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STATE OF CHARGE ESTIMATION OF HIGH-POWER LITHIUM-ION 

BATTERIES WITH IMPROVED EQUIVALENT CIRCUIT MODELING 

AND ADAPTIVE EXTENDED KALMAN FILTERING ALGORITHM 

 

Abstract: This paper focuses on the accurate estimation of the state of charge of lithium-ion batteries through 

the establishment of an equivalent model, experimentation, simulation, and the use of an adaptive extended Kalman 

filtering algorithm. Several models have been used in the creation of the high-power lithium-ion battery and as it is 

difficult to estimate the state of charge of the lithium-ion battery accurately numerous methods and techniques are 

employed. A Thevenin equivalent circuit model is designed to include two resistor-capacitors in series for easy 

parameterization and estimation of the state of charge of the battery. An experimental approach is adopted and data 

from the open-circuit voltage and the hybrid pulse power characteristic tests are used for parameterization. The 

battery is modeled and simulated in Simulink/MATLAB with inputs from the results and calculations from the 

experimental data. An improved adaptive extended Kalman filtering algorithm was used to accurately estimate the 

state of charge. The main idea of using the improved adaptive algorithm is to update the statistical noise covariance 

parameters and to improve the estimation performance and accuracy. This reduced the interference of system noise 
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effectively and minimized estimation error to the smallest value. An extended Kalman filtering algorithm was 

employed alongside the adaptive extended Kalman filtering algorithm to verify the effectiveness of the adaptive 

algorithm. Results and computations from the experiment and simulation are compared and the results show that the 

improved adaptive extend Kalman filtering algorithm has good convergence speed, is more stable, and has a high 

precision of accuracy in the estimation of the state of charge. The maximum estimation error realized with the use of 

the extended Kalman filtering algorithm was 4.97%, and the maximum estimation error based on the use of the 

improved adaptive extended Kalman filtering algorithm was 1.85%. The results, therefore, show that the adaptive 

algorithm adopted in this paper can be used efficiently and effectively for the accurate state of charge estimation of 

the high-power lithium-ion battery. 
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state of charge; adaptive extended Kalman filtering algorithm. 
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Introduction 

Currently, lithium-ion batteries are perhaps the 

most important new energy source in the 21st century, 

and research in the area of improving and enhancing 

the performance of the technology through various 

techniques and methods is key to unearthing greater 

potential. The key to improving, controlling, 

monitoring, and managing the lithium-ion battery is 

the battery management system (BMS) [1], and the 

estimation of the state of charge (SOC), state of health 

(SOH), state of power (SOP), and other battery 

parameters is a very important research field that 

ensures the safety and reliability of electronic devices 

that use these batteries as a source of power. Research 

on the improvement of the function, reliability, and 

performance of lithium-ion battery technology is 

important and any breakthrough in the area would go 

a long way to improve upon the technology [2]. The 

BMS is responsible for measuring the states of the 

battery accurately and also ensure safe operation and 

prolong the battery life [3]. An improved Thevenin 

equivalent circuit model was proposed, designed, and 

implemented through experimentation and 

simulation. The model was achieved by adding an 

extra RC branch to the Thevenin model, making it a 

second-order resistor-capacitor. The 2RC Thevenin 

model has better accuracy, stability, robustness, and is 

very effective for SOC estimation [4]. This model was 

used to study and record parameters and estimate 

relationships between voltage, current, SOC, and the 

charging/discharging characteristics. 

Research concerning battery management 

systems (BMS) from a global perspective includes 

those which display an entire BMS design adopting a 

distributed structure to reach better scalability and 

portability [5]. Different approaches to designing a 

BMS depend on the functionalities desired for the 

specific application, but most of them focus on key 

functions such as SOC estimation [6] and the 

balancing process [7]. The improvement is towards 

the design of intelligent BMS’s for electric and hybrid 

electric vehicles [8], and artificial intelligence applied 

for the battery state estimation [9]. SOC estimation 

has therefore drawn the attention of many researchers, 

and many different methods have been proposed [10, 

11]. The OCV method, a full charge detector/dynamic 

load observer, and the CC method with robust 

extended Kalman filtering algorithm (REKF) are 

combined in [12]. It is difficult to determine the 

specific approach when such methods are used, 

however, based on the classification made in [12, 13], 

two categories; direct and indirect methods, and 

several subcategories that summarize trends in SOC 

estimation are mentioned and aligned appropriately. 

Battery models are used to study the relationship 

between the external characteristics and the internal 

states of a battery by establishing a mathematical 

model. Models in a discrete-time state-space form are 

also used for SOC estimation [14, 15]. Current 

literature makes mention of the use of equivalent 

circuit models (ECMs) as being widely used as a 

foundation for model-based estimation and control 

[16]. Generally, equivalent circuit models including 

the Rint model, the Thevenin model, the RC model, 

and the partnership for a new generation of vehicle 

(PNGV) model [17] are selected. The first-order RC, 

second-order RC, and third-order RC are all employed 

to accurately model the battery [18, 19]. Among them, 

the Thevenin model is widely used, but not accurate 

enough since all of its elements can change, depending 

on the condition and state of the battery.  

According to [20, 21], to maximize parameter 

identification, new designs are being developed using 

charging/discharging, and [22, 23] combined SOC 

estimation methods as a means of estimating SOC in 

the presence of unknown or time-varying battery 

parameters. Research in the area either assumes an 

accurate SOC/OCV relationship or seeks to impose 

approximations such as OCV being piece-wise linear 

with SOC [24] or constant during discharging [25]. 

According to [11, 26], RC parameters are determined 

through analyzing the transients in a battery voltage 
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response under certain excitations such as constant or 

pulse current experiments. The voltage source in an 

ECM typically represents the battery's open-circuit 

voltage, which depends on the SOC [27]. A 

relationship between SOC and OCV can be identified 

by charging or discharging the battery using a small 

current [28]. Parameter identification based on 

current-voltage data is addressed in [21], by a method 

that reduces the problem of solving a set of high-order 

polynomial equations into solving several linear 

equations and a single-variable polynomial equation. 

A Thevenin ECM is used in [14] for every single cell 

in an array of more than 90 series-connected cells, to 

identify the internal resistance of each cell. In [29] a 

Thevenin model using two different branches for 

charge and discharge is connected in series n times to 

represent n cells in a series. According to [30, 31], 

there are three different ECMs of lithium-ion batteries 

widely adopted because of their excellent dynamic 

performance and postulates that the second-order 

ECM is the most accurate and has the best dynamic 

performance, but it is also the most complex. The 

Thevenin model and second-order ECM were used for 

SOC estimation and compared with three other 

enhanced ECMs in [14, 32] and the difference 

between these models is the way the SOC equations 

are calculated. The parameters of the second-order 

ECM can be calculated with different datasets 

depending on the purpose, like in [33]. In [34], a 

comparison between continuous-time and discrete-

time equations of the second-order ECM is made and 

concludes that discrete-time identification methods 

are less robust due to undesired sensitivity issues in 

the transformation of discrete domain parameters.  

According to [35], SOC can be directly 

calculated by the transformation of model equations 

with the deployment of a simple Thevenin ECM. In 

[36], a Thevenin ECM is used to obtain the OCV, and 

then, a linear fitting of a portion of the OCV–SOC 

curve is used to obtain the SOC. A similar process is 

used in [37] to obtain the SOC with a simple ECM that 

considers just a voltage source and an internal 

resistance. A Kalman filter (KF) is introduced in [38] 

to extract an OCV value in a noisy environment, and 

then to estimate SOC based on the OCV–SOC 

mapping. In addition to models, there are different 

types of closed-loop methods for SOC estimations, 

such as direct feedback [13], extended Kalman Filters 

[39], unscented Kalman Filters (UKF) [40, 41], and 

neural network [42, 43]. These methods are used to 

further improve the accuracy of the SOC estimation 

since they can recursively estimate the uncertainty of 

system state estimations and adapt Kalman gain to 

achieve optimal estimation in the next time step of the 

iteration process. It is common to find a combination 

of CC or OCV methods with the KF method like in 

[44, 45] and as proposed in [46, 47], the EKF method 

is also used in combination with CC and/or OCV. 

Another common improvement to the Kalman 

filtering algorithm for SOC estimation is the 

unscented Kalman filtering algorithm, which is used 

in [48, 49] to improve estimation accuracy. A UKF 

algorithm is implemented in [50] to estimate SOC 

using an improved ECM with a resistance and a 

capacitor correction factor. This was done to first, 

measure the effect of different current rates and the 

SOC estimation on the battery internal resistance, and 

secondly to identify the impact of different current 

rates and temperatures on the battery’s capacity [51]. 

The works presented in [52, 53] use a multi-model 

approach that adopts a bank of EKFs to estimate the 

SOC of the battery. A robust extended Kalman 

filtering algorithm is implemented in [54] to be more 

robust to uncertainties in the system, and 

measurement equations, and noise covariances. A 

SOC estimation approach that uses an improvement in 

the measurement noise treatment is proposed in [55] 

and, by correcting the covariance matrix error in the 

depicted EKF, establishes an adaptive Kalman 

filtering algorithm that can reduce the estimation 

error. To deal with the variation of battery parameters 

due to temperature changes [56], an online approach 

is proposed for SOC estimation and parameter 

updating using a dual square root UKF based on unit 

spherical unscented transform.  

To obtain a more accurate and reliable SOC, an 

improved Thevenin equivalent model is proposed and 

its parameters are identified. Experimental data results 

and simulated results are compared and analyzed to 

further appreciate the effectiveness of the improved 

adaptive extended Kalman filtering (AEKF) 

algorithm used. The use of the AEKF algorithm in this 

research is to accurately and diligently estimate the 

SOC and eliminate or reduce errors by updating the 

noise covariance matrix. The use of this adaptive 

extended Kalman filtering algorithm is an innovation 

in this work coupled with the 2RC Thevenin 

equivalent model for successful implementation and 

SOC estimation. According to the results realized, it is 

worth noting that, the SOC estimation using the AEKF 

algorithm is more accurate and reliable comparatively 

than the EKF algorithm. This paper is organized in 

sections as follows; The mathematical analysis is 

conducted in section 2, experimental analysis in 

section 3, and the last section is section 4 which coves 

conclusion and further research plan. 

2. Mathematical Analysis 

The basic concepts of SOC estimation, battery 

modeling, and the Kalman filtering algorithm are first 

introduced in this section. The improved Thevenin 

equivalent model including the 2RC’s added as well 

as the description of corresponding parameters to be 

identified through experimentation are presented, the 

EKF and the improved AEKF algorithms are 

introduced in detail to emphasize the improvement in 

the SOC estimation accuracy. 
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2.1 The structure of the improved 2RC 

Thevenin equivalent model 

An appropriate equivalent circuit model 

established and described, and the input, output, and 

state variables are determined. The modeling and 

simulation are done in Simulink/MATLAB and the 

parameters identified from the experimental data are 

used for real-time correction of variables like the 

internal resistor, capacitors, and current. Simulations 

are carried out and the results are verified to make sure 

the proposed method works perfectly for the accurate 

estimation of the SOC of the battery. The state of 

charge of the high-power lithium-ion battery is 

defined as the remaining capacity of the battery and is 

written mathematically as, the ratio of remaining 

capacity to the maximum available capacity and 

expressed as shown in Eq. (1). 

    

%
Q

Q
SOC t

t 100
0

=

                                 (1) 

Where Qt is the residual capacity of the battery 

at time t and Q0 is the rated capacity. The value of SOC 

is the ratio between the current residual capacity and 

the capacity in the fully charged state when the battery 

is fully static at a certain time.  

2.1.1 Electrical circuit model 

The improved Thevenin equivalent circuit model 

is suggested for experimental and simulation purposes 

to model the behaviour of the high-power lithium-ion 

battery. The dynamic system of the Thevenin model 

describes the fixed parameters as variables that vary 

with the state of charge and temperature, enabling a 

more accurate description of the performance of the 

battery. This method was adopted because the 

topology generally proposes a tradeoff between 

battery cell computational requirements and the 

approximation of voltage precision. The model is as 

shown in (figure 1). 

 

It

ULUoc

R0

R1

C2

R2

C1

U1
U2

+

-

 
Figure 1: The 2RC Thevenin Equivalent Circuit Model 

 

Where Uoc is the Open-Circuit Voltage, R0 is the 

ohmic resistance of the battery, It is the 

charge/discharge current flowing from the voltage 

source and UL represents the terminal voltage of the 

battery. R1 and R2 denote the electrochemical 

polarization resistance and concentration polarization 

resistance, respectively. C1 and C2 denote the 

electrochemical polarization capacitance and 

concentration polarization capacitance respectively.  

2.1.2 State-space description 

The state-space representation is a mathematical 

model of a physical system as a set of input, output, 

and state variables related to the first-order 

differential equations or difference equations. 

Concerning (figure 1) and the application of 

Kirchhoff's law, Eq. (2) is obtained and written as: 

Where [SOC, U1, U2] is selected as the state 

variables which need to be realized and after 

discretization of Eq. (2) and considering the definition 

of SOC as stated earlier, its state space equation can 

be written as shown in Eq. (3) 

In the above equation, parameters that the model 

needs to identify include ohmic internal resistance Ro, 

open circuit voltage Uoc, polarization internal 

resistance R1, R2, and polarization capacitor C1 and C2 

( ) ( ) 0 1 2

1 1

1 1 1

2 2

2 2 2

L ocU U SOC i t R U U

dU U i

dt R C C

dU U i

dt R C C




= − − −



= − +



= − +

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
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+
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+

+

   
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which will lead to identifying U1 and U2.  

2.2 Iterative calculation algorithms  

2.2.1 Extended Kalman filtering  

The extended Kalman filter algorithm is used for 

predicting the future state of a system based on a 

previous state. Kalman filter is a linear unbiased 

recursive filter, which is constantly "predicted and 

corrected" in the calculation process. Whenever new 

data is observed, new predicted values can be 

calculated at any time, which is very convenient for 

real-time processing. Due to the discharge rate, 

temperature, and complex internal chemical reaction, 

the battery presents a nonlinear state. Based on 

Kalman, the Jacobian matrix is obtained by using the 

Taylor formula for linearization, and the extended 

Kalman filter algorithm is obtained. The extended 

Kalman filter consists of two equations; state 

equations and observation equations, which include A, 

B, C, and D matrices that can be realized using Ro, R1, 

R2, C1, and C2. xk is the system state matrix that 

captures the system dynamics and one of the matrix 

values represents SOC. The input of the system is uk 

which is a control variable matrix that is known or can 

be measured. wk, is the noise of the system state 

equation. Eq.. (4) shows the state equation and the 

observation equation. 

1 , 1

, , 1

k k L k k

L k k L k k

X AX BI w

U CX DI v

− −

−

= + +


= + +
                  (4) 

Where, xk represents the system state variable at 

time k, yk is the system observed variable at time k, uk 

is the system input which is used as the control 

variable; Ak is the transfer matrix of state x from k-1 to 

k, and Bk is the input matrix. Ck is the measurement 

matrix, Dk is the feedforward matrix; ωk is the noise of 

the system state equation. Kalman filter algorithm is 

used for state prediction and estimation. Kalman filter 

is mainly composed of five equations, which can be 

divided into the prediction stage and correction stage. 

The recursive relationship between the estimated 

value of state and covariance in the prediction stage 

(Time Update): is shown in Eq. (5).  

1 , 1

| 1 1

ˆ ˆ=

ˆ ˆ=

k k L k k

T

k k k w

X X BI w

P AP A Q

−

− −

−

− −

 + +


+

          (5) 

According to the model, the last moment of the 

state estimate of k-1, Xk-1 and its covariance matrix     

Pk-1 directly calculates the forecast of this moment, Xk
- 

and its covariance matrix Pk|k-1. Qw is the covariance 

matrix of process noise wk. The estimated values of 

Kalman gain are calculated as shown in Eq. (6).  

   

 ( )| 1 | 1
ˆ ˆT T

k k k k k kK P C CP C v− −

− −= +  (6) 

The state correction stage is then performed for 

further computations to arrive at an appropriate 

equation that can be used to effectively make sure the 

appropriate parameters are identified. This can be 

achieved as shown in Eq. (7). 

 
( ),

| 1 | 1 | 1

ˆ ˆ ˆ

ˆ ˆ ˆ=

k k t L k k

k k k k t k k

X X K U CX

P P K CP

− −

− −

− − −

 = + −


−

             (7) 

The moment of state estimation xk and Pk|k-1 is 

realized after this and the Kalman filter algorithm is 

completed in one iteration, and an iterative estimation 

is carried out for each observation, with good real-

time performance. 

2.2.2 Adaptive extended Kalman filtering 

algorithm 

Currently, the SOC estimation method is mainly 

based on the equivalent model combined with the 

Kalman filter algorithm and its extended algorithm as 

well as fuzzy logic and neural network-related 

algorithms. The Kalman filter (KF) algorithm is one 

of the most widely used intelligent algorithms, and it 

is usually used in practical situations, such as path 

planning, target tracking, and SOC estimation of 

lithium-ion batteries. The basic principle of the 

algorithm is to take the minimum mean square error 

as the best estimation criterion, and by establishing a 

state equation and an observation equation model, a 

state-space model of signals and noise is used to 

introduce the relationship between the state variables 

and the observed variables. Time estimates and 

observations of the current time, update the estimates 

of the state variables. The Kalman filter is a 

mathematical function that provides estimating states 

with iterative steps, in a way to minimize the mean 

squared error. This technique has been providing 

performance efficiency in the field of parameter 

estimation and state transition. The improved 

Thevenin equivalent circuit model of the lithium-ion 

battery can be simplified as shown in Eq. (8). 

 

The functions f (*) and h (*) are nonlinear 

equations and the first equation is the state equation, 

where xk is the n-dimensional system state vector at 

time point k, and v is the n-dimensional system noise 

vector. The function f (xk, uk) is a non-linear state 

transition function. The second equation is an 

observation equation, where y is an observation 

vector, and v is a multi-dimensional system 

interference vector at time point k. The function h (xk, 

uk) is a non-linear measurement function. The above 

function can be explored by using the Tailor method 

on the prior estimation point xk of the state xk + 1. The 

higher-order components of the process can be 

ignored, and linear approximations of off (*) and h (*) 

can be used as shown in Eq. (9). 

1
= ( , ) ......=A +B

( , ) ....... D
k k k k k k k k k

k k k k k k k k k

x f x u w x u w

y h x u v C x u v
+







+ +

= + = + + (8) 
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The estimation process of the Kalman filter 

algorithm includes a time update and measurement 

update. The time update process is also known as the 

forecast process. It is a one-step prediction of the 

current state variable and provides a prior estimation 

process for the next moment. The measurement 

update process is the process of feeding back 

observations and correcting deviations. The EKF 

algorithm equations are as follows. 

1. The filter initial conditions given in terms of the 

one-step prediction means the first state 

prediction has the same statistics as the initial 

condition of the system. The initial condition of 

the filter equation is given as:  

 

(10) 

 

2. When EKF is used to estimate the SOC of the 

lithium-ion battery, the SOC is a component of 

the state vector, the current is used as control 

quantity in the input parameters and the output is 

terminal voltage. The state vector estimation time 

update is given as:  

| 1 1 1( , )k k k kf xx u− − −=                        (11) 

3. The state covariance time update process predicts 

the current state variables by updating them and 

providing a prior estimate of the next time. State 

covariance update time update is given as:  

| 1 1

T

k k k kP FP F Q− −= +                          (12) 

4. The Kalman gain is the relative weight given to 

the measurements and current state estimate and 

can be manipulated to achieve a particular 

performance. The calculation of the Kalman gain 

coefficient is given as:  

| 1 | 1( )T T

k k k k k kK P H HP H R− −= +        (13) 

5. The measurement update process, also known as 

the correction process, is a process of feedback on 

the observed values and the correction of the 

deviation. The state vector measurement update is 

given as: 

| 1 | 1(( , ))k k k k k k k kx x K h x uy− −+ −=        (14) 

6. The state covariance matrix consists of the 

variances associated with each of 

the state estimates obtained and the correlation 

between the errors in the state estimates. The 

update state covariance matrix is given as:  

| 1=( )k k k kP I K H P −−              (15) 

In the above equations, xk|k-1is the direct time 

estimate at time k, xk-1 is the optimal estimate state 

value at the last moment. Pk is the covariance update 

of xk, Qk is the covariance of process noise w, Kk is the 

Kalman gain coefficient. Rk is the covariance of 

observation noise v. Since the covariance matrix Pk is 

decomposed, at least it is guaranteed that Pk is always 

non-negative definite, which can overcome the filter 

divergence caused by the limited word length of the 

computer. Sage-Husa algorithm adaptively updates 

the noise variables by comparing the final and initial 

estimated values. The estimator-related quantities are 

calculated as shown in Eq. (16).  

 

 

 

 

 

 

 

 

    

  

To make the estimation of noise more accurate 

and to avoid the influence of the observed value on the 

estimated value, this paper considers the noise at the 

previous moment and the current moment at the same 

time. In practice, the smaller the value of b, the smaller 

the impact at the previous moment; if the value of b is 

small, the estimated noise will oscillate, so it can be 

determined according to the specific situation. Then 

the calculation of the noise matrix is as shown in Eq. 

(17).  
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2.2.3 Iterative calculation process   

After obtaining the main parameters in the 2RC 

Thevenin equivalent circuit model, the state space 

equation is obtained using the relationship between 
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voltage and current as shown in Eq. (18). 

   

  

  

  

  

(18) 

 

 

 

The three equations above are combined and 

discretized to obtain the state equation needed to 

perform further calculations leading to the conversion 

of non-discretized parameters into discretized ones as 

shown in Eq. (19). 

 

 

 

  

  

  

  

  

 (19) 

 

 

 

 

It is important to also consider the observation 

equation for further successful computation and 

attainment of accurate results. The next thing to do 

therefore is the observation equation which is shown 

in Eq. (20). 

 

( ),1 1 1k k k k oc k k ky h x i v U R i vu−− −= + = +−    (20) 

 

The parameters of the battery are initially non-

linear variables and have to be linearized. After 

linearization, using the first-order Taylor series with 

the values of Ak, Bk, and Ck, the formulas are obtained 

as shown in Eq. (21). 

 

   

   

   

   

   

  

 (21) 

 

In performing the mathematical calculation for 

the algorithm, there are a few steps to follow to 

achieve this. The first step is known as the state 

prediction stage. The predicted value at time k is 

calculated as shown in Eq. (22). 

1 11( ( 1k )| 1)
k kkx B ixk k A
− −−− +− =

                    (22) 

The second step in this calculation is the 

prediction of the covariance matrix. This is done by 

calculating the estimation error of x(k|k-1), the 

covariance matrix of the corresponding x(k|k-1) is 

obtained as shown in Eq. (23). 

1 11
ˆ( | 1) k

T

k k kP k k A A QP− −−= +−   (23) 

The Kalman gain is calculated in the third step to 

further improve the computation and arrive at the 

value for a specific time. The Kalman gain at time k is 

obtained as shown in Eq. (24). 

 
1(C )T T

k k k k k k kK P C P C R −= +          (24) 

The fourth step is the update of the status. The 

optimal estimated value of the existing state is 

estimated from the real-time measured/obtained open-

circuit voltage value Uoc(k) as shown in Eq. (25). 

 ( )( 1k| 1) ( ) * |ˆ
kk oc k xx k k K U k C kX −= − + −      (25) 

In the fifth step, the noise covariance is updated. 

The noise covariance is updated according to the 

Kalman gain. This helps to avoid errors or at least 

minimize them and leads to accurate estimation. The 

noise covariance of the previous moment is shown in 

Eq. (26). 

 (1ˆ )k kk kK CP P= −                        (26) 

In the calculation, the five steps are continually 

cycled in a loop, and the estimated state is 

continuously updated so that the estimated value is 

closer to the true value during the update process. The 

basic iterative calculation process for SOC is as shown 

in (figure 2). 
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Figure 2: The SOC estimation process using the AEKF algorithm 

 

 

2.3 Model building and Realization 

2.3.1 Simulink/MATLAB Simulation model 

After obtaining the required circuit model 

parameters, the simulation model of the lithium-ion 

battery is established in Simulink/MATLAB. The 

simulation model has mainly composed of the SOC 

calculation module, the circuit parameter updating 

module, and the terminal output voltage calculation 

module. The SOC calculation module is based on the 

extended Kalman filtering algorithm and the 

Improved Adaptive extended Kalman filtering 

algorithm. SOC values are obtained through the use of 

the codes for calculations based on the algorithms and 

to prevent the battery from overcharge and over-

discharge. In this work, the influence of temperature 

change on the output voltage of the lithium-ion battery 

is ignored. For the time-domain ordinary differential 

equation of the 2RC Thevenin equivalent circuit, the 

corresponding voltage response equation is solved and 

discretization as it is required before modeling to 

obtain the discretization state-space equation of the 

model. The logical structure of the circuit model is 

shown in (figure 3). 

 

 

Battery Model

SOC

Current

Temperature

Power

Voltage

 
Figure 3: Logical structure of the circuit model 

 

 

In the battery management system, both current 

and terminal voltage are input, as the battery 

simulation model is to verify the accuracy of the 

parameter settings in the model, the current is input 

and terminal voltage is the output. The simulation 

module can be built and the second-order RC internal 

circuit is the core part of the whole module, and the 

circuit structure is directly used to build the module, 

including an ohmic internal resistance, two RC 

parallel structures, a controllable voltage source, and 

controllable current source, voltage, and current 

sensor, and input and output interface, as shown in 

(figure 4). 
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Figure 4: The Simulation Model of the 2RC Thevenin equivalent model 

 

 

(Figure 5) shows the internal component of the 

model in (figure 4) representing the proposed 2RC 

Thevenin equivalent circuit model. The necessary 

inputs and outputs are labeled and other components 

are duly presented in the figure based on the proposed 

model. 

 

 

 
Figure 5: The internal circuit of the 2RC Thevenin equivalent model 

 

 

Controllable voltage source and controllable 

current source are the signal interface in SIMULINK, 

which can turn the signal into a material port. Convert 

the external input voltage source into a voltage and 

current source that the circuit can connect to. Voltage 

sensors and current sensors are also signal 

transducers, converting physical interfaces into signal 

interfaces. The extended Kalman filtering algorithm 

and the Adaptive extended Kalman filtering algorithm 

are coded into the simulation model and the complete 

diagram is shown in (figure 6). 
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Figure 6: Integration of algorithms into the simulation diagram 

  

3. Experimental Analysis 

3.1 Test platform construction 

The GTK 3.7V 40Ah high-power lithium-ion 

battery was used for this experiment with a rated 

capacity of 40 Ampere hour (Ah), a charge cut-off 

voltage of 4.2V, and a discharge cut-off voltage of 

2.75V. The test equipment is the sub-source BTS 750-

200-100-4, with a maximum charge-discharge power 

of 750W, a maximum voltage of 200V, and a 

maximum current of 100A. The basic properties of 

the battery are shown in table 1. 

 

Table 1: Basic technical parameters of the battery 

Factor  Specification  

Size: length * width * 

height/ mm 
148×27×92  

Rated voltage/V 3.7 

Maximum load current /A 5C 

Rated capacity/Ah 40 

Charge cut-off voltage/V 4.2 

Discharge cutoff voltage/V 2.75 

 

Setting up the experiment requires the 

connection of the battery to the test machine which is 

also connected to a computer. A specific terminal is 

chosen from the 16 available, and connect to the 

battery for the experiment to commence. The software 

on the computer is then programmed to follow a 

logical algorithm to accomplish the task.  
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Figure 7: Experimental Setup 

 

3.2 Results, verification, and comparison 

3.2.1 Parameter identification and extraction  

The Open-Circuit Voltage test:  

The open-circuit voltage (OCV) of the battery is 

the stable voltage value of the battery when the battery 

is left in the open circuit condition. The test was 

performed on the Lithium-ion battery to acquire data 

for parameter identification. Using the Ampere hour 

(Ah) method, the real capacity of the battery is 

determined and used in the programming during the 

experiment. After charging the battery, the battery 

terminal voltage will gradually decline to a stable 

value when it is left in the open circuit condition and 

after discharge, the battery terminal voltage will 

gradually rise to a stable value when the load is 

removed. The electromotive force of the battery is 

equal to the open-circuit voltage of the battery. The 

battery electromotive force is one of the metrics used 

to measure the amount of energy stored in the battery. 

The relationship between the battery OCV and the 

battery SOC can be attained through this experiment. 

There are a few ways to obtain the open-circuit 

voltage of a battery and include the stationary method, 

also known as the direct method which is relatively 

more accurate.  

The program that controls the experiment which 

resides on a computer connected to the battery testing 

machine (BTS 750-200-100-4) is then set to follow 

conditions to obtain a flow chart of the processes 

involved in the experiment. The test consists of simple 

steps and follows a logical sequence with a loop that 

ensures continuity and data capture at relevant SOC 

points. The first step is the capacity test that calibrates 

the capacity of the battery and the subsequent steps 

capture the OCV of the battery at specific SOC points. 
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Figure 8: OCV experiment process 

 

In the test, the measured voltages at the end of 

each standby stage are regarded as the final open-

circuit voltage. All the values of the open-circuit 

voltages at different SOC’s are measured and 

recorded. Table 2 shows the OCV data obtained at the 

various levels of SOC. These values were extracted 

and used for the curve fitting that reveals the 

relationship between OCV and SOC and further used 

to obtain the polynomial equation for further 

calculations. 

 

Table 2: Values from the SOC/OCV test 

 

SOC 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

OCV 4.1914 4.0628 3.9521 3.8529 3.7602 3.6852 3.6393 3.6188 3.5645 3.4886 

 

The OCV/SOC values were imported and using 

the curve fitting tool, a relationship was realized 

through the use of a polynomial fitting. The variation 

of OCV with SOC obtained through the experimental 

method is shown in (figure 9). 
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Figure 9: OCV/SOC Curve fitting 
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The capacity and Hybrid Pulse Power 

Characterization (HPPC) Test: 

The experiment is performed as a method for 

parameter identification of the Thevenin model and 

then data from the test conducted is analyzed and used 

in equations to calculate the parameters. Taking the 

GTK 3.7V 40Ah high-power lithium-ion battery as 

the research object, the battery test equipment was is 

BTS750-200-100-4. The HPPC experiment was 

conducted on the lithium-ion battery according to the 

"American Freedom CAR battery experiment 

manual". The single HPPC working step was to take 

1C (current 40A) constant current 10s, shelve for 40s, 

and 1C (current 40A) constant current charge 10s, and 

then shelve. The Capacity and HPPC experiments 

performed on the high-power lithium-ion battery were 

conducted according to the following steps. 

1. The battery is fully charged using a constant 

current of 1C followed by a constant voltage 

of 4.2V. Then, the battery is discharged with 

a constant current to its discharge cut-off 

voltage of 2.75V. The experiment is repeated 

three (3) times for the difference between the 

discharge capacity of each measurement not 

to exceed 2%, and then the measured 

capacity is deemed to be the actual capacity 

of the battery. 

2. The battery is left in the open-circuit 

condition to rest for 40 minutes to achieve 

electrochemical and heat equilibrium. After 

performing step (1) on the lithium-ion 

battery, SOC = 1. 

3. Discharge the experimental battery at a 

constant current of 1C for 10s, leave it for 

40s, and charge at 1C for 10s, then leave it.  

4. Discharge the battery with a current value of 

40A for 6 minutes to decrease the battery 

SOC to the next SOC point and leave it for 

30 minutes. 

5. Repeat steps (3) (4) 9 times to obtain the 

complete data for the test.  

The HPPC test is carried out using simple steps 

in order to obtain the necessary values needed for 

parameterization and further computation as far as the 

research is concerned. The experimental process of 

the HPPC test can be seen in (figure 10). 
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Figure 10: HPPC test process 

 

Through parameter identification, the functional 

relations of resistance, capacitance, voltage, and SOC 

were obtained. Then, the circuit module was built in 

Simulink/MATLAB. The module contains other 

submodules that assist in the processing, calculation, 

and optimization of the interface for better simulation. 

The EKF and the improved AEKF algorithms were 

incorporated in this module as well. The parameters 

identified in the experiment and subsequent use in 

SOC estimation are compared with the results from 

the simulated. This can be obtained by simulating the 

construction and the design of function to operate on 

is completed. Through direct comparison of the 

curves, the error in parameter identification can be 

observed and manipulated by changing the value of 

parameter input, and the optimal simulation model can 

be obtained by modifying the functions.  

The experimental results from the OCV and 

HPPC tests are used as the basis for parameterization. 

The test was conducted at 0.1 SOC intervals from 1.0 

to 0.1. When a current I is loaded, a voltage rise or 

drop appears when there is a pulse charge or discharge 

and this can be used to calculate the parameters. 

(Figure 11) shows the test data for SOC at 0.9. 
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Figure 11: Voltage curve for a specific SOC 

 

The labels U0 to U7 represent values for various 

segments of the curve corresponding to the battery 

during the experiment. U0-U3 and U4-U7 show the 

discharge characteristics and charging characteristics 

of the battery respectively. 

1. The U0-U1 segment shows the ohmic internal 

resistance Ro, which depicts the rapid drop of the 

voltage at the moment of discharge of the battery. 

2. U1-U2 shows the steady drop in terminal voltage 

due to the polarization capacitor which is due to 

the polarization effect of the battery as it is being 

charged. This polarized capacitor is the zero-

state response of the 2RC series loop. 

3. U2-U3 shows the resting of the battery and the 

disappearance of the load current, the ohmic 

voltage disappears, and the rapid rise of the 

terminal voltage. 

4. U3-U4 shows the steady rise of the terminal 

voltage as the polarization capacitance 

discharges through the polarization resistance, 

forming a zero-input response of the 2RC series 

loop. 

The opposition to the flow of the current offered 

by the battery itself resulting in the generation of heat 

is measured in Ohms. Based on the voltage drop from 

U0 to U1 for each of the SOC’s, the ohmic resistance 

R0 can be deduced. The value of (R1, R2, C1, C2) as 

seen in the Thevenin equivalent circuit diagram is to 

make it stable and achieve possible desired outcomes. 

Whenever the potential of an electrode is forced away 

from its value at the open-circuit, R1 is calculated. 

This causes current to flow 

through electrochemical reactions that occur at the 

electrode surface. The value of R1 can be determined 

using the voltage response of the battery cell to a 

discharging current pulse and voltage and can be 

calculated using the difference in voltage (U) over the 

current I. The build-up of solutes on the membrane 

surface due to convective-diffusive transport in the 

boundary layer which can be linked to R2 can be 

determined and calculated using the difference in 

voltage (U) over the current I. A capacitor is formed 

when two conducting plates are separated by a non-

conducting media called the dielectric. The value of 

the capacitance depends on the size of the plates, the 

distance between the plates, and the properties of the 

dielectric. The part of the polarization of the 

battery resulting from changes in the electrolyte 

concentration due to the passage of current through 

the electrode C2 is determined. 

With these equations, the information can be 

used to derive values of the parameters. This data can 

then be simulated in Simulink MATLAB for 

verification and validity of the values and the 

modeling of the 2RC Thevenin equivalent circuit. 

Table 3, shows the data acquired after the calculations.   

 

Table 3. The model Parameter calculation result 

SOC OCV/V Ro/mΩ R1/mΩ R2/mΩ C1/103 F C2/103 F 

1.0 4.1914 0.0324 0.0642 0.0578 20.3215 19.2359 

0.9 4.0628 0.0307 0.0532 0.0635 20.7558 19.2560 

0.8 3.9521 0.0474 0.0508 0.0657 21.3673 20.2565 

0.7 3.8529 0.0474 0.0635 0.0732 21.6135 20.6354 

0.6 3.7602 0.0542 0.0676 0.0770 22.6417 19.6580 

0.5 3.6852 0.0568 0.0730 0.0793 23.0131 22.0827 

0.4 3.6393 0.0603 0.0725 0.0840 22.1528 21.8318 

0.3 3.6188 0.0603 0.0832 0.0872 22.3564 20.2624 

0.2 3.5645 0.0604 0.0841 0.0765 21.0251 20.4528 

0.1 3.4886 0.0661 0.0762 0.0818 23.2540 20.5187 
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The values of the internal Ohmic resistance R0, 

the electrochemical polarization resistance R1, and 

concentration polarization resistance R2 calculated 

from the proposed 2RC Thevenin equivalent circuit 

are compared in (figure 12(a)). The values of the 

electrochemical polarization capacitance C1 and the 

concentration polarization capacitance C2 calculated 

from the 2RC Thevenin equivalent circuit are 

compared in (figure 12(b)).  
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(a) Resistance identification result        (b) Capacitance identification result 

Figure 12: comparison of the identified parameters 

 

According to the result, it can be observed from 

(figure 12(a)) that, the internal resistance R0 decreases 

steadily as state-of-charge increases. The 

electrochemical polarization resistance R1 first 

increases and then decreases with an increasing SOC 

and then increases again as SOC approaches the 

highest point. The concentration polarization 

resistance R2 first decreases then increases sharply and 

gently decreases as SOC increases. From (figure 

12(b)), the results show the variation in the curves of 

the two capacitances are somewhat similar and seem 

to be fluctuating as SOC increases and finally 

decreases when SOC is above 0.7 till it reaches the 

highest point. 

3.2.2 Capacity test result 

The capacity experiment was conducted for 

calibration of the capacity, current, energy, and 

voltage of the battery. According to the capacity 

experiment, these various parameters can be deduced 

and compared with the information provided by the 

manufacturer to compare and see if the experiment 

was successful or not. (Figure 13(a)) is the Capacity 

variation curve with time and it can be deduced from 

the figure that the Capacity of the battery is 

approximately 40Ah. Three maximum values 

obtained in the experiment are 39.1360Ah, 

39.2072Ah, and 39.2323Ah.  
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(a) Capacity variation curve       (b) Energy variation curve 
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(c) Current variation curve       (d) Voltage variation curve 

Figure 13: capacity test results 
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(Figure 13(b)) shows the energy variation curve 

and displays three maximum energy values obtained 

in the experiment as 139.534Wh, 139.951Wh, and 

139.879Wh. The energy of the battery is therefore 

approximately 140Wh. The energy variation curve 

fluctuates in the whole process since its main purpose 

is to charge the lithium-ion battery when the constant-

current charge-discharge interval is carried out. 

(Figure 13(c)) shows the current variation curve of the 

capacity test and displays the maximum and minimum 

current values obtained in the experiment as 

20.0086A, and -40.0049A respectively. (Figure 13(d)) 

shows the voltage variation curve and displays the 

maximum and minimum values obtained in the 

experiment as 4.1998V which is approximately the 

maximum voltage of the battery stated as 4.2V and 

2.7495V approximately 2.75V stated earlier as the 

minimum voltage of the battery. 

The comparison of the current and voltage curves 

from the experiment and how the variation is depicted 

to achieve the capacity of the battery. The current flow 

and the voltage can be seen and analyzed from (figure 

14).  
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Figure 14:Voltage/Current discharge variation curve 

 

3.2.3 HPPC test results  

The result from the HPPC test was used to 

identify each OCV at specific SOC points. The 

voltage curve is also useful in the identification of 

battery parameters. (Figure 15(a)) and (b) shows the 

schematic diagram of the HPPC terminal voltage and 

current curves with time respectively and illustrates 

the mechanism of the HPPC experiment throughout 

the test.  The figure also emphasizes one of the SOC 

points for reference and shows the single charge and 

discharge variation in the experiment. 
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Figure 15: HPPC test result 

 

From the result, it can be observed that as the 

number of cycles increases, the battery terminal 

voltage assumes a downward trend. The current 

variation reveals that, as the number of cycles 

increases, the discharge current increases. (Figure 16) 

shows the comparison of the voltage and current 

curves from the HPPC experiment and the variation 

with time. The overlaying curves shown in the figure 

depict the real or actual occurrence with the battery at 

specific times. 
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Figure 16: Voltage/Current discharge variation curve 

 

3.2.4 SOC estimation result 

The experimental results and parameterization 

did then used for SOC estimation. (Figure 17) shows 

the estimation depicting a downward slope with time 

as SOC reduces from 1 to 0.1. The result shows a 

gradual decrease and fluctuating trend which is 

because there is a process of alternating charge and 

discharge during the experiment with the discharge 

time longer than the charging time.  
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Figure  17: SOC variation curve 

 

3.3 Verification of research results  

3.3.1 Voltage characteristics 

The 2RC Thevenin equivalent circuit model is 

established through parameterization with the HPPC 

experimental results. To verify the validity of the SOC 

estimated values in the simulation, the results are 

compared with and the results from the HPPC 

experiment and the computations done thereafter. The 

value of current (I) in the experimental data obtained 

by the test equipment is taken as the input condition, 

and the simulation terminal voltage is obtained 

through the simulation model and the experimental 

terminal voltages are compared to obtain the results as 

shown in (figure 18). 
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Figure 18: Comparison of voltage variation curves 

 

Where U1 is the change curve of real terminal 

voltage data obtained through the HPPC test while U2 

is the output terminal voltage curve obtained through 

the simulation model. The figure shows the variation 

trend of both the experiment and simulation curves is 

similar to that of the actual test curve. This means that 

the results can be verified and authenticated as 

appropriate for use in any calculation toward the 

accurate estimation of SOC. 

3.3.2 Comparison and Verification of SOC 

estimation result 

To illustrate the adaptability and performance of 

the improved adaptive Kalman filtering algorithm, for 

SOC estimation, Beijing Bus Dynamic Stress Test 

(BBDST) working condition experiment was 

designed and the effectiveness of the algorithm for 

accurate SOC estimation was compared with the 

extended Kalman filtering algorithm. SOC estimation 

results from the proposed model and the use of the two 

algorithms; the extended Kalman filtering algorithm 

and the adaptive extended Kalman filtering algorithm 

are then compared to assess and verify the validity and 

efficient performance of the model and algorithms 

implemented. The three methods are compared as 

shown in (figure 19). It can be observed from the 

figure that the three methods all follow the same trend 

and have a good convergence. The same figure also 

shows the difference in error margin comparing the 

use of the EKF and the AEKF estimation curves with 

that of the true SOC curve. 
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(a). comparison of SOC estimation curves   (b). SOC estimation Error 

Figure  19: SOC variation curves for three different methods 

 

(Figure 19(a)) is the result of SOC estimation for 

three different methods. SOC1 is the true SOC value, 

and SOC2 is the SOC estimate using the extended 

Kalman algorithm and SOC3 is the SOC estimation 

using the adaptive extended Kalman filter. (Figure 

19(b)) is the error curve obtained through the 

difference in SOC values of the two algorithms. The 

error of SOC estimation using the extended Kalman is 

around 4.97%, and the error of SOC estimation using 

the improved adaptive extended Kalman algorithm is 

less than 1.85% and has a strong correction function.  

In recent years, researchers have proposed some 

new estimation methods to help correct the errors with 

especially the traditional SOC estimation methods. 

The use of these improved and adaptive methods 

would reduce the estimation errors as much as 

possible and improve the estimation accuracy. In the 

actual battery management system, the methods to 

estimate the SOC of the battery are all traditional, and 

most of these new methods are only in the theoretical 
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research or simulation stage. 

4. Conclusions and Further Research Plan 

In the quest to improve the accuracy and 

reliability of the lithium-ion battery state of charge 

estimation in this study, the 2RC Thevenin model was 

established and the parameters were obtained. This 

model was used due to its advantages of low error, 

long-term testing, and accounting for polarization 

effects and transient analysis for power battery 

charging and discharging. The steps used in the 

experiment were simple and convenient, and the 

algorithm complexity, very moderate making the 

experimental results obtained accurate and 

appropriate for parameterization. The maximum 

relative errors of the 2RC Thevenin equivalent models 

using both algorithms were all less than 4.97%, which 

can generally satisfy the precision requirements for 

practical engineering calculation, such as algorithms 

based on ECM for advanced BMSs. The choice of an 

adaptive law for the process noise covariance matrix 

shows an improvement in estimation performances. In 

terms of maximum estimation error, the EKF result 

was 4.97%, while with AEKF this range reduced up to 

1.85%. The extended Kalman filter algorithm used 

effectively reduces the influence of nonlinear 

equations and successfully realizes the SOC 

estimation of the battery. The improved adaptive 

extended Kalman filter algorithm for SOC estimation 

used in this work can effectively and accurately 

estimate the battery SOC and has high precision 

compared to the extended Kalman algorithm. The 

results are of great instructional significance to the 

application in practical control systems for the 

equivalent circuit modeling of batteries. The improved 

adaptive extended Kalman filter algorithm has good 

convergence speed, higher estimation accuracy, and 

stability and is appropriate and convenient for SOC 

estimation. Therefore, for stringent applications such 

as automotive and high-power demanding devices, the 

second-order RC model could be the preferred choice, 

and the use of an adaptive algorithm for SOC 

estimation would be better for accurate and timely 

information.  

For further and future research, it is important to 

perform several experiments to acquire necessary 

experimental data for analysis. It is also important to 

use several methods and techniques in the estimation 

of SOC. The use of algorithms is also an important 

aspect of research in this direction because it helps to 

improve the accuracy of SOC estimation. These 

algorithms have been improved over the years and 

more improvement and research leading to the 

establishment of more effective and efficient 

algorithms must be promoted to better the function of 

Battery management systems for estimations. 
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