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Abstract: Liver cancer is a common type of cancer that causes death, because there are no noticeable symptoms at
an early stage, as this disease is not detected in most patients until cancer has reached the advanced stage only.
Researchers are developing algorithimst doctors can use to detect liver tumours early by examining images of
tissue from a biopsy or an abdominal medical image. The tissue expert must put in the time and effort required at this
stage to determine whether or not this tumour is cancerouis aeed of treatment. This model can then be used by

a histology expert to make an initial diagnosis. Convolutional neural networks (CNNs) are employed in this paper to
propose a novel combination of deep learning models that can transfer informatiopréwously trained global

models. After that, this information was decanted into a solo model to improve our model approaches to increase the
performance in time and accuracy with tuning to an encoder, decoder, shortcuts, and skip connections to custom
corvolution layers for three classes such as background, origin, and Tumour shape. Regarding semantic
segmentation, our model has proved to be a highly effective way to make results more accurate and valuable to assist
in the diagnosis of the liver Tumour nogi CT scans. As a result, we were able to develop a hybrid model that is
capable of recognizing CT images of a liver tumour. Our research yielded the greatest possible results, which we got,
reaching 99.50% accuracy, a 86.40% precision and a recall @%7Fhis accuracy with multilass is higher than

that obtained using other previous models that obtained the best accuracy of 0.991 during the annual periodic
examination campaigns for liver cancer detection. Using this model, experts in this fieldveaimsaand effort

while becoming more informed choices. It also keeps the time and effort that would otherwise be required to
administer this treatment, especially during the annual examination campaigns.

Keywords: CT, CNN, Data augmentation, Deep leamihiver cancer, Multclass segmentation, Transfer learning,
Tumour detection.

and the high cure rates for many diseases and their
1. Introduction impact on cancer. However, the rate of cancer has
increased. The liver is amondiet most often

Liver cancer isamidthe most prevalent kinds of

: . : . affected organs by canc&umour metastases, and
malignant illnesses, and it was responsible for the d hy (CT . f1h
deaths of 745,000 people globally in 2018.[ _orPir el OMAdTaPTY ( .¢ma'”s‘(’j”$9 fhe most
Statistics from 2018 indicate thlver cancer imne ~ Cormony utized imaging modalities for the

of the leading causes daiortality. It ranked third in detection, diagnosis, andhonitoring of hepatic

terms of the number of deaths, as it achieved 84,00835“)”5[2]' A CT scan of the abdomen might be

deaths despite the hiah wavs of cancer in enera;i)erformed useful in the early identification of a
P 9 y 9 variety of different types of liver cancer, including
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transformations enable the netwott learn
how to change the texture characteristics of the
immediate environment.

i For the purpose of liver segmentation, we
employ a fully convolutional architecture and
compare it to a patehased CNN for the
detection of liver metastases in CT scans. To
our knowledge, this is the first study to segment
the liver and identify lesions using a full CNN
combination.

Demonstrate an accurate system that
outperforms other previous methods on small
datasets and solves the overfitting issue
The remaining sections are grouped as follows:
e recent works discussed in Section 3ection 3

pancreatic cancer. The procedure may also give
exact statisticsfor the size, shape, and position of
any cancerou¥umours in the liver or elsewhere in
theabdomen, as well as details on the blood vessels
that surround théumors. Intravenous injection of a
contrast agent before and aftenages are captured
with the portal phase images (takeri 80 seconds
after the injection) providing the best identification
of lesions.It is necessary to know the precise size,
shape, and location of the lesions in order to
administer these treatments. The radiologist tmus
spend time reviewing a 3D CT image with
numerous lesions in order to manually detect and
segment the lesion$iven the complexity of this
job, it emphasizes the necessity of compaided
analysis to help physicians detect and evaluate th%‘_h
size of live metastases in Cimages.Due to the . N
differences in contrast enhancement behaviout'lIlJStra_ltes the proposed method adopted in this work.
between liver lesions, automatic identification and EXPerimental results  and analysis are = shown
segmentation of liver lesions and parenchyma is £°MPrehensive discussion in SectioThe paper is
challenging job. Furthermore, due to individual conc_lujed with - discussion of future  works in
variations in perfusio and scan time, the image S€Ction >

contrast between these tissues may be poor.

We present a novel method for creating deep
learning methods in the area of liver tumour
detection and segmentation using artificial approaches currently in uselated to liver cancer
intelligence (Al) to address these issu€Bhe  detection, segmentation, or classificatiomhe
detection centred on the effect of combining a-pre previous methods are classified into two categpries
trained VGG16 and ResNet50 architectume the such as machine learning,[4] and deep learning
first portion of our model for feature extraction approaches512]. However, the authors have only
After that, weemployedtransfer learning and fine included deep learningelated approaches in
tuning techniques using th€NN's architecture via accordance with the scope of this work. In addition,
the UNet+ architect and custom layers to get multi several recent reviews [1314] in this field
class segmentation accuracy to segméimtee  demonstrate that deep learning has been the focus of
classes:  background, origin, andtumor  npearly all recent liver cancer detection efforts.
Consequently, the significance of our research lieHavaeiet al [5] presem;da segmentation network
in the incorporation of multiple hypered grained  to glioblastomas (brain tumors) by using MRI
models into CNN layersuch adeeplapV2 and V3, images.They simultaneously exploited both local
VGG-16, ResNeb0 and UNet++ to detect liver and glolal contextual characteristicdowever, they
tumours. The principal contributions of this study focused on improvinghe processing timenot on
can be summed up as: accuracy, using traditional CNNDong et al [6],

1 Propose a novel Hyperion pn@ined models demonstrated the use of hybridized complete CNN
and hypered architect that makes use of CNNgfor the identification and segmentation of liver
for liver multi-class segmentation affdimour  cancer utiliziy a deep learning algorithm.
detection. Our model analyzes whole images Numerous layers were employed as feature
rather than patches, which eliminates the needextractorsand the extracted features were combined
to pick representative patches, avoidswith multiple slices.However, theywere able to
unnecessary computations when patchesdiagnose cancer with Bbw accuracy of.09722.

2. Relatedwork

In this section, wediscuss in detailthe

overlap and allows our network to scale top
more effectively as image quality increases.
9 As a result of the small size tfe usedlataset,

we have turned to data augmentatidny

Sureshkumaet al [7], demonstrated a livérumour
detection system based on deep learning algorithms.
They used &robabilistic Neural Network (PNIN)
one of the deep approaches, to recognise and

applying scale transformations to the readily diagnose liver cancersthey discovered that the

available training images The scale

PNN approach outperformed othaachine learning
methods in terms of overall accuracy while just
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using a few featuresHowever, this method is A novel and efficient integration technique for
slower than other neural network models whenthe detection of liver tumors is presented in this
classifying new cases anagquire more memory paperto overcomeheissuesof the previous works
space for the processing<aur et al [8], used 3D The proposed method outperforrge majority of

CT images of liver cancer to demonstrate a multi existing algorithms on both small and large datasets.
organ classification approach based on CWbdlcut  Additionally, compared to earlier lovesource deep
down on the computing burden of deep learning,learning methods for liver detection, our approach is
they devised this approach. Data augmentatiormore durable.

approaches yielded good precision of 99.%.

However, this method is Computational complexity 3. Methodology

and suffer from overfitting problentShuklaet al
[9], presented a cascaded CNN approamhlifver
cancer detection. First, they partition the liver from
end to end in order to limit the likelihood of a
mistake occurring during training. After thahey
use the liver segmentatioomagesto apply the
approach describe@he approach they used yielded
alow precision of 94.2%. Therefore, this method is
not robust and obtain low p_erformance_v_vith pig ands 1 Liver cancer datasets

smal data. A deep learningpased bignspired

method for the detection of liver cancer was 3.1.1.First dataset LiTS17

introduced by Ghoniem [10]. The author used a

hybrid segmentation strategy based on multiple In this study, the liverTumour segmentation
models, includingoptimization usingartificial bee ~ beénchmark, LiTS17 [15], is employedhere are
colony and UNet Network for liver lesions 130 CT scans and 70 CT scafts training and
extraction from CT images_ Forextracting the testing respectivelyin this data setLiTS dataset
featuresand classification, the author used a hybrid NI! files containing 3D abdomen image formatted as
method that was 986 accurate This method CT scans images and masks. We prepare dataset CT
obtained a good result on big data, however, thescans sliced 3d NIl volumes CT scan into 2D image
method obtained very low classification results slices training set and testing set to JPEG, PNG
when working on small dat&Zhou and Siddiquee  images to easily train and testing our model.

[11] presened UNet as a new network architect
called UNet++ for medical image segmentation.

Our new model is explained in thigection in
details In addition, all datasets used to evaluate the
proposed models are discussed in this section in
details.Figure 1 displays the central block diagram
of the proposed technique with LiTS NIl files CT
scans, and 3MIRCADDb-01 dicom CT scans as
combined datas input.

3.1.2.3D-IRCADb -01 dataset

centrel on a densely supervised encedecoder Twenty 3D CT scans from twenty liver cancer
network with nested, dense skip pathwayspatients make up this dataset [16]each CT image,
connecting the encoder and decoder-setworks. t he | j ver6s average densit

In addition, they asserted that the optimizer wouldzq the resolution is 512x51R1asks images are
handle a learning task when the feature maps of thgivided into discrete DICOM segment4. total of
decoder and encodemetworks are roughly 20 of the CT scan images were used in this study
equivalentand achieved 92.52% accuracy for cell 5 testing and validating sets. That is, using Python
nuclei, 32.12% accuracy for colon polyps, 82.90%|ibraries, a random sample of 26 CT images was
accuracy for liver, and 77.7% accuracy for lung chosen.Ten percent of the dataset's images were
nodules.Ronnebergeet al _[1_2] presentda classic  gisassembled for testing as a final step.eAft
UNet network and ftraining based on data geparating the test sample, 80% of the images for the
augmentatiorfor liver segmentationAn expansive training set were saved, and 10% of the remaining
path (right) and a contracting path (left) are bothjmages were saved for validating. Thus, we had 80%

present in the network architecture (right side). Theyaining, 10% testing, and 10% validating images.
contracting route follows the design of a typical

convolutionalnetwork. It entails applying two 3x3 3.2 Data pre-processing

convolutions (unpadded convolutions) repeatedly,

followed by a rectified linear unit (ReLU) for each  This stage is divided intavo main steps: slicing
one, and dowssampling, upsampling, and binary datasets and data augmentation.

class segmentation of a 512x512 image. A

segmentation accuracy of 93% was attainedl his

method obtained a very low segmentation accuracy.
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Figure. 1Central block diagram of the proposed technique

Volume NII CT 3D Set JPEG, 'pNG 2D the training datset was improved to enable the
Figure. 2Slicing 3D volume to 2D JPEG, and PNG proposed network to see a wider variety of tumors
images We apply the following techniques: Random
Contrast, Random Brightness, Gaussian Noise,
3.2.1.Slicing datasets Random Scale, Colouring Horizontal Flip,

3.2.2.Data augmentation

395

Dicom CT scans into 2D image slices training set,
validating set, and testing set to JPEG, PNG images
to easily train ad test our model. Fig. 2 shows
slicing 3D volume to 2D JPEG, and PNG images.

By replacing some of the traininghageswith
new ones created using the data augmentation
| approach, which relies on the following attributes,

Cropping, Rotate.Fig. 3 depicts images after

LITS qlatas_et NIl fi_Ie_s and 3|1RCADb_-01 augmentation techniques have been applied.
formatted as CT scans images trains and masks, Weample by including medical slice images with new

prepare dataset CT scans sliced 3d NIl volumes, anditributes generated from the fundamental Bat.
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Original Input

Rafdomicohtrast different pretrained model combinations ahe two
datasets and thesronfirmedthe bestoneto bethe
confirmedmodel

Fig. 4 depicts how we combine DeeplapV3 [17]
and ResNet50 [18]. Figure 5 depicts how we
- , . combine VGG16 [19] with ResNeb0V2 [20] and
e U-Net++ [11].

3.3.1.First proposed model

To take the advantage of pretrained previous
experience and the weightevealed we utilized
DeeplapV3 [17] and ResN&D [18] as prerained
models. The inputhagesizethat fed to our model is
512x512with total parameteref 17,869,697which
is shown in Figure 6. There are nine blocks in this
structureand with ReLU activation function in each
block A 2D convolutionand maxpooling layes,
and a batch normalisation layer make up the first
block. Ten convolutionand batch normalisation
layers andthree additional layersmake up the
second block. Thirteen convolution layers, four
unique layerandthirteen batch normalisation layers
make up the third block. The bloek contains19
convolutionand batch normalisation layensth six
addinglayers. The following block consists of four
layers of convolution, one layer of concatenation,

! — R four layers 6 batch normalisation, and one layer of
Figure. 3Examples of thénputimages from the used average pooling. One concatenation lagad two
datasets after applying augmentation techniques ~ dense layers are followed by a global average 2D
pooling layer, and two convolution layers are
expanding the data in this manner, it is possible tgollowed by two batch normalisation layers. The
assess how well the model can distinguish betweef€maining blocks eachave a batch normalisation
photos that have been rotated, coloured, cropped@yer with an activation function on top of a layer of
blurred, or enlarged. The modetan recognize a 2D convolution. Block 8 also has two dense layers
form even if it is upside down and can store shapegnd a global average 2D pooling layer.
and provide accurate results when they are in al he model now includes the following layers:

RandomScale

certain location. i Global average 2D pooling layer: The
corcatenate layer is fully connected for down
3.3 Proposed learning model sampling operation.

) ) 1 Addition layer: Called the "Add layeay , whi ch
We discovered that all research using deep  aqd the output properties of the layers.

learning were based on a single model or a ¢ The neurons from the output rows make up the
comparison of various models in the section on dense layer type output layer.

related work. In thisesearchwe combine a number

of pretrained models and exploits the distinct 3.3.2.Second proposed model

features of eachlhe essence of computer vision is

the traditional machine leaing method, which is We usedVGG-16 [19], ResNeb0V2 [20], and

used to describe and discover features, but it idJ-Net++ [11] as prérained models in this model.

ineffective for complex classifications and is Figure 7 depicts the initial portion of the moseth

therefore no longer employed. input size of 512x512 and the total number of
When used to classify images, deep learningparameters is 4,938,371.

techniques such as CNNs have made significant This structurés made up of seven blocks. A 2D

contributions tahe field of tumour classificationn ~ convolution layer, a batch normalisation layer, and a

this study, we compared the performance of two2D averagepooling layer make up each of the first
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Figure. 4 Block diagram of our first model
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Legends .
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Figure. 5 The structure of the secanddel

four blocks. A 2D convolution layer, a batch 9§ Global averagepooling layer: the concatenate
normalisation layer, and a 2D convolution transpose  layer is fully connected for down sampling

layer with a ReLU activation function make up the operations.
fifth building block. This block also includes a { Transpose layer: This layer inverts the weights
concatenation layer aradtransposition layer. by 180 degrees and transposes them; its name is

A 2D convolution layer, a concatenate layer, and Conv2DTran.
a batch normalisation layer are among the remaining § UNet ++ layers:a newer architecture for
building blocks. The following layers have been segmenting medical imageBecreasesemantic
supplementetb our modet gaps between féare maps of encoder and
decoder subnetworks by using the - re
engineered skip paths.
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input_2 input:
[(None, 512, 512, 3)] | [(None, 512, 512, 3)]
InputLayer output:
1
convi_pad input:
(None, 512, 512, 3)| (None, 518, 518, 3)
ZeroPadding2D output:
v
conv1_conv input:
(None, 518, 518, 3) |(None, 256, 256, 64)
Conv2D output:
T
convi_bn input:
(None, 256, 256, 64) | (None, 256, 256, 64)
BatchNormalization | output:
i
convi_relu input:
— (None, 256, 256, 64)| (None, 256, 256, 64)
Activation output:
¥
pool1_pad input:
(None, 256, 256, 64) |(None, 258, 258, 64)
ZeroPadding2D output:

2
(None, 258, 258, 64) |(None, 128, 128, 64)

pool1_pool input:

InputLayer output:

—

conv2_block1_1_conv | input: D conv2_block1_0_conv input: i
(None, 128, 128, 64)| (None, 128, 128, 64) (None, 128, 128, 64) | (None, 128, 128, 256)
Conv2D output: Conv2D output:
¥
conv2_block1_1_bn | input:
(None, 128, 128, 64) | (None, 128, 128, 64)
BatchNormalization | output:
!’ v
conv2_block1_1_relu input: conv2_block1_0_bn input:
None, 128, 128, 64 )| (None, 128, 128, 64) —— (None, 128, 128, 256) | (None, 128, 128, 256)
Activation output: BatchNormalization output:

¥

(None, 128 128, 64) | (None, 128, 128, 64)

conv2_block1_2_conv input:

Conv2D output:
~
conv2_block1_2 bn input:
(None, 128, 128, 64 )| (None, 128, 128, 64)
BatchNormalization | output:
X
conv2_block1_2_relu input:
(None, 128, 128, 64) | (None, 128, 128, 64)
Activation output:
conv2_block1_3_conv input:
(None, 128, 128, 64) | (None, 128, 128, 256)
Conv2D output:
conv2_block1_3_bn input:
—— (None, 128, 128, 256) | (None, 128, 128, 256)
BatchNormalization output:
\ *
conv2_block1_add input:
[(None, 128, 128, 256),(None, 128, 128, 256)] (None, 128, 128, 256)
Add output:

Figure. 6 The first portion of the first model's architecture

ii. Calculate the Accuracy
4. Experimental results and analysis iil. Calculate dice coefficient (F1 Score)

The Tensorflow with Keras libraryvas used to which are defined as follows:

run the models in Python. On the two datasets, we -

tested both models, and the model that performed v — 1)
the best was chosen as our model. Then, we

contrasted theconfirmed model with other earlier

approachesdeveloped in thisrea Y (2)
4.1 Evaluation metrics 5 6o 3)
To test out our model we calculate the
following evolutions metrics: 0 O (4)
i Calculate the Precision and Recall of
our results.

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022DOI: 10.22266/ijies2022.12336



Received:August21, 222. RevisedSeptembef0, 2022. 399

input_image input:
[(None, 512, 512, 3)] [(None, 512, 512, 3]]
InputLayer output:
L
model input:
(None, 512, 512, 3) (None, 512, 512, 64)
functional output:
T
conv2d input:
{None, 512, 512, 64)|(None, 512, 512, 32)
Conv2D output:
’_l
batch_normalization input:
— (None, §12, 612, 32) | (None, 612, 512, 32)
BatchNormalization | output:
¥
activation input:
(None, 512, 512, 32)| (None, 512, 512, 32)
Activation output:
¥
pool1 input:

(None, 612, 612, 32) |(None, 266, 266, 32)

AveragePooling2D output:

f_l

I(None, 256, 256, 32)

‘ conv2d_1 ] input:

(None, 256, 256, 64)|
‘ Convad l output:

| batch_normalization_1| input:

(None, 266, 256, 64)

¥

(None, 256, 256, 64)

I BatchNormalization |output:

activation_1 input:
— (None, 256, 256, 64) | (None, 256, 256, 64)
Activation output:
pool2 input: | up12 INPUE: | one, 256, 256, 64)| (None, 512, 512, 32)
- one. one
MNone, 256, 256, 64 )| (None, 128, 128, 64 . ' ' ’ 4 4 4
AveragePooling2D output: ) ) Conv2DTranspose output:
h Y
conv2d_3 input: merge12 input:
- {None, 512, 512, 32) (None, 512, 512, 32) | (None, 512, 512, 64)
Corvaa P ‘ (None, 128, 128, 64) | (None, 128, 128, 128) Concatenate | output:
— '
" i - convad_2 input:
batch_normalization_3 | input:
= = None, 128, 128, 128)|(None, 128, 128, 128 —|(None, 512, 612, 64 )| (None, 612, §12, 64)
BatchNormalization | output: { } ) Convad output:
A b
I . batch_normalization_2 | input:
input: _| _: =l
activation_3 P (None, 128, 128, 128)| (None, 128, 128, 128) Batenn - (None, 512, 512, 32) | (None, 512, 512, 32)
Activation output: al lormalization output:
pool3 input: up22 input:
None, 128, 128. 128)| (None, 64, 64, 128 (None, 128, 128, 128), (None, 256, 256, 64)
AveragePooling2D output: { » 128,128, 128) ( » 64,64, 128) \ Conv2DTranspose output:
i : merge22 input:
conv2d_6 input: (None, 64, 64,256) | (None, 64, 64, 256) L P (None, 256, 256, 64) (None, 256, 256, 64) | (None, 256, 256, 128)
Conv2d output: ! Concatenate | output:

Figure. 7 The first portion of the second model

0.99 — R
0.97

0.95

(Percentage)

0.93

0.91

0 2 4 6 8 10 12 14 16 18

(Number of epochs)

Figure. 8 Over 20 iterations, the validation (blue line) and accuracy (red line) curves of the first model converge

Where P= Precision, R= Recall, Acc= Accuracy, of 20 epochs. The convergence of the accuracy and
dices= dice coefficient, TP=True Positives, the validation curve is shown in Fig, which fiows

FP=False Positives, and FN=False Negatives. that the training has stabilised and accuracy has
) increased after 8 epochBy training the model on
4.2 Results on LiTS17 database the trainingexampleand comparing the results to

the abovementioned test example the hidden
coefficients for the model's final layer are improved

The test set for the dataset was now used to evaluaf@ better matding the images to be trained in each

the first suggested model. Using the previous datdt€ration The model checks images in the validation
and divisions, the model was trained over the courséample after everyraining session and achieves a

4.2.1.The results of our first model
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0.75
0.992
0.65
. _0.988
g 025 \ £ 0.984
0.45 0.98
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18

(Number of epochs) (Number of epochs)

Figure. 9 Validation (blue line) and accuracy (red line)  Figure. 11 During 20 iterains, the validation (blue line)
loss curves for the second model durd@gepochs and accuracy (red line) curves of the second model

specific accuracy. This procedure is recurrent for all
training epochs, and it was found that in epochs 10
and above, this accuracy does not improve beyond g
certain threshold. In our instance, the accuracy was
0.995, meaning that 99.53% of thelodel's
predictions were correct during both the training and e "
validation stages. The loss curve is shown in Fig. 9
as well.

4.2.2.The results of the second proposed model

Using the same test set as the first model, the -
second proposed model was put to the féigt.11 Figure. 12 Visual outcomes of the second cancer

depicts the model's training process over 20 epochs. detection model (above image is normal case with no
After 10 epochs, the training has stabilised and tumour detection and other image is abnormal case with

accuracy has increased, according to the drawing of tumour detetion)
the validation and accuracy curves in the figure. _

Visual examples of our results for identify Table 1. In the first dataset, the overall performance of
liver cancer on two images from the dataset ar the two models :
shown in Fig. 10. Consistently, the model checks Model | Acc P R Dice_cof
images in the validation sample after every training| First | 0.995 | 0.864 0.979 0.516
session and achieves a specific accuracy. It wasSecond| 0.977 0.820 0.580 0.640

found that in phases 18 and above, the accuracy be

stable during the end of iteration. The accuracy ingyr instance was 0.977, meaning that 97.7% of the
model's predictions were correct during both the
training and validation stages.

Visual samples of our results for identifying
liver cancer using our second model on two images
are shown in Fig. 12.

Table 1 shows the overall performance of the
two models using the metrics from the first dataset.

4.3 Results on 3BDIRCADb -01 dataset

On the second dataset, the same tests are run for
the two models (3BRCADb-01).

Figure. 10 Visual outcomes of the first cancer detection
model (above image is normal case with no tumour In this model. the test setwhich had been
detection and other n:jwstgei;iirz]a)bnormal case with tumour randomly chosen from the second da@sefs
used to evaluate the first suggested model. Using the

4.3.1.The results of the first model

International Journal of Intelligent Engineering and Systems, Vol.15, No.6, 2022DOI: 10.22266/ijies2022.12336



Received:August21, 222. RevisedSeptembef0, 2022. 401

previous set of data and divisions, the model wasTable 2.In the second dataset, the overall performance of

trained over 30 iterations. As shown in Fi, the the two models

validation and accuracy curve converge, indicating Model | Acc P R Dice_cof
that the training has stabilised and the accuracy has First | 0995 | 0.514 0.986 0.561
risen after 10 iterations. Second| 0.973 | 0089 | 0977 | 0.778

As a result of training the model on the training
examples, the values of the hidden parameters of the
model's f'r?‘h layer have bgen modified to better Table 2 displays the overall performance of the two
match the images to be trained at each stage. It Was dels
found that in iteration 15 and above, the accuracy be '
stable during till the end. In our instance, the 5
accuracy reached 0.995, indicating that 99.5% of the™
model's acuracy was maintained during the training Using both datasets, the first proposed method

Based on the metrics from tlsecond dataset,

Discussion

and validation phases. achieved higher accuracies than the second method.
This is evident from the previous results. We
4.3.2.The results of our second model verified the first approach as our approach as a

Using the previous set of data and divisions thereSUIt' The outcomes also demonstrate that the first
9 P ' ~.“method outperformed earlier deep learning

m_odel was tral_neo! over 60 iterations. As shown Ir]techniques; inérms of robustness and efficiency,
.F'g: 14.’ the Va"da“f’”. ?”d accuracy curve ConVerge’achievingthe highestaccuracy of 99.5% on small
indicating that the trammg has reached a stable sta_lt ataet Additionally, using the first dataset, Figure
and the accuracy has risen. It was found th"."t ™0 demonstrates how the first model successfully
epochs 25 and abovie accuracy be stable during distinguishes cancer from the healthy image
till the end.In our instance, the accuracy reaChedHowever as shown irFig. 12 (a), the second '
0.973, indicating that 97.3% of the model's accuracy o e:xhibits roughly ndise Whén identifying
was maintained during the training and validation cancer fromthe normal case The first model

lterations. performs better than the second when there is less
noise when using the second dataset (small data) to
identify cancer from imagesln addition, From
0.995 Tabl e 1, we can show t hat
predict the positive images from the first dataset is
_0.985 97.92%. Also, from same Table on the first dataset
g we can find that, the sec
£ 0.975 predict the positive images is 58%. Oretsecond
dataset, Table 2 shows tha
0.965 to predict the positive images from the first dataset

is 98.60% and the second model is 97.70%. These

0 5 10 15 20 25 30 results also prove the robustness of the first
prumertererts proposed model compared with the second ehod

when working on multtask classificationFig. 15

and 16 show the evaluation oécall during the

iterations for the firsand secondnodel onthe first

Figure. 130ver 30 epochghevalidation (blue lineand
accuracy (red linegurves of the first model converge

dataset.
0.995 From Fig 15 and 16, we can observe that the
0.985 first model can predict the true images of the liver
% 0.975 cancer better than the second model. From Figure 15,
the proposed first model start with 96.5% detecting
g 0965 of the true images during the first 20K iterations and
0.955 the reall increasing to reach 80K iterations and
0.945 stable when reaching 140K iteration with an average
recall of 98.6%. Whereas the second model is
0 518 15208 25 1045 S0/SPIES starting with a very low recall during the first 80K
Figure.14 Over 60 epochghevalidation (blue linejand iterations with an average recall of 45% and stable
accuracy (red linejurves of the second model converge V\;he‘goreaCho 140K iterations with an average recall
of 58%.
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® "ocho o (6)

where yand x are the output andhe input
functionsto the residual block F(x, {Wi}).

- Finally, in both models, we take the advantages
of several pretrained models and try to improve
the performance of these pretrained models and
try to overcome most of their limitations by
adding new layers as mentioned in Section 3.
Therefore, the architecture of our models is
uniqgue due to the creation of a novel
architecture able to exploit the strength of

Figure. 15Evaluation ofrecallduring the iterations for numerous prérained models and tramesf

Figure.16 Evaluation of recall during the iterations for

the first model on the first dataset learning techniques.

The Al-assisted liver cancer detection system
helps doctorslecidewhether a patient is infected or
not, significantly reducing the likelihood of
incorrect diagnoses and saving the doctor's time and
effort by delivering quicker andmore accurate
results. As a result, it aids in the decline of liver
cancefrelated fatalities. As a result, various models
for detecting liver cancer were presented in several
studies $-10, 21-26]. Several previouspproaches
were compared with the sugg¢ed approachusing
both datasetas shown in Tabl8 and 4

Havaei et al [5] focused on improving the
processing time, not on accuracy, using traditional
the second model on the first dataset CNN. Donget al [6] were able to diagnose cancer

with a low accuracy of 97.22%. The method

Thereasons of the increasing in the performancePresented by Sureshkumer al [7] is slower than

of the first model aras follow: other neural network models when classifying new

We employed DeepLabv3, which isused to cases qnd require more memory space for the
solve the problem of segmenting objects atProcessing. Kauet al [8] is aIs_o_CorputatlonaI
various sizeswhich is better for detecting the complexity and suffer from overflttlng problem. The
liver cancer from the first dataset that camta Method presented by Shukla et &l i§ not robust
several images with different scales and also@nd obtain low performance_ with big an_d small data.
when using augmentation techniqudis is  AlSo, the method of Ghonieml(] obtained very
done by applying the Atrous convolution () to low classification results when working amall

the input feature map (x) as showrE. (5): data.In [21], the authors introduce a method based
on modification of the tNet model for
G0 B GO idos O (5) segmentation the liver cancer automatically. In [22],

the authorsalso presenteda CNN model that

Other reason of the increasing in the accuracycOnsists of small number of layers and parameters
is the combination with the ResNet, which is for liver cancer segmentatioduthors in[21, 22],
desired tasolvethe degradatioissuein a deep cannot deal with lovcontrast boundaries images (as
network which is better when adding more in both datasets) and obtained very low accurasy.
layers to the network, whiatauses accuracy to !N [21], Kalsoomet al [23] employed a method
achieve saturation and theecline Therefore.  Using modified UNet but with different structure
we can find that the accuracy of the recall of for liver tumour detectionTheyobtained a very low
the second model is high when using the&ccuracy when working on big data. novel and
second model, which we added more layersefficient integration method for the detection of liver
than the first oneThis residual block F(x) can tumours is presented in this paper to overcome the

be represented mathematicallyEas (6): issues of the previous works. The proposed method
outperfoms the majority of existing algorithms on

both small and large datasets. Additionally,
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