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ABSTRACT

Environmental temperature serves as a major driver
of adaptive changes in wild organisms. To discover
the mechanisms underpinning cold tolerance in
domestic animals, we sequenced the genomes of 28
cattle from warm and cold areas across China. By
characterizing the population structure and
demographic history, we identified two genetic
clusters, i.e., northern and southern groups, as well
as a common historic population peak at 30 kilo
years ago. Genomic scan of cold-tolerant breeds
determined potential candidate genes in the
thermogenesis-related pathways that were under
selection. Specifically, functional analysis identified a
substitution of PRDM16 (p.P779L) in northern cattle,
which maintains brown adipocyte formation by
boosting thermogenesis-related gene expression,
indicating a vital role of this gene in cold tolerance.
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These findings provide a basis for genetic variation
in domestic cattle shaped by environmental
temperature and highlight the role of reverse
mutation in livestock species.
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INTRODUCTION

Temperature is one of the most important environmental
factors driving evolutionary change in organisms (Parsons,
2005). Mammals require a constant body temperature to
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ensure optimal biological activity (Haim & Levi, 1990; Hayes &
Garland, 1995). This leads to strong selection pressure on the
heat production system, including shivering and non-shivering
thermogenesis (Cannon & Nedergaard, 2004). Shivering
thermogenesis produces heat in the short term (Heldmaier et
al, 1989), whereas non-shivering thermogenesis is a non-
contractile process that can compensate for the defects of
shivering thermogenesis and effectively maintain body
temperature (Cannon & Nedergaard, 2004). Although white
adipose tissue (WAT) stores excessive energy as
triglycerides, brown adipose tissue (BAT), which is activated
by cold exposure, is recognized as a major source of adaptive
non-shivering thermogenesis (Hughes et al, 2009; Nicholls &
Locke, 1984; Rowlatt et al, 1971; Saito et al, 2008). For
example, uncoupling protein-1 (UCP1) in BAT dissipates
energy into heat through uncoupled respiration, resulting in
increased fatty acid oxidation and heat production
(Klingenberg, 1999). The thermogenic capacity of BAT is
particularly effective for maintaining core body temperature in
small mammals and infants (Cannon & Nedergaard, 2004).
Nevertheless, the thermogenic program in adipose tissue is a
complex transcriptional regulation process that has not been
fully dissected. The widely reported transcriptional regulators
of adipocytes include peroxisome proliferator-activated
receptor-gamma (PPARYy), peroxisome proliferator-activated
receptor-gamma coactivator 1a (PGC1-a), Forkhead box C2
(FoxC2) and PRD1-BF-1-RIZ1 homologous domain-containing
protein-16 (PRDM16) (Kajimura et al, 2010). Among these
proteins, PPARYy plays a leading role in the differentiation of all
adipocytes (Barak et al, 1999; Nedergaard et al, 2005;
Tontonoz et al, 1994). PGC1-a acts together with PPARYy or
the thyroid hormone receptor for adaptive thermogenesis
(Handschin & Spiegelman, 2006; Puigserver et al, 1998).
FoxC2 can increase BAT levels to enhance insulin sensitivity,
and PRDM16 can induce the browning of WAT and fibroblasts
by driving brown adipogenesis while suppressing white fat
adipogenesis (Seale et al, 2007).

Cattle are intimately associated with human civilization and
culture. At present, there are about 53 cattle breeds in China,
and two recognized species: i.e., B. taurus and B. indicus (Lai
et al, 2006; Lei et al, 2006). Archaeological studies support the
claim that B. taurus was imported into northern China and
northeast Asia from north Eurasia between 5 000—4 000 BP
(Cai et al, 2014), and that B. indicus migrated from the Indian
subcontinent to East Asia around 3 000 BP (Payne & Hodges,
1997). Interestingly, the habitats of these cattle and the
average annual temperature in which they were domesticated
vary widely. Several recent studies have investigated cold
adaptation mechanisms in cattle at the genomic level,
providing valuable resources for future research (Buggiotti et
al, 2021; Ghoreishifar et al, 2020; Hu et al, 2021; Igoshin et al,
2021); however, most reported candidate genes/variations
lack validation. Here, to detect the molecular footprints
underlying cold adaptations in domestic cattle, we sequenced
the genomes of 28 cattle, including 14 cold-tolerant cattle
lineages (annual average temperature of habitat: 2-6 °C) and
14 cold-intolerant cattle lineages (annual average temperature
of habitat: 20-25 °C). Through characterization of population
history and selective sweeps, we identified PRDM16 as a
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candidate gene under selection, which is responsible for the
modification of BAT function and underpins cold-tolerance in
northern cattle.

MATERIALS AND METHODS

Genome sequencing

We sampled a total of 28 cattle from four different regions in
China (i.e., Mongolia, Yanbian, Hainan, and Yunnan). DNA
was extracted from the blood of each individual, and
degradation was monitored based on its concentration by
spectrometry,  fluorometry, and 1% agarose gel
electrophoresis. Paired-end libraries with an insert size of 150
bp were constructed for each individual and sequenced using
the HiSeq X Ten Sequencing System (lllumina, USA). Other
cattle genomes were obtained from the NCBI database
(Supplementary Table S1). We mapped clean reads after
filtering sequencing data to the B. taurus genome assembly
(version ARS-UCD1.2) using BWA v0.7.17 (Li & Durbin,
2009). Duplicate reads were removed using Picard tools
MarkDuplicates  (http://broadinstitute.github.io/picard/).  All
potential single nucleotide polymorphism (SNP) sites were
extracted and filtered using GATK (Mckenna et al, 2010) with
HaplotypeCaller. Filtering was performed under the following
settings: QD<2.0, ReadPosRankSum<-8.0, FS>60.0,
QUAL<30.0, DP<4.0, MQ<40.0, MappingQualityRankSum<-
12.5. ANNOVAR (Wang et al, 2010) and an existing genome
annotation file (GFF/GTF) were used to make corresponding
annotations on the detected SNPs. All experimental
procedures were performed in accordance with the
Regulations for the Administration of Affairs Concerning
Experimental Animals approved by the State Council of the
People’s Republic of China (Document No: 1118091400014).

Phylogenetic and population structure

Principal component analysis (PCA) was carried out using
EIGENSOFT (Price et al, 2006). A phylogenetic tree was
constructed from the SNP data using the neighbor-joining
method in PHYLIP (Plotree & Plotgram, 1989), and graphical
demonstration was performed using Newick Utilities (Junier &
Zdobnov, 2010). Population structure was further inferred
using ADMIXTURE (Alexander et al, 2009) with component
(K) set from 2 to 10 and the best K determined using cross-
validation (CV) analysis.

Linkage disequilibrium (LD) and pairwise sequentially
Markovian coalescent (PSMC) analysis

The LD patterns for different breeds were calculated using the
squared correlation coefficient (r?) between pairwise SNPs
with PopLDdecay script (https://github.com/BGI-shenzhen/
PopLDdecay). The PSMC model (https://github.com/Ih3/psmc)
parameters were set to: -N25 -t15 -r5 -p "4+25*2+4+6", and
mutation rate and generation time were set to: u=1.1x10"8 and
g=5, respectively. The mutation rate was estimated using
baseml in the PAML package.

Selective sweep analysis

The population-differentiation statistic (Fg7) (using VCFtools)
(Danecek et al, 2011) and nucleotide diversity (Pi) and
Tajima’s D (using VariScan v2.0) were estimated using 50 kb
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sliding windows with a 25 kb step size along each
chromosome. Windows in the top 5% of Fgt values were
selected as candidate windows to obtain corresponding
candidate genes. Fisher's exact test was performed on
synonymous and non-synonymous SNPs in the exon region
using PLINK v1.9 (Purcell et al, 2007) to determine the final
candidate genes. Before this step, PLINK v1.9 was used to
remove sites with strong LD correlation (--indep-pairwise 50 5
0.5), and non-synonymous sites were used for Fisher's exact
test (--fisher). Finally, the Q-value was calculated using the R
package fdrtool, and the site with q<0.01 was selected as the
candidate locus to obtain corresponding candidate genes.
Enrichment analysis was conducted using gprofiler2 (Kolberg
et al, 2020).

Cell culture

Lentiviruses with PRDM16 variants were produced by
transfecting HEK293T cells with core plasmids and two helper
plasmids (psPAX2 and pMD2G). The transfections were
implemented using the polyethylenimine (PEIl) method at a
PEl:core plasmid:psPAX2:pMD2G ratio of 27:4:3:2. The
medium was changed 4-6 h after transfection. After 48 h, the
virus-containing medium was harvested and filtered. The 3T3-
L1 cells were then incubated overnight (37 °C, 5% CO,) with
the viral supernatant and 8 pg/mL polybrene. For browning
differentiation, confluent 3T3-L1 cells were incubated for 2
days in a brown adipogenic induction cocktail (Dulbecco’s
Modified Eagle Medium (DMEM) containing 10% fetal bovine
serum (FBS), 20 nmol/L insulin, 1 nmol/L 3,3,5-triiodo-L-
thyronine (T3), 0.5 mmol/L isobutylmethylxanthine, 0.125
umol/L indomethacin, and 1 mmol/L dexamethasone). The
cells were then maintained in differentiation medium (DMEM
containing 10% FBS, 20 nmol/L insulin, and 1 nmol/L T3) for 6
days (37 °C, 5% CO,). The induction medium was changed
every 2 days. At day 8, fully differentiated brown adipocytes
were applied for all experiments in this study.

RNA isolation and quantitative real-time polymerase chain
reaction (QRT-PCR)

Total RNA from tissues and cells was extracted with Trizol
reagent (Thermo Fisher Scientific, USA). Reverse
transcription of 2 pg of total RNA was performed with a high-
capacity cDNA reverse transcription kit (Promega, USA). qRT-
PCR was performed with a SYBR Green Master Mix
(Promega, USA) and detected using a Prism VIIA7 Real-Time
PCR System (Applied Biosystems, USA). Primers were
designed using Primer Quest (Integrated DNA Technologies,
USA). Primer sequences are provided in Supplementary
Table 2.

Western blot analysis

Cells were lysed in RIPA buffer containing 150 mmol/L sodium
chloride, 1.0% TritonX-100, 0.5% sodium deoxycholate, 0.1%
sodium dodecyl sulfate (SDS), and 50 mmol/L Tris with freshly
added protease and phosphatase inhibitor cocktail (Roche
Diagnostics Corp, USA). Equal amounts of protein were
distributed in  10%  SDS-polyacrylamide gel After
electrophoresis, the proteins were ftransferred to a
polyvinylidene fluoride (PVDF) membranes, incubated with
blocking buffer (5% fat-free milk) for 1 h at room temperature,

and blotted with the following antibodies overnight (4 °C): anti-
PRDM16 (Cat# AF6295, RRID:AB_10717965; R&D Systems,
USA), anti-UCP1 (Cat# ab209483, RRID: AB_2722676;
Abcam, UK), anti-PPARy (Cat# 2430; RRID: AB_823599;
CST, USA), anti-HSP90 (Cat# 4874; RRID: AB_2121214;
CST, USA) and anti-B-actin (Cat# A5441, RRID:AB_476744,
Sigma, USA). The dilution ratio of anti-PRDM16, anti-UCP1,
anti-PPARYy and anti-HSP90 was 1:1000 and the dilution ratio
of anti-B-actin was 1:10000. The membranes were then
incubated with horseradish peroxidase (HRP)-conjugated
secondary antibodies for 1 h at room temperature. Signals
were visualized using a Mini Chemi™ 580 (Sage Creation
Science, China) with Super Signal West Pico
Chemiluminescent Substrate (Pierce, USA).

Statistical analysis

Data are expressed as meantstandard error (SE).
Comparisons between groups were performed with one-way
analysis of variance (ANOVA) or Student's t-test. Statistical
significance was set to P<0.05.

RESULTS

Genome sequencing and population history
Whole-genome sequencing of 28 cattle with an average depth
of 33.66x obtained 17.3 billion clean reads (Figure 1A;
Supplementary Figure S1 and Table S3). In total, 45.2 million
single nucleotide polymorphisms (SNPs) were identified, most
of which were located in the intergenic (61.51%) and intron
(35.75%) regions (Supplementary Table S4). Neighbor-joining
trees and PCA based on total SNPs clustered the cattle into
two main groups: i.e., northern and southern groups
(Figure 1B, C). The first principal component (PC1),
representing 32.41% of total variation, separated the samples
into northern and southern cattle (Figure 1C). We further
analyzed the genomes and found that the rates of LD decay
were greater in the southern cattle than in the northern cattle.
Half distances (half of r’) were 18.3 kb (r?=0.37), 12.9 kb
(r*=0.26), and 6.3 kb (r*=0.27) for the northern (Mongolia: MG
and Yanbian: YB) cattle, Hainan (HN) cattle, and Yunnan (YN)
cattle, respectively (Figure 1D). ADMIXTURE analyses with
different component (K) values, including K=2, clearly
indicated that the cattle samples could be classified into
northern and southern groups (Figure 1E).

The demographic history of cattle was determined using the
PSMC model (Li & Durbin, 2011). Results showed two
expansions and two bottlenecks, with population peaks at ~50
and ~700 kilo years ago (kya) and population bottlenecks at
~30 and 400 kya, respectively (Figure 1F). There were two
sharp declines in population, which both occurred during the
glacial period (Naynayxungla Glaciation and Last Glacial
Maximum), consistent with the idea that environmental
temperature has a determinable impact on population size.
Similar historical patterns have been reported in many other
mammals, such as the giant panda, yak, and snub-nosed
monkey (Qiu et al, 2015; Zhao et al, 2013; Zhou & Pawlowski,
2014). Global glaciations are the most probable cause of
sudden change in the global climate and can directly affect
species populations. Indeed, we found that after the
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Figure 1 Population genetic analysis

A: Geographical distribution of selected cattle in this study. Climate layer (annual mean temperature) with a spatial resolution of 2.5 arc-min was
obtained from the WorldClim database (v.2; Fick and Hijmans, 2017; https://worldclim.org/data/worldclim21.html). MG, Mongolia cattle; YB, Yanbian
cattle; YN, Yunnan cattle; HN, Hainan cattle. B: Principal component (PC) analysis, PC1 against PC2. C: Neighbor-joining tree of relationships of
four cattle breeds. D: Genetic structure of cattle breeds using ADMIXTURE. E: LD decay in HN, YN, southern, and northern cattle. F: Demographic
history inferred by PSMC model. Xixiabangma Glaciation (XG, 1 170-800 kya), Naynayxungla Glaciation (NG, 780-500 kya), and Last Glacial

Maximum (LGM, ~20 kya) periods are colored.

Naynayxungla Glaciation (780-500 kya), northern cattle
experienced a long-term bottleneck period until 70 kya. In
contrast, the effective population size (N,) of southern cattle
recovered rapidly after the Naynayxungla Glaciation
(Figure 1F), consistent with previous studies (Chen et al,
2018; Lan et al, 2018; Mei et al, 2018); this could be explained
by the improved living environment in southern areas during
glaciation (Murray et al, 2010). At ~60 kya, HN and YN cattle
showed different N, trends. The N, of HN cattle increased
rapidly (Figure 1F), likely due to the geographical location of
Hainan, a small and comparatively isolated island that lacks
natural predators, which promoted the survival and
reproduction of cattle. According to mitochondrial DNA
haplotypes, B. taurus (northern cattle) and B. indicus
(southern cattle) were both derived from extinct wild aurochs
(B. primigenius), with divergence between the two species
dating back 250 kya (Bradley et al, 1996).
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Genomic scan of selective sweeps

To identify genetic modifications that occurred under different
temperatures, we analyzed selective sweeps between the
cattle groups: i.e., northern (MG and YB) and southern (YN
and HN) cattle. Selective sweep analysis was performed for
whole genomes based on the distribution of Fst values. First,
we identified highly differentiated regions using Fst, and then
determined the top 5% in 50 kb windows with 25 kb steps.
Final candidate genes were then determined and ranked using
Fisher's exact test (g<0.01). In total, 197 candidate genes
were identified with strong selective sweep signals
(Supplementary Table S5). The most significantly enriched
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
of the candidate genes (e.g., SCP2, Cpt2, and APOA5) was
the PPAR signaling pathway (P=1.6x102) (Supplementary
Table S6). SCP2 expression significantly alters the structure
of lipid droplets (Atshaves et al, 2001) and affects the function
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of BAT in Cpt2*™" mice, thereby hindering their ability to adapt
to temperature changes (Lee et al, 2015). Furthermore,
Cpt2*”~ interscapular BAT fails to induce the expression of
thermogenic genes such as UCP1 and PGC1-a in response to
adrenergic stimulation (Lee et al, 2016). APOAS5 treatment can
also increase the expression of the UCP1 gene in adipocytes
(Zheng et al, 2017). Furthermore, many fatty acids positively
affect thermogenesis by activating BAT (Heeren & Scheja,
2018; Li et al, 2018; Quan et al, 2020; Takato et al, 2017). We
also found many candidate genes (e.g., PDE3B, CPT2, and
ALDOB) involved in fatty acid, fructose, and mannose
metabolism and associated with signaling pathways, such as
the insulin signaling pathway (Supplementary Table S7).
Knockout of PDE3B in mice has demonstrated that this gene
is involved in the formation of BAT in epididymal WAT depots
(Guirguis et al, 2013). ALDOB is involved in insulin
biosynthesis and secretion, as well as insulin receptor
signaling (Gerst et al, 2018). Insulin pathways and fat
metabolism are inseparable and can affect the development of
BAT, leading to obesity and insulin resistance (Lynes et al,
2015; Montanari et al, 2017). Consistently, in our study, Gene
Ontology (GO) enrichment analysis revealed two candidate
genes (PRDM16 and ASXL1) related to fat cell differentiation
(G0:0045598), brown fat differentiation (GO:0050873), and
white fat cell differentiation (G0O:0050872) (Figure 2A;
Supplementary Tables S8, S9).

Among genes with selective sweep signals, two candidate
genes (PRDM16 and CPT2) were involved in thermogenesis;

Figure 2 Selection feature of thermogenic candidate gene

PRDM16 was of the most interest as it is known to increase
thermogenesis by promoting the expression of the key gene
UCP1 (Seale et al, 2007) (Figure 2B, C). Analysis indicated
that there was no strong LD among the PRDM16 SNPs
(Figure 2C). PRDM16 had the lowest P-value (P=3.8x107"")
and highest Fs1 (0.52) among genes related to thermogenesis
(Figure 2D, E). In addition, although nucleotide diversity (Pi)
(0.8x107%) of PRDM16 was similar to that of other
thermogenesis-related genes, Tajima’s D analysis supported
the idea that PRDM16 was under selection (D=-1.661)
(Figure 2D, E). The PRDM16 genotypes found in the northern
and southern cattle were well distinguished and consistent
with the phylogenetic tree created using the SNPs of this gene
(Figure 3A). We discovered five non-synonymous single
nucleotide variants (SNVs), one of which (c.2336 T>C,
p.L779P) was found at a higher level (93%) in southern cattle
than in northern cattle (Figure 3B, C; Supplementary Table
S10).

Next, we compared the PRDM16 protein sequences to
other species (Figure 3C;Supplementary Figure S2), and
found that the substitution at Leus;9 in the PRDM16 gene in
northern cattle was the same as that in species with complete
BAT function (e.g., mouse, rat, and hamster) (Figure 3C). In
rodents, BAT is intact and persists throughout their lifetime,
and thermogenesis activity is complete (Kirov et al, 1996;
Scarpace et al, 1994). However, in many large mammals,
such as humans and sheep, BAT function is available during
infancy but can only be activated under certain conditions in

A: Top 10 enriched GO terms in BP (biological process), CC (cellular component), and MF (molecular function). B: KEGG pathway of
thermogenesis. Phosphorylation is represented by green arrow lines, expression is represented by black arrow lines, and indirect effect is
represented by dashed lines. C: LD analysis of exon SNPs of PRDM16 between northern and southern cattle, and genotype heat map of non-
synonymous and synonymous mutation sites in PRDM16 exon. D: Top thermogenic candidate genes under selection. E: Tajima’s D, Pi, and Fgt

values for PRDM16.
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Figure 3 Genetic polymorphism of PRDM16 across cattle populations

A: SNP tree of PRDM16. B: Percentage of each PRDM16 genotype (¢.2336) in northern and southern cattle, respectively. C: Five non-synonymous
SNVs in southern cattle and information on PRDM16 779 site in different species. D: Genetic pattern of PRDM16 (c.2336) in cattle genomes

worldwide.

adults (Lidell et al, 2013; Nahon et al, 2020). Conversely, the
proline substitution in southern cattle was the same as that in
species with incomplete or null BAT function (e.g., sheep, pig,
whale, horse, platypus, elephant, sirenian, marsupial, human,
and rabbit) (Figure 3C). Moreover, we explored the genetic
pattern of these substitutions (c.2336 T>C, p.L779P) across
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cattle genomes worldwide, and found that cattle in cold
regions had a higher frequency of the ¢.2336 C>T mutation,
consistent with the pattern in China (Figure 3D). Thus, we
hypothesized that the substitution of residue 779 in the
PRDM16 gene is probably related to BAT function, and this
locus is likely to play a role in cold tolerance.
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Mutation (c.2336 T>C) effects of PRDM16 T>C, L779P mutation of PRDM16) coding sequences were
To determine the biochemical function of the substitution in generated and induced to differentiate towards beige
PRDM16, 3T3-L1 cells (preadipocyte cell line) ectopically adipocytes (Figure 4A). The overexpression efficiency was
expressing the cattle PRDM16 and PRDM16 MU (c.2336 kept at equivalent levels (Figure 4B, E). After full

Figure 4 PRDM16 779P allele reduced brown adipogenesis

A: Schematic of in vitro differentiation of brown adipocytes. B: mRNA level of PRDM16. C: Oil-red O staining of 3T3-L1 cells at full differentiation. D:
mRNA level of PPARY at full differentiation. E: Protein expression levels of PRDM16 and PPARy. F: mRNA expression levels of brown fat-selective
genes. G: Protein expression level of UCP1. Data are meantSE. n=5-6/group (A, B, E); n=3/group (C, F). Groups were compared using one-way
ANOVA with Tukey post-hoc test. ": P<0.05; ~: P<0.01; ™" P<0.001.
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differentiation, no differences in morphological characteristics
between the PRDM16 and PRDM16 MU groups were
observed (Figure 4C). In addition, we did not find significant
differences in the mRNA and protein expression levels of
PPARYy, a key adipogenesis-regulating gene, between the
PRDM16 and PRDM16 MU groups (Figure 4D, E). However,
the differentiation efficiencies of PPARy mRNA and protein
expression were lower in the control group (cells infected with
an empty vector) than in the PRDM16 and PRDM16 MU
groups, supporting the idea that PRDM16 loss significantly
impedes brown adipocyte differentiation, and PRDM16
overexpression significantly increases brown adipocytes
(Seale et al, 2007). Despite the similar differentiation
efficiency between the two ectopic PRDM16-overexpressing
groups, the mRNA expression levels of four BAT-selective
genes (i.e., UCP1, C/EBPB, PGC1-a, and CIDEA) were
significantly lower in the PRDM16 MU group than in the
PRDM16  group (Figure 4F). Moreover, PRDM16
overexpression increased UCP1 expression to a much greater
degree than that found in PRMD16 MU (Figure 4F, G). These
results indicate that the L779P mutation significantly impaired
normal PRDM16 function in the formation of brown adipocytes
in southern cattle, which live in warmer areas relative to
northern cattle.

DISCUSSION

We compared the whole genomes of northern and southern
cattle in China, which live in extremely cold and warm
environments, respectively. We identified a total of 197
candidate genes with selective sweep signals. However, these
genes should be subjected to further validation given the
many challenges in accurate detection of selective sweeps
across genomes. For example, the current methodology could
be confounded by many processes, such as recombination
and drift, and the effects of changing demography over time
(Horscroft et al, 2019). Nevertheless, we found that one
candidate gene, PRDM16, is a forceful genome effector that
facilitates cold adaptation. PRDM16 is a key transcriptional
regulator in beige adipocyte formation, which stimulates
authentic brown fat cells (Seale et al, 2007). In previous
research, although PRDM16 was introduced before cell
differentiation, nearly all adipocytes were activated to express
BAT-selective genes (Seale et al, 2007). In this study, we
found that BAT-selective genes were up-regulated in
PRDM16-overexpressing 3T3-L1 cells compared to controls,
indicating that the PRDM16 mutation influences gene function
in brown adipogenesis. PRDM16 regulates thermogenic
genes by forming complexes with various transcription factors,
including C/EBPB, PGC-1a, PPARa, and PPARYy (Kajimura et
al, 2010). Here, although the same differentiation efficiency
was induced, suppression of C/EBPB and PGC-1a mRNA
expression levels in the PRDM16 MU group indicated reduced
transcription complex formation and thermogenesis-related
gene expression, e.g., UCP1, compared to the PRDM16
group. Functional differences in PRDM16 caused by
sequence variation could explain why northern cattle are more
cold-tolerant than southern cattle. For example, B. indicus
may experience higher mortality than B. taurus in cold
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conditions (Carstens, 1994), possibly due to exhausting their
post-natal BAT lipids (Smith et al, 2004). Therefore, on the
one hand, well-functioning PRDM16 is required for northern
cattle to resist extreme cold, and on the other hand, functional
inactivation of PRDM16 impairs beige adipocyte formation,
which is beneficial for the environmental adaptability of
southern cattle. These findings help improve our
understanding of adaptive genetic variations in cattle and
other livestock species living in different temperature regions.
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