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Abstract: Hyper-heuristics are considered as one of the most popular search methods which can solve NP-hard 

problems. They aim to achieve level of generality of search techniques for solving a wide variety of problem domains. 

Hyper-heuristic framework involves two levels, high-level, and low-level heuristics. The high-level heuristic is 

responsible for selecting and applying an appropriate low-level heuristic to generate solutions and deciding whether to 

accept or reject the new solution. Low-level heuristics are a set of problem-specific heuristics. In this paper, we propose 

to improve the performance through adding a new level strategy to the hyper-heuristic framework. The highest-level 

strategy adopts the roulette wheel selection mechanism to select the appropriate hyper-heuristic according to its 

performance during the search process. The highest-level strategy selects the appropriate algorithm from a predefined 

set of hyper-heuristic algorithms to improve the generated solution. The performance of the proposed approach has 

been compared with one of the most recent methods as well as with other hyper-heuristics that used as components of 

the proposed approach. The results have been carried on six of commonly used benchmark datasets. The results show 

the effectiveness of the proposed framework. Hence it outperforms the other methods in five of the six benchmarks. 

Keywords: Hyper-heuristic, Multilevel, Combinatorial Optimization problems. 

 

 

1. Introduction 

Optimization problems is involved in many real-

life situations, the goal of an optimization problem is 

to find the efficient solution from all feasible 

solutions. According to the decision variables domain, 

Optimization problems can be classified as discrete 

or continuous [1]. The combinatorial optimization 

problems (COPs) are a type of discrete optimization 

problems. Combinatorial Optimization Problems 

(COPs) arise in many real applications such as 

production planning, scheduling, routing, and 

resource allocation…etc. [2]. COPs have very large 

and often difficulty-constrained search space which 

makes the solution process more complicated, costly 

to solve, and their modelling becomes a very complex 

task [3]. So, Many COPs can be classified as NP-hard 

problems. Exact methods guarantee the optimality. 

But they are limited to small scale problems and fail 

to find the optimal solution for complex problems in 

a reasonable time [2]. Thus, adopting heuristics to 

solve these problems for good enough solutions 

within a realistic amount of time is a viable 

alternative. Meta-heuristics adopt some high-level 

control strategies which guarantee obtaining good 

enough solutions within an acceptable time. Many 

research works discuss this issue before [2, 4, 5]. 

Many meta-heuristics are adopted to tackle 

optimization problems. They include Genetic 

Algorithms (GA), Simulated Annealing (SA), Tabu 

Search (TS), Particle Swarm Optimization (PSO), 

differential evolution (DE), and GRASP…etc [6]. 

Selecting the most appropriate technique to the 

problem with determining its optimal structure and 

parameters are big challenges [7]. Trials and error 

arise as the most straightforward method to get the 

most suitable meta-heuristic and to identify its 

optimal structure and parameter values. The 

manually designed and tuned strategies are proposed 

for many meta-heuristics to obtain promising results 

in certain problem instances, in other cases, these 
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strategies typically fail to be improved to tackle other 

problems. There have been several attempts to build 

automatic search methodologies that can achieve 

good results through many problem domains and/or 

instances. One of these methodologies reflects in 

hyper-heuristics [8]. They are search techniques that 

can generate solutions for a wide range of problem 

domains instead of using specific technique to each 

problem instance. Instead of working in the solution 

space, hyper-heuristics work in the heuristic search 

space [3]. The essential role played by hyper-

heuristics is increasing the level of generality in 

building frameworks based on the strengths and 

identifying the limitations of various heuristics. This 

role is often achieved during the search process 

through adopting an automatic manner to select 

and/or generate heuristics [8]. The most popular 

hyper-heuristic framework involves both high-level 

strategies and low-level heuristics (LLHs). The high-

level strategy combines a selection mechanism and 

move acceptance methods. The selection mechanism 

elects a heuristic from a predefined set of LLHs. and 

applies it to a current solution. Then, a move 

acceptance is adopted to decide either accepting or 

rejecting the new solution. In case of accepting the 

new solution, the current solution is replaced by the 

new one, then the search proceeds iteratively. 

However, the selection mechanism is applied during 

the stages of the search process [9, 10]. The LLHs 

include a set of heuristics for a particular problem 

domain. They are also considered as constructive or 

perturbative. The effectiveness of a hyper-heuristic 

framework is typically related to how the high-level 

strategy is designed [11]. Moreover, the different 

combinations of selection mechanism and move 

acceptance affects the overall performance of a 

hyper-heuristic [11, 12]. Based on this concept, this 

research tends to develop a new multilevel hyper-

heuristic framework that guarantees high level of 

generality to tackle many problem domains. In this 

work, the proposed multi-level hyper-heuristics 

framework consists of three levels. The highest layer 

is responsible for selecting among a set of algorithms 

to solve a wide range of problem domains instead of 

using specific algorithm to each problem. In this layer, 

a roulette wheel-based selection mechanism for 

selection among algorithms is adopted. The multi-

level hyper-heuristics framework is proposed to 

support automatically designing and selecting a 

hyper-heuristic algorithm at different stages during 

the search process. This leads to increasing the 

generality and self-adaptation by adopting the 

appropriate algorithm in the suitable stage in the 

search process. Furthermore, a set of Benchmarks 

involves six problem domains from the Hyper-

heuristic Flexible (HyFlex) [13] are used to evaluate 

the performance of the proposed approach. 

Experimental results indicate that the proposed multi-

level hyper-heuristics are efficient. The rest of the 

paper is presented as follows: after introduction, 

Section 2 covers a review on hyper- heuristics, 

reviews the selection hyper-heuristics related to this 

work and introduces different move acceptance. The 

components of the proposed multi-level hyper-

heuristic framework is described in Section 3. Section 

4 presents the experimental results. Finally, 

Conclusions and points for father research are 

presented in Section 5. 

2. Related work 

Based on heuristic space, hyper-heuristics are 

categorized into two classes, Selection hyper-

heuristics and generation hyper-heuristics [8, 14]. A 

generation hyper-heuristic combines the existing 

heuristic elements to produce new LLHs. Whereas a 

selection hyper-heuristic decides which LLH should 

be adopted at any search stage. Selection hyper-

heuristics class comprises most of the current hyper-

heuristic literature [15]. The main role of this class is 

to integrate the benefits of multiple LLHs through 

adopting the most convenient heuristic in the suitable 

stage of the search process. The LLH selection 

mechanism and the move acceptance are both 

components of a classical selection hyper-heuristic 

[11]. Simple Random, Greedy, Random Permutation, 

Tabu Search, Choice Function, Harmony Search, and 

Reinforcement Learning are some of the available 

LLH selection methods [16, 17]. While move 

acceptance strategies involves All Moves, Only 

Improvement, Simulated Annealing, and Late 

Acceptance [16]. The current move acceptance and 

LLH selection approaches are summarized in Table 1 

and 2. 

Many studies on multi-stage selection hyper-

heuristics are provided. The authors in [25] proposed 

an iterated multi-stage hyper-heuristic. They 

integrate a Dominance-based heuristic selection 

technique with a Random Descent hyper-heuristic 

and Naive Move Acceptance (DRD). In dominance-

based selection, a greedy approach is adopted to find 

the suitable LLHs while considering the trade-off 

between the change in the objective value and the 

number of iterations required to obtain that result. In 

the second stage, a random descent hyper-heuristic is 

adopted to improve the quality of the solution on 

hand using the suitable LLHs from the previous stage. 

If the second stage becomes stagnant, the first stage 

is repeated with a certain probability to obtain a new 

subset of LLHs. 
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Table 1. Move acceptance methods 

Move 

acceptanc

e 

Relate

d 

works 

Description 

Only 

Improvement 
[18] accepts only improving solution 

All Moves [19] accepts all solution 

Metropoli

s 

acceptanc

e 

[20] 

Accepted the improving 

solutions, and accepted worst one 

with probability 

Simulated 

Annealing 
[21] 

Aanother type of Metropolis 

acceptance 

Late 

Acceptanc

e 

[22], 

[23] 

Better or equal quality solutions 

are accepted solutions as 

compared to previous iterations' 

solutions. 

Naive 

Acceptanc

e 

[24] 

Always accepted the improving 

solutions, and accepted worst 

solutions within 50% probability 

 
Table 2. Low level heuristics selection methods 

LLH selection methods  Related works 

Simple random  [22], [17] 

Random Gradient [17] 

Random Permutation [17] 
Greedy [17] 

Choice function  [19], [17] 

Tabu search  [4], [26] 

Harmony search (HM)  [27] 

Ant-inspired algorithms  [28] [29] 

Reinforcement learning [30], [31] 

Multi-Armed Bandit (MAB) 

selection 

[32], [33] 

Monte Carlo Tree Search (MCTS) [34] 

Hidden Markov Model selection [35] 

 

The authors in [36] introduce the Robinhood 

hyper-heuristic (RHH) which combines three hyper-

heuristics. In RHH, a heuristic selection mechanism 

based on round-robin strategy as well as three 

acceptance criteria are employed. In the selection 

mechanism, the mutational and ruin and re-create 

heuristics are applied followed by crossover and hill 

climbing heuristics. Each LLH is assigned equal time. 

For move acceptance criteria, RHH adopts only 

improving, improving or equal, and adaptive 

acceptance methods in which the good move is 

always accepted, and bad moves are accepted with a 

modified probability. A fixed amount of time is 

allowed for each hyper-heuristic in RHH. RHH 

provides competitive results and outperforms the 

hyper-heuristics (HyFlex). 

Kheiri etal [9] proposed a technique called a 

Hyper-heuristic Search Strategies and Timetabling 

(HySST) which involves two stages, diversification, 

and intensification stage. Diversification stage 

combines The Simple Random mutational operator 

with Adaptive Threshold move acceptance. Whereas 

intensifications stage combines Simple Random hill-

climbing operator with Accept All Moves. HySST 

switches between the two stages form one stage to the 

other if no improvement is achieved in a given stage 

after a certain duration. A set of real-world instances 

are used to test HySST which competed at the three 

rounds of the (ITC 2011) competition. HySST 

achieve the best solutions for three instances in round 

1 and took the second place in rounds 2 and 3. 

In [37], the authors developed a hyper-heuristics 

framework called “An iterated multi-stage selection 

hyper-heuristic” (MSHH). During the search, MSHH 

adopts several hyper-heuristics at different stages. In 

MSHH, the authors provide a multi-stage level to 

control transition and manage information exchange 

among multiple hyper-heuristics. The hyper-

heuristics selection mechanism involves two stages. 

In the first stage, a greedy strategy is applied to 

determine the scores of set of LLH. In the next stage, 

the roulette wheel is applied to select one of these 

heuristics according to the assigned scores at each 

step. An adaptive threshold move acceptance method 

is used in both stages. According to the 

experimentation, MSHH outperforms five other 

hyper-heuristics on HyFlex problem domains. 

In [38], a dynamic heuristic set selection (DHSS) 

is introduced. In this approach, a dominant technique 

is utilized to pick the active heuristic set at several 

points in the hyper-heuristic lifecycle. The DHSS 

approach was evaluated on the benchmark set for the 

CHeSC cross-domain hyper-heuristic challenge. 

DHSS improves the performance of the best 

performing hyper-heuristic for this challenge. 

From the previous discussion, its noted that the 

previous techniques suffer from a limited level of 

generality. They also lack the ability to effectively 

utilize the suitable heuristic and/or acceptance criteria 

in different search situations according to the 

problem domain. Thus, the need to develop a 

selection mechanism to control this process and to 

effectively utilize the suitable heuristic and/or the 

acceptance criteria is so critical. 

In this work, a new multi-level hyper heuristic 

framework with three levels is developed. The new 

level consists of a selection mechanism for hyper-

heuristics and acceptance criteria algorithm. The 

hyper-heuristic selection mechanism combines three 

hyper-heuristics algorithms. The advantage of the 

proposed algorithm is to combine different hyper-

heuristics with different selection strategies and 

different acceptance criteria. This leads to high level 

of generality and reusability. The proposed 

framework is explained in detail in the next section. 
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3. The proposed framework 

In this section, the frameworks of both traditional 

hyper-heuristic and the proposed multilevel hyper-

heuristic are discussed in detail in the following 

subsections.  

3.1 The traditional hyper-heuristic framework 

In classical hyper-heuristics, the framework 

involves two layers, the first layer contains high-level 

heuristics, and the second layer contains Low-Level 

Heuristics (LLHs) as depicted in Fig. 1 (2nd Layer & 

3rd Layer respectively). The high-level heuristic 

employs two components, heuristic selection strategy, 

and move acceptance methods. Traditional hyper-

heuristic framework works as follows: The high-level 

heuristic selects one LLH from a set of predefined 

heuristics that are related to the problem. Then, the 

selected LLH is applied to the current solution to get 

a new one. After that, the acceptance criteria are 

applied to accept or reject the new solution. In case 

of acceptance, the new solution replaces the current 

one and the iteration is repeated until stopping criteria 

is met.  

3.2 The proposed multi-level hyper-heuristic 

framework 

The proposed framework provides multi-level 

hyper-heuristic algorithms to automatically select 

hyper-heuristic algorithms and acceptance algorithm 

criteria. It adds a new upper level called the highest-

level heuristic as shown in Fig. 1. This layer 

comprises two components, algorithm selection and 

acceptance criteria. The main idea is to divide the 

search process to a set of consecutive learning periods 

(LP), the performance of each algorithm in the 

current LP affects its probability of selection in the 

next LP, these probabilities are gradually adapted 

 

 
Figure. 1 Multilevel hyper heuristic framework 

during evolution. In the initial LP, each algorithms 

have equal chance to be chosen i.e Algk has a 

probability Pk=1/K where K is the number of 

algorithms in the pool. The proposed framework 

works as shown in Fig. 2. In each LP, it starts with 

selecting one algorithm from a pool of algorithms. 

The selected algorithm is applied to generate a new 

solution. Then, the new solution is evaluated. The 

algorithm selects a heuristic from LLHs and applies 

the selected heuristic then applies the acceptance 

criteria to the solution to accept or reject. The selected 

algorithm is rewarded based on the amount of 

improvement. Then, a new iteration starts. The 

reward of each algorithm is assigned as Eq. (1). 

 

𝑅𝑒𝑤𝑎𝑟𝑑𝑘,𝑙 = {
𝑆𝑢𝑐𝑘,𝑙 + 𝜖  𝑖𝑓 𝑆𝑢𝑐𝑘,𝑙 > 0 

𝜖                      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (1) 

 

Where 𝑆𝑢𝑐𝑘,𝑙 measures the success of algorithm 

k to generate accepted solutions at learning period l, 

and 𝜖 is a small value used to avoid null success and 

to keep a small chance to select the algorithms that 

achieves no improvement in the further iterations. We 

apply two methods for rewarding algorithm. The first 

method is to reward based on the amount of 

improvement achieved by the new solutions 

(𝑆𝑢𝑐𝑘,𝑙  registers the improvement amount) as in Eq. 

(2) below. The second one is based on if there is any 

improvement achieved by the solution or not 

(𝑆𝑢𝑐𝑘,𝑙 = acceptance rate) as in Eq. (3).  

 

𝑆𝑢𝑐𝑘,𝑙 = ∑ 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑠𝑘,𝑙𝑘  ∀ 𝑘, 𝑙            (2) 

 

𝑆𝑢𝑐𝑘,𝑙 =
𝐴𝑐𝑐𝑝𝑡𝑒𝑑𝑘,𝑙

𝐼𝑛𝑣𝑜𝑘𝑒𝑠𝑘,𝑙
  ∀ 𝑘, 𝑙                (3) 

 

Where 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑠𝑘,𝑙  is the amount of 

improvement achieved by Algorithm k,  𝐴𝑐𝑐𝑝𝑡𝑒𝑑𝑘,𝑙is 

the number of accepted solutions generated by 

Algorithm k, and 𝐼𝑛𝑣𝑜𝑘𝑒𝑠𝑘,𝑙  represents the number 

of invokes of Algorithm k during the LP l. Based on 

the adopted rewarding method, there are two variants 

of the proposed approach, ML-HHA that uses 

improvement amount and ML-HHN which adopts the 

acceptance rate. At the end of each LP l, the 

probability for each algorithm 𝑘 is adapted based on 

the value of reward to be used in the next LP l+1 as 

in Eq. (4).  

 

𝑃𝑘,𝑙+1 = 𝑅𝑒𝑤𝑎𝑟𝑑𝑘,𝑙 ∑ 𝑅𝑒𝑤𝑎𝑟𝑑𝑗,𝑙∀𝑗⁄          (4) 

 
The proposed framework allows using multiple 

hyper-heuristic algorithms interchangeably. 

Adopting many algorithms enables us to comprise  
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Figure. 2 Highest-level strategy 

 

 

Algorithm 1:The proposed Multilevel-hyper-heuristic  

Begin: 

1. 𝑆𝑒𝑡𝐻𝐻 ← {𝐻𝐻1, … , 𝐻𝐻𝐾} //define the hyper-

heuristics  

2. 𝑃𝐻𝐻𝑘
←

1

𝐾
  ∀𝑘 ∈ {1, . . . , 𝐾} //Assign equal Prob.  

3. 𝐶𝑢𝑟𝑆𝑜𝑙 ← 𝐼𝑛𝑡𝑖𝑎𝑙𝑧𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛          // Initial 

solution  

4. While Stopping Criteria not met do //Main Loop 

5. 𝐅𝐨𝐫 each iteration i in LP l    // Learning Period  

6. 𝐴𝑙g𝑖 ← RoulletWheelSelction(𝑆𝑒𝑡𝐻𝐻 , 𝑃𝐻𝐻𝑘
) 

7. NewSol ← 𝐴𝑝𝑝𝑙𝑦𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑚(𝐴𝑙g𝑖, 𝐶𝑢𝑟𝑆𝑜𝑙)  

8. 𝐶𝑢𝑟𝑆𝑜𝑙 ← 𝐴𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝐶𝑟𝑒𝑡𝑒𝑟𝑖𝑎(𝑁𝑒𝑤𝑆𝑜𝑙)  

9. 𝑅𝑒𝑤𝑎𝑟𝑑𝑠 ←
𝐴𝑠𝑠𝑖𝑔𝑛𝑅𝑒𝑤𝑎𝑟𝑑𝑠(𝐴𝑙g𝑖, 𝐶𝑢𝑟𝑆𝑜𝑙, 𝑁𝑒𝑤𝑆𝑜𝑙)  

10. 𝐄𝐧𝐝𝐅𝐨𝐫 

11. 𝐅𝐨𝐫 𝒆𝒂𝒄𝒉 𝑘 ∈ {1, . . . , 𝐾} 𝐝𝐨: 
12. 𝑅𝑒𝑤𝑎𝑟𝑑𝑘 ←

𝑈𝑝𝑑𝑎𝑡𝑒𝑅𝑒𝑤𝑎𝑟𝑑𝑠(𝑅𝑒𝑤𝑎𝑟𝑑𝑠) // Eq.1 

13. 𝑃𝐻𝐻𝑘
← 𝑈𝑝𝑑𝑎𝑡𝑒𝑃𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑒𝑠(𝑅𝑒𝑤𝑎𝑟𝑑𝑘)     

// Eq.4 

14. 𝐄𝐧𝐝𝐅𝐨𝐫 

15. 𝐄𝐧𝐝𝐖𝐡𝐢𝐥𝐞 

𝐄𝐧𝐝. 

 

advantages of each, such as to get powerful of 

different heuristic selection mechanism. Also, this 

enables us to control different sets of LLHs 

cooperatively and different acceptance criteria. The 

new Layer permits the switch among available hyper-

heuristics to automatically control the selection of 

hyper-heuristics at different stages during the search 

process. This achieves high level of generality and 

reusability of the proposed framework. This work 

introduces a multi-level hyper-heuristic that utilizing 

three interacting hyper-heuristic algorithms 

interchanged and controlled by the highest-level as 

provided in Fig. 2. The details of the proposed 

approach are described in pseudocode presented in 

Alg. (1). The algorithm starts with a predefined set of 

hyper-heuristic algorithms with equal chance for 

selection (lines 1-2). The main loop of the algorithm 

is starts from line-4 to the end. At each LP, The 

Algorithms are randomly selected and rewarded 

according to its performance for some iteration (lines 

5 to10). In lines 6 to 7, a hyper-heuristic 𝐴𝑙g𝑖  is 

randomly selected by roulette wheel and applied to 

generate a new solution 𝑁𝑒𝑤𝑆𝑜𝑙 . Then, the 

acceptance criteria is applied and in line 8, the 

selected algorithm 𝐴𝑙g𝑖that improves the solution or 

just remain same solution is rewarded by assigning a 

reward value (line 9) using one of the two methods 

mentioned above in Eq.2 and Eq.3. At the end of each 

learning period 𝑙, the total reward for each algorithm 

𝐴𝑙g𝑘 is calculated for each 𝑘 ∈ {1, . . . , 𝐾} (lines 12). 

According to the total reward for each 𝐴𝑙g𝑘 in the 

pool, the probability of each algorithm 𝐴𝑙g𝑘  is 

recalculated based on Eq. (4) (line 13). The whole 

process is repeated, and the roulette wheel selection 

randomly selects a hyper-heuristic algorithm based 

on the new probability associated with each 

algorithm.  

As mentioned before, the proposed framework 

involves three layers, the highest-level strategy, high-

level heuristic, and the Low-level heuristics. These 

layers are addressed as follows: 

3.2.1. Highest level strategy 

Highest level strategy is the upper hand of the 

proposed framework to control high-level heuristic 

and low-level heuristic. This layer consists of two 

component, algorithm selection and acceptance 

criteria as shown in Fig. 1 (1st Layer). This level 

enables to achieve better performance than the 

previous hyper-heuristics framework and improve 

the level of generality of the proposed framework.  

3.2.1.1. Algorithm selection 

In this phase, the proposed approach begins with 

selecting one from a pool contains three algorithms. 

These algorithms are “An Iterated Multi-stage 

Selection Hyper-heuristic” (MSHH) [37], 

“Robinhood hyper-heuristic” (RHH) [36] , and 

“Hyper-heuristic Search Strategies & Timetabling” 

(HYSST) [9]. The roulette-wheel based selection is 

adopted as an algorithm selection mechanism. 

Initially all algorithms have the same probabilities. 

These probabilities decide which algorithm is 

selected at each decision point. After that, the 

selected algorithm is applied to find a new solution. 

Then, the new solution is evaluated, and the 

algorithm is rewarded based on the solution obtained. 

After each LP, the probabilities are adapted according 

to the reward for each algorithm during the learning 

period as shown in Fig. 2. 

HyperHeur.Alg2  

HyperHeur.Algn 

HyperHeur.Alg1 

Selecting 

Algorithm  

  

Apply selected 

Algorithm 

Acceptance 

criteria  

Reward 

Algorithm 

Stopping 

criteria? 

Update 

Probabilities Yes 

Yes 

No 

No 

Pool 

Stop 

…
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3.2.1.2. Acceptance criteria 

The role of the acceptance criterion is to decides 

accepting or rejecting the solution generated by the 

selected algorithm [11]. Acceptance criterion accepts 

only the same or better solution. Here, two ways to 

reward the algorithm are proposed when a new 

solution is accepted. First way is to get amount of 

improvement in the solution and reward algorithm 

based on this amount. The other way is to get number 

of times that algorithm improves the solution or keep 

solution same. These values are used when credit 

assignment is applied to calculate the probability of 

each algorithm. 

3.2.2. High level heuristic 

The High-Level heuristic comprises two 

components, the first component selects a LLH, and 

a second one for move acceptance to decide whether 

the solution obtained by the selected LLH should be 

accepted or not. At each stage in the search process, 

heuristic selection module selects LLH to be applied. 

The proposed approach is capable of handling new 

problem domains without any modifications. 

3.2.3. Low level heuristic 

Low-level heuristics are used to create new 

solutions. LLHs are usually specified for a certain 

problem domain and therefore they are problem 

specific [39]. 

4. Experimental results 

Here, the experimental design and results are 

presented in the following subsections. 

4.1 Experimental design & parameters 

The performance of the proposed multilevel 

hyper-heuristic is verified against some of previously 

proposed hyper-heuristics such as An Iterated Multi-

stage Selection Hyper-heuristic(MSHH) [37], 

Robinhood hyper-heuristic(RHH) [36] and Hyper-

heuristic Search Strategies & Timetabling (HYSST) 

[9] which used as a pool components in the proposed 

framework. Besides, the recently developed in [38], 

A dynamic heuristic set selection (DHSS) is also used 

in verification. The performance of the compared 

hyper-heuristics is evaluated across six HyFlex 

problem domains. These Problems are MAX-SAT, 

Bin Packing (BP), Flow-shop (FSH), Personnel 

Scheduling (PS), VRP, and TSP. Each of these 

problem domains has five instances which are 

labelled as inst1 to inst5. The proposed approach and 

its competitors are run on the five instances for each 

problem domain about 31 different independent runs. 

The number of iterations in each learning Period (l) is 

assigned to 10. 

4.2 Computational results 

As discussed above, the proposed approach has 

two different variants according to the adopted 

rewarding strategy. The first variant named MHHA 

adopts the reward strategy based on the amount of 

improvement achieved by the algorithm during the 

learning period. Whereas the second variant named 

MHHN adopts the reward strategy based on the 

number of accepted solutions generated by the 

algorithm at the learning period. These two proposed 

variants have experimented with the recently 

developed DHSS [38] and the hyper-heuristics 

components included in the pool at the highest-level, 

denoted as RHH, MSHH, and HYSST. Table 3 (SAT 

row) and Fig. 3 show the average results of SAT 

domain. On average, the proposed two variants 

MHHA and MHHN outperform the others RHH, 

MSHH, HYSST and DHSS and this performance is 

statistically significant for all instances in SAT 

domain.  

For Bin Packing (BP) problem domain, the 

average results are shown in Table 3 and Fig. 4. It is 

so clear the superiority of our proposals MHHA 

against their competitors DHSS, RHH, MSHH and 

HYSST for all problem instants. The other variant 

MHHN achieves the second best performance in 

these instances. Except in instance 5, the competitor 

MSHH achieves the second best performance. 

In the Flow-shop (FSH) problem domain, Table 3 

(FSH row) and Fig. 5 show the average results. 

Although DHSS outperforms the others in all test 

instances, the proposed variant MHHA still have the 

second-best performance in inst3 and inst5 and the 3rd 

best performance in the other instance. Also, it is 

noted that MSHH achieves the second-best 

performance in ints1, inst2 and inst4. In this case, it 

 

 
Figure. 3 Average results of SAT problem for 5 instances 
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Figure. 4 Average results of Bin-Packing for 5 instances 

 

 
Figure. 5 Average results of Flow Shop for 5 instances 

 

 
Figure. 6 Results of personnel schedule for 5 instances 

 

 

seems MSHH more appropriate for FSH domain. 

Adopting the proposed MLHH gives the chance to 

other algorithms to be applied in some stages of the 

search process. Thus, it may deteriorate the 

performance in this problem compared to the pure 

MSHH. This meaning can be observed from Fig. 10 

which indicates the performance of each component 

in each learning period during the search. 

On the Personnel Scheduling (PS) problem 

domains, Table 3 (PS row) and Fig. 6 show the 

average results obtained over 31 independent runs. 

From the average results, it is so clear the superiority 

of the proposed MHHA variant in all test instances 

over the other competitors except in inst4 in which 

the proposed MHHN has the best performance. Thus, 

our proposals outperform all other competitors in this 

 
 

 
Figure. 7 Average results of Flow Shop for 5 instances 

 

 
Figure. 8 Average results of Flow Shop for 5 instances 

 

 

problem domain. For VRP problem domain, Table 3 

(VRP row) and Fig. 7 depicts the average results. 

Here, the best performance is achieved by the 

proposed MHHA variant on all test instances. the 

other proposed MHHN provide the second-best 

performance in all test instances except instance 3 in 

which RHH achieves the second-best performance.  

On TSP problem domain, the proposed two 

variants MHHA and MHHN manage to provide the 

best average results in three instances from inst3 to 

inst5 and achieves the second-best performance in the 

first two instances inst1 and inst2. However, DHSS 

shows the best performance on average in Inst1 and 

inst2 as viewed in Table 3 (TSP row) and Fig. 8. 

Fig. 9 and 10 show the competition among the 

three hyper-heuristics components RHH, MSHH and 

HYSST included in the pool for SAT and FSH 

domains respectively. They show the probability of 

selection for each hyper-heuristics in deferent 

learning periods. In Fig. 9, the cooperation among 

three hyper-heuristics algorithms involved in 

algorithm pool in highest level is shown. This allows 

the proposed MHHA & MHHN to achieve the best 

performance in SAT five instances. In some cases, 

after a few trials one algorithm win the competition 

with some difference in some other cases there is a 

variety of success in competition. 

Finally, Fig. 11 shows the box plots of the 
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Figure. 9 Competition among three algorithms in SAT 

 
Figure. 10 Competition among three algorithms in FSH 

 

Table 3. Average and standard deviations Result of All test problems over 31 independent runs 
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Figure. 11 DSHH, MHHN, and MHHA boxplots for all test problems for 5 instances 

 

 

normalized median of the objective values for the 

proposed variants MHHN, MHHA, and the recently 

developed DHSS competitor for each instance in 

each problem domain. Each of these fingers provides 

the shape of the distribution of the results of each 

algorithm on each problem instances. It is observed 

that MHHA outperforms DHSS overall and in SAT, 

BP, PS, VRP, and last 3 instances in TSP problem 

domains. However, it achieves the second-best 

performance in FSH domain. In most HyFlex 

problem domains, MHHA turns out to be a viable 

general methodology which outperforms the other 

hyper-heuristic approaches. This reflects the success 

of the proposed framework in exploiting the suitable 

heuristic and/or acceptance criteria in different search 

points according to the problem domain. The poor 

performance in FSH problem can be explained by the 

bad performance of hyper-heuristic components used 
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compared with DHSS. Thus, involving other 

components to improve the performance in this 

problem domain is considered as future research. 

5. Conclusion 

Hyper-heuristic is a type of search technique that 

automates to combine, and control set of heuristics in 

order to solve a number of computationally hard 

problems. A traditional hyper- heuristic framework 

accomplishes this through two level. First, a high-

level heuristic consists of two main components, that 

is (a heuristic selection mechanism and a move 

acceptance strategy). Then, low level heuristics are a 

set of problem specific heuristics. The design of the 

high-level heuristic is crucial. Since, each problem 

instance has a different landscape structure. This 

paper presents a new hyper-heuristic framework 

which adopts an additional level on top of the 

tradition hyper-heuristic framework. The proposed 

framework is a way to automatically design hyper-

heuristic models through intelligently selecting 

suitable combinations of the highest-level heuristic 

components (i.e. Algorithm selection and move 

acceptance strategies) during the different stages of 

the optimization process. It is more generalized, 

reusable and helpful in releasing the complexity of 

choosing a hyper-heuristic method for solving a 

problem. Also, it is more independent to problem 

through new level added. The proposed MHH 

framework integrates a heuristic selection 

mechanism with a set of hyper-heuristics as well as a 

variety of acceptance criteria. At the top level, the 

selection-based roulette wheel is adopted to select 

one algorithm to be applied from three hyper-

heuristic algorithms. Six challenging problems from 

the hyper-heuristic competition (CHeSC) test suite 

are used to illustrate the generality of the proposed 

framework. The experimental results show that the 

proposed framework produces highly competitive 

results against the competitors. This reflects the role 

of the adopted reward strategies and the selection 

mechanism. In future work, the combination of 

different selection mechanisms is studied as well as 

combinations of different reward methods to improve 

the performance. Also, combining different heuristics 

and different acceptance criteria provide more 

generality. 
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