure. 8 Scalability validation on developed TBA-IUKF-

based mobile target tracking model 

 
Table 5. Computational complexity analysis 

Technique Computation Complexity 

GOA-IUKF [22] 𝑂[𝑀𝐼𝑡𝑟 + 1 + 𝑁𝑜𝑝 + 2 + 𝐶𝑙

+ 1] 

NBOA-IUKF [23] 𝑂[𝑀𝐼𝑡𝑟 + 𝑁𝑜𝑝 + 2] 

EO-IUKF [24] 𝑂[𝑀𝐼𝑡𝑟 + 1 + 𝑁𝑜𝑝 + 1

+ 𝐶𝑙] 

AOA-IUKF [25] 𝑂[𝑀𝐼𝑡𝑟 + 𝑁𝑜𝑝 + 3 + 𝐶𝑙] 

TBA-IUKF 𝑂[𝑀𝐼𝑡𝑟 + 𝑁𝑜𝑝 + 1] 

 

NBOA-IUKF, EO-IUKF, AOA-IUKF, and TBA-

IUKF are considered for the validation with 50 values 

for each algorithm in the convergence validation. 

However, it creates difficulties in the analysis 

procedures. To tackle these issues statistical 

validation is executed to assure the efficiency of 

TBA-IUKF by considering different specifications 

like mean, best, standard deviation, worst, and 

median. In this phase, optimization techniques are 

employed to obtain the optimal solutions with good 

decision-making efficiency. This analysis shows the 

gradual performance of target-tracking models under 

different node counts. The statistical measurements 

are undertaken based on energy consumption 

measures achieved through TBA and other 

comparative algorithms. For the best measure, the 

TBA-IUKF achieved values of 2.12%, 2.17%, 2.26%, 

and 2.54% higher than GOA-IUKF, NBOA-IUKF, 

EO-IUKF, and AOA-IUKF respectively. In different 

statistical validations, the recommended TBA-IUKF-

based mobile target tracking technique secured 

superior efficiency in tuning the nodes that aid in 

identifying the target movements without any delay. 

Several advancements in the outcomes displayed that 

the recommended TBA-IUKF technique 

accomplishes higher efficiency in choosing the 

optimal outcomes. Finally, the experimental 

outcomes indicate that the TBA was better suited to 

improve the target tracking performance of IUKF 

than recent optimizers.  

5.9 State-of-the-art comparison of developed 

TBA-IUKF-based mobile target tracking 

model 

Table 4 shows the performance of TBA-IUKF 

against some of the recently developed target 

tracking models like PF-SVM, RSMFE, MTT-WSN, 

and Kalman filter. The performance of the model is 

compared with the error-based measures related to 

target tracking. The proposed TBA-IUKF has notably 

shown better error performance than the recent 

models and thus shows robustness in target tracking. 

In the case of MEP measure, the IUKF with TBA has 

outclassed outcomes with values of 41.5%, 37.17%, 

35.85%, and 32% better to PF-SVM, RSMFE, MTT-

WSN, and Kalman filter respectively.   

5.10 Scalability validation on developed TBA-

IUKF-based mobile target tracking model 

Scalability computation performed in the 

developed TBA-IUKF-based mobile target tracking 

model is offered in Fig. 8. In this phase, scalability 

computations are executed by considering the node 

counts over throughput. Executing scalability  
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(a)                                                                                          (b) 

Figure. 9 Performance analysis on developed TBA-IUKF-based mobile target tracking model over recent techniques for: 

(a) Residual energy and (b) Energy consumption 

 

 
(a) 

 

 
(b) 

Figure.10 Validation on developed TBA-IUKF model by varying node density over: (a) Residual energy and (b) Energy 

consumption 
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(a)                                                                                                            (b)  

Figure. 11 Efficiency analysis on suggested TBA-IUKF-based mobile target tracking framework over: (a) Energy 

efficiency and (b) Latency 

 

 

validation in the recommended TBA-IUKF helps to 

enhance the target tracking efficiency in the 

complicated background. Observing the developed 

TBA-IUKF over numerous nodes reduces network 

interruptions and aids in obtaining better mobile 

target tracking outcomes without any error in a 

minimal time. 

5.11 Computational complexity validation on 

suggested TBA-IUKF-based mobile target 

tracking model 

In this phase, computational complexity analysis 

executed in developed TBA-IUKF is tabulated in 

Table 5. Here, the term 𝑀𝐼𝑡𝑟indicates the maximum 

iteration, 𝐶𝑙  specified chromosome length, and 

𝑁𝑜𝑝specifies the number of population. Computation 

complexity validation performed in the suggested 

TBA-IUKF model helps to tackle complicated issues 

while target tracking is executed in mobile networks. 

Moreover, this validation helps to verify the 

performance of the suggested TBA-IUKF model in 

various scenarios. 

5.12 Performance validation on developed TBA-

IUKF over recent techniques 

In this phase, different performance analyses are 

executed in the developed TBA-IUKF-based mobile 

target tracking model over the recent techniques are 

provided in Fig. 9. In this phase, residual energy and 

energy consumption validation are executed to verify 

the target tracking efficiency of the developed TBA-

IUKF model. Here, the target tracking performance 

of the suggested TBA-IUKF technique is identified 

by varying the node counts. While analyzing the 

residual energy in the developed TBA-IUKF model, 

more energy remains than in the classical models 

once they are used for tracking the targets. Attained 

higher residual energy by the developed framework 

displayed the developed TBA-IUKF technique 

gained superior performance than the classical 

techniques while tracking the mobile targets. 

Moreover, the developed TBA-IUKF technique 

gained minimal energy consumption than the existing 

approaches.  

5.13 Performance analysis of developed TBA-

IUKF over node density 

Performance analysis on the suggested TBA-

IUKF-based mobile target tracking model over node 

density is offered in Fig. 10. Here, the validation is 

executed in the developed TBA-IUKF technique by 

varying the node density as 10, 20, 30, 40, and 50. 

While observing the residual energy of the developed 

technique, it accomplishes superior residual energy 

than the classical techniques like GOA-IUKF, 

NBOA-IUKF, EO-IUKF, and AOA-IUKF, 

respectively.  The energy consumption validation 

displayed that the suggested technique gained 

minimal energy utilization than the existing models 

while tracking procedures were performed.  

5.14 Efficiency validation on recommended TBA-

IUKF 

In this phase, energy efficiency and latency 

validation performed in the suggested TBA-IUKF 

model over different techniques has been offered in 
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Fig. 11. In this phase, computations are executed by 

varying the node count to 40, 60, 80, 100, and 120. In 

the energy efficiency validation, the suggested TBA-

IUKF model gained superior energy efficiency than 

the classical models. Accomplishing better energy 

efficiency in the suggested technique helps to obtain 

good communication among other nodes. In the 

latency validation, the suggested TBA-IUKF 

technique gained minimal latency, which refers to the 

suggested model improving the efficiency of the 

network and also aids in increasing the experience of 

the users. Moreover, delay issues attained in the 

network were also resolved effectively.     

6. Case study   

This section discusses various case studies related 

to wildlife monitoring using the target tracking 

procedures. 

 

Case Study 1 [26]: This case study was conducted 

in Southern Nepal at the Terai Arc Landscape (TAL) 

near the River Yamuna. The TAL-Nepal regions have 

five biological corridors, two world heritage sites, 

and three Ramsar sites. TAL-Nepal is a biodiversity 

hotspot and it supports endangered species like 

Gharial and Gangetic Dolphin and also the flagship 

species like the Asian Elephant, Greater One-Horned 

Rhinoceros, and Bengal Tigers. In TAL-Nepal, the 

Greater One-Horned Rhinoceros were monitored by 

collecting data from the wildlife within the protected 

regions of the Department of National Parks and 

Wildlife Conservation (DNPWC) along with the 

support from international domestic organizations 

with modern monitoring wildlife techniques. Various 

equipment used for monitoring the wildlife were 

radio collars, camera traps, and also wildlife 

monitoring technologies like Global Positioning 

System (GPS) collars, conservation drones, and Self-

Monitoring, Analysis, and Reporting Technology 

(SMART). 

Case Study 2 [27]: This case study was conducted 

in Podlaskie Voivodeship village in the regions of 

Sloja, Bialousy and Szerokie Laki. This research was 

executed to identify the deer species in the Sloja 

region. Here, the deer species were captured through 

photographs. The regions of Podlaskie Voivodeship 

village were equipped with Canon RGB and thermal 

imaging cameras. Moreover, different pictures were 

taken when the flights were utilized to create the 

orthomaps. In this case study, a multicopter was used 

with a GoPro camera to view the location of the 

flights. Furthermore, a flight control station was used 

with Mission Planner software and a laptop to 

execute the monitoring procedures. 

7. Conclusion and future work   

Here, a TBA-IUKF-based target tracking model 

was developed for the WSN platform to perform 

effective more accurate tracking of moving objects. 

The selection of the right functioning node was 

improved through the TBA algorithm, which selected 

the appropriate nodes through energy as its objective. 

The target tracking through IUKF was eased through 

the TBA selection approach, and it ensured 

improvement in the network lifetime. The IUKF 

through its adaptive estimation procedure was able to 

improve the effectiveness of target tracking and 

improve the target reaching ability. Experimental 

results through the evaluations indicate the IUKF 

with TBA achieved significant improvement in target 

tracking. The proposed TBA-IUKF has achieved 

minimal comparative energy consumption value of 

12.5%, 10.3%, 14.8%, and 9.8% than GOA-IUKF, 

NBOA-IUKF, EO-IUKF, and AOA-IUKF 

respectively. In the case of MEP measure, the IUKF 

with TBA has outclassed outcomes with values of 

41.5%, 37.17%, 35.85%, and 32% better to PF-SVM, 

RSMFE, MTT-WSN, and Kalman filter respectively. 

This shows the robustness and reliability of TBA-

IUKF-based target tracking in WSN, as it has shown 

satisfactory performance in reducing the energy 

consumption for moving target tracking. 

Challenges in the developed framework TBA-

IUKF: The developed TBA-IUKF framework takes 

more time to identify sensor failures due to 

environmental interferences. These types of 

complications generate errors and also don’t offer 

accurate data as the outcome. Moreover, the 

developed framework wasn’t able to adapt the rapid 

motion changes attained in the network when 

tracking is executed. In some cases, network 

fluctuation issues affected the tracking performance. 

The developed TBA-IUKF technique also needs to 

overcome the computation overhead issues in the 

network attained while updating the information in 

corresponding nodes.        

Future work: Even though the target tracking 

through IUKF was much more effective and reliable; 

it can increase the complexity of the model, and 

increase the power consumption of the overall 

process. This can be improved through deep learning 

representations, and make it adaptable to resource-

constrained applications. Moreover, real-world 

validations for mobile target tracking will be 

considered in upcoming works to enhance the 

accuracy of target tracking in different conditions.   
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