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Abstract: The classification of hyperspectral image (HSI) has attracted significant attention from the research 

community of remote sensing. HSI analysis suffers from overfitting due to the limited number of labelled training 

samples. As a result, in order to enhance the performance of the HSI classification task, a better efficient neural network 

architecture should be developed. To tackle this issue, this letter presents a new 3D-Inception CNN (3D-ICNN) model 

for dynamically extracting features by stacking inception modules in the network that can learn more representative 

features with fewer training samples by adopting variable spatial size convolutional filters and dynamic CNN 

architecture. The experimental results exhibit that the presented model can modify the network design adaptively and 

achieve higher classification performance. To establish the efficiency and robustness of the presented model, the 

experiments are conducted on the publicly available benchmark data sets and also on the new data sets. The proposed 

3D-Inception CNN model obtained accuracies of 86.25% on Ahmedabad-1(AH1) dataset, 80.30% on Ahmedabad-

2(AH2) dataset, 99.95% on the Pavia University (PU) dataset, 99.86% on the Salinas (SA) dataset, and 99.89% on the 

Indian Pines (IP) dataset. 
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1. Introduction 

The last few years, remote sensing researchers 

have given considerable attention to the 

interpretation of hyperspectral images (HSIs) 

acquired from space by satellites or aircraft. HSIs are 

made up of hundreds of electromagnetic spectrum 

band series and have a high spectral resolution [1]. 

Each HSI pixel contains spectral data. HSIs could be 

a rich resource, which allows objects and materials to 

be identified. HSIs have shown to be useful in a 

variety of applications like agriculture, mining, urban 

planning, defence, environmental monitoring and due 

to the rich spectral data [2-3]. One of the primary 

challenges in HSI analysis is the HSI classification 

that allocates each pixel vector to distinct class. For 

HSI classification, a variety of supervised 

classification approaches have been proposed. Deep 

CNN models have shown efficient in extracting 

features that increase the accuracy of HSI 

classification [3-5]. The HSIs classification literature 

is split into two primary groups. The first group treats 

each pixel spectrum for a given class independently. 

The second kind is spectral-spatial, that merges a 

single pixel with its neighbours to produce a cluster 

block. Because we evaluate the spectrum of each 

pixel independently, the proposed work falls under 

the first category. 

Modern HSI analyses are based on deep learning 

algorithms that extract more discrimination and 

produce higher performance than traditional [6]. For 

hyperspectral data processing, deep learning methods, 

such as 1-D [7], 2-D [8] and 3-D [9] networks, have 

been suggested. A 1-D method takes spectral data 

only as input to learn features. A two-CNN model 

was created by Yang [8] for learning jointly spectral-

spatial features. Zhou [10] applied a CNN to classify 

HSI pixel vectors in conjunction with the random 

Markov field in a single Bayesian frame. SSUN [11] 

integrated long-term spectral band model with 2D-

CNN, which included a unified neural network with 

a spatial finite element, spectral FE, classification 

training. 
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Deep neural networks are a robust non-linear 

function that outperforms existing approaches for 

processing high dimensional HSI data. Another 

benefit of deep networks is that their receptive 

regions analyse neighbouring pixels automatically. 

The spatial feature offers context and aids in HSIs 

pixel-by-pixel classification. While deep networks 

take account of the spatial context, traditional CNN 

models simply take advantage of the fixed kernel size. 

The distribution of the hyperspectral image over land 

still is difficult, traditional CNN with fixed kernel 

size is inadequate flexibility. Convolution with varied 

spatial context sizes can capture a more 

discriminatory HSI pixel classification context 

feature. Deep CNN has proved its power in various 

computer vision applications like [12, 13] for high-

level extraction. Roy [14] proposed a HybridSN 

model which uses spectral-spatial 3D-CNN followed 

by spatial 2DCNN. It provides good classification 

accuracy with a small training sample. Bandar 

Alotaibi [15] designed Inception and ResNet hybrid 

network that combines the key principle behind 

ResNet, which is the usage of residual blocks, and the 

input sequence behind the Inception model, which is 

that its topology is superior than each one separately 

in terms of accuracy. However, the accuracy for some 

datasets is very low. Haokui Zhang [16] proposed an 

AI-Net that can utilize the power of deep learning to 

extract representative features, as well as a transfer 

learning of data fusion approach for finer model 

initialization and reduced time of training. 

Nevertheless, the model improvement has to employ 

some strategies to overcome the HSI classification 

imbalance of the data. Yang [17] developed a SyCNN 

model that blends 2D and 3D CNNs in feature 

learning with a hybrid module that integrates 

spectral-spatial HSI data with 3D attention 

mechanism. However, for the feature extraction 

process to be improved, optimum model design is 

necessary. 

Only less than 10% of the samples may be used 

for HSIs classification training in addition to the 

aforementioned ones. However, in general, deep 

learning models have huge training parameters. If the 

sample size is too little, deep models will probably 

overfit. Recent proposals have been made for deep 

network architectures like DensNet [18] and ResNet 

[19] and they are quite profound, even in over 100 

layers. The networks function in massive amounts of 

data such as Coco and Imagenet. These networks are, 

however, too complex for HSI images. The training 

samples are insufficient, thus there are overfitting 

issues with these models. 

We build a 3D-Inception CNN model termed 3D-

ICNN to overcome the above-mentioned issues. The 

contributions of the work can be summed up as 

follows: 

 

1) Proposed a new 3D-inception network which 

can learn deep spatial data to improve HSIs 

classification performance by adapting 

convolution kernel size with different spatial 

context. 

 

2) The proposed approach tackles the problem 

of overfitting by the use of CNN architecture 

with inception modules. 

 

The remainder of this article is organized in the 

following manner. The background on CNN and 

inception model is presented in Section 2. The 

suggested model for feature learning and HSI 

classification is demonstrated in Section 3. 

Experimental investigation is presented in Section 4, 

which contains data descriptions, experimental setup, 

and classification findings. Finally, Section 5 

presents the results. 

2. Background on CNN and inception model 

In this part, we mostly study CNN's background 

and the inception module. 

2.1 CNN 

CNN uses a multi-layer trained architecture 

consisting of a stacked, pooling layers and non-

linearity which is used for learning characteristics 

such as textures and edges and high-level features 

with more discriminating data [20-22]. Fig. 1 depicts 

a typical CNN architecture. 

Every hidden layer entity is coupled by shared 

weights to the local responsive field over the input 

instead of being entirely connected to the input in the 

converting layer, which may be 2-dimensional size m 

x n feature maps in the convolution layer. The 

convolution layer produces a concentration of the Xi 

input feature maps with a Ki kernel of the size 

𝑘 x  𝑘  x  𝑚 and a nonlinear element activation feature, 

which subsequently applies to the Xi output maps. To 

predict classification labels, fully connected with 

Softmax layers are applied after stacked layers have 

been completed.  

2.2 GoogleNet (inception) 

Many convolution layers are followed by one or 

more fully connected (FC) layers in a standard CNN 

model. In the traditional meaning, the FC layer is a 
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Figure. 1 Typical CNN structure illustration 

 

 
Figure. 2 Core building block of inception model 

 

multilayer neural network. The last FC layer stores 

the output. The convolutional layer's goal is to use 

many filters (learnable weights) to convolve the input 

image, whereas the pooling layer's goal is to down 

sample the data. The pooling layer typically contains 

two sorts of functions: max-pooling and average-

pooling. From the original raw pixels to the final class 

scores, the CNN transforms the input image through 

multiple stacked layers. CNN architectures have 

served as the foundation for numerous semantic 

segmentation models.  

Goog-LeNet [23] is powerful and advanced deep 

learning model. As seen in Fig. 2, GoogleNet is deep 

CNN architecture developed by researchers of 

Google and presented in the year 2014 to public. With 

93.3 percent accuracy, this design was named to the 

ILSVRC's top-five list. With 22 layers, the 

GoogleNet is extremely complex, and it includes a 

unique building element called as the Inception 

model. This architecture uses a network in a pooling 

layer, a network layer, and large and small 

convolution layers, which are calculated 

simultaneously and not in the conventional sequence 

manner. After that, a 1 x 1 convolution operation is 

done in order to reduce the dimensionality. As a result 

of the parallelism and dimensionality reduction 

implemented in this design, the number of parameters 

and operations has been considerably decreased, 

resulting in significant memory and computational 

cost reductions [24]. 

3. Methodology 

Since the disparity cover classes in HSI are 

complicated, most CNN models typically employ a 

fixed convolution kernel size, which is inadequately 

adaptable. Convolution with different spatial context 

sizes may extract more discriminative context 

features for HSI classification. 

3D-Inception CNN (3D-ICNN) is proposed to 

capture more discriminatively relevant information, 

as detailed in this section.  As shown in Fig. 3, the 

proposed model 3D-ICNN takes 3D patches as input 

to obtain deep spatial features from HSI data cube for 

pixel classification. The following section presents 

the proposed model architecture details. 

Consider a HSI X, which is expressed as three-

dimensional cube with dimensions 𝑊 x 𝐻 x 𝐵, where 
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Figure. 3 Overview of the proposed 3D-Inception CNN (3D-ICNN) model 

 

W, H shows image's spatial height and width, and 

spectral bands is denoted by B. Before processing, 

every CNN model requires a normalized image. To 

reduce spectral correlation and redundancy, PCA is 

first applied to the original hyperspectral image. 

In the 3D-ICNN model, we introduced three 

inception layers one after another to extract deep 

spatial spectral features by providing small (25 x 25) 

cubes of the original dataset. This is because there is 

a strong correlation between a particular pixel and its 

surrounding pixels. The (25 x 25) dimension was 

chosen to provide adequate headroom for the 3D-

Inception layers to employ various sized filters.  

Every 3D-Inception layer is made up of multiple 

convolution and pooling filters of varying sizes, 

whose proportions with regard to one another are 

determined by the original GoogLeNet structure. 

Inception modules employ (1 x 1 x 1) convolution 

filters to drastically decrease the number of 

parameters needed to conduct more complex 

processes such as (3 x 3) convolution or (5 x 5) Max 

Pooling. This method adds more learning parameters 

and enables for the use of several convolution and 

pooling filters in a single layer, allowing the network 

to use the best of them all. As a result, the network's 

depth is decreased, and the problem of overfitting is 

avoided. 

As shown in Fig. 3, in each inception layer, 3D-

Inception module consists of input layer, (1x1x1) 

convolution layer, (3x3x3) convolution layer, 

(3x3x5) convolution layer, max-pooling layer and 

concatenation layer. Initially 3D image path size of 

(25x25x30) is taken as input to fed to three (1x1x1) 

convolution layers (C11, C21 and C31) with three sets 

of filters K11 = 32, K21 = 48 and K31 = 8 respectively 

and to max pooling layer (P) with strides of (1x1x1). 

The features extracted after (1x1x1) convolution 

operation from the layers C21, C31, and P1 are fed to 

(3x3x3), (3x3x5) and (3x3x3) convolution layers 

respectively to get more characteristics from C22, C32, 

and Cp convolution layers with filters K22 = 64, K32 = 

16 and Kp = 16. The features extracted from the layers 

C11, C22, C32, and Cp are given to concatenation layer 

(Conc1) to combine the extracted features to fed to the 

second 3D-Inception module. In the second 3D-

Inception module, the resultant Conc1 feature map is 

taken as input to fed to three (1x1x1) convolution 

layers same as in the first 3D-Inception module with 

the same filters and max pooling layer with strides of 

(1x1x1). The features extracted after (1x1x1) 

convolution operation from the layers C21, C31, and P 

are fed to (3x3x3), (3x3x5) and (3x3x3) convolution 

layers respectively to get more features. The features 

extracted in second Inception module are given to 

concatenation layer (Conc2) to combine the extracted 

features to fed to the third 3D-Inception module. The 

same process is repeated with Conc2 feature map in 

third 3D-Inception module to generate Conc3 feature 

map for extracting more discriminative context 

features. Convolution with different spatial context 

kernel sizes is employed to extract features with 

different characteristics. 

For classification, the extracted feature map 

Conc3 is flattened to send to the fully connected 

layers fc1, fc2 and fc3. In each fully connected layer, 

the activation function of each neuron is computed as 

Eq. (1): 

 

𝐴𝑐𝑡𝑖(𝑓𝑐) = 𝑔(𝑤𝑖(𝑓𝑐) ∗ 𝑎𝑐𝑡𝑖−1(𝑓𝑐) + 𝑏𝑖)     (1) 
 

Where, 𝑤𝑖(𝑓𝑐)  is the weighted sum of the 

preceding layer's inputs and bi is the bias. The ReLU 

activation function is represented by g(.).  
Finally, a soft-max probabilistic model is used to 

classify the data. Let 𝐿 = [𝐿𝑖]i be a number between 1 

and n, and implies learned features after the entire 

model has been applied. 

 

𝑆𝑚𝑎𝑥(𝐿)𝑖 =
𝑒𝐿𝑖

∑ 𝑒
𝐿𝑗𝑘

𝑖=1

 𝑓𝑜𝑟 𝑖 = 1, 2, 3,.  . , 𝑛    (2) 
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Table 1. Description of popularly used benchmark hyperspectral image datasets 

Parameters Ahmadabad-1 Ahmadabad-2 Salinas Pavia University Indian Pines 

Spatial Dimension 300 × 200 300 × 200 512 × 217 610 × 340 145 × 145 

No. of Spectral Bands 351 370 200 115 200 

No. of Classes 5 7 16 9 16 

Wavelength Range 0.37–2.5 µm 0.37–2.48 µm 360–2500 µm 0.43–0.86 µm 0.4–2.5µm 

Sensor AVIRIS-NG AVIRIS-NG AVIRIS ROSIS AVIRIS 

 
Table 2. Classification accuracies (in %) on salinas, pavia university, and indian pines datasets 

 

Model 

Salinas Pavia University  Indian Pines 

OA AA Kappa OA AA Kappa OA AA Kappa 

2D-CNN [8] 94.94 94.63 94.23 93.18 92.86 92.03 91.69 88.29 90.65 

3D-CNN [9] 96.98 97.07 96.38 96.54 96.12 95.53 95.14 94.59 93.99 

HybridSN [12] 99.85 99.59 99.52 99.93 99.03 99.81 99.22 98.56 99.12 

Hybrid-RI [15] 95.33 94.89 95.01 95.31 95.02 94.99 90.57 90.21 90.16 

AI-Net [16] 99.64 99.52 99.21 99.42 99.51 99.22 99.14 99.47 99.00 

SyCNN [17] 99.52 99.41 98.86 99.91 98.95 98.86 97.06 96.13 95.6 

Proposed Method 99.86 99.63 99.57 99.95 99.24 99.85 99.89 99.62 99.82 

 
Table 3. Classification accuracies by reducing the amount of training samples 

 

Dataset 

5 % Training Data 10% Training Data 

OA AA Kappa OA AA Kappa 

IP  95.31  95.02  94.73  99.00  98.52  98.68 

PU  98.21 97.52  97.72  99.23  98.05 98.47 

SA  98.62  98.01  98.34  99.06  98.41 98.21 

 
Table 4. Classification accuracies (in %) on the AH1, and AH2 datasets 

 

Model 

AH1 Dataset  AH2 Dataset  

OA AA Kappa OA AA Kappa 

3D-CNN [9]  80.99  82.13  78.17  70.06  69.30  67.93 

HybridSN [12]  85.69  85.03  83.79  79.55  76.71  75.82 

AI-Net [16] 85.23 84.72 83.51 79.83 77.53 75.79 

SyCNN [17] 84.72 83.98 83.46 78.62 75.85 74.89 

Proposed Method  86.25  86.98  84.94  80.30  77.62  76.99 

For the HSI data, this is the Soft - max function 

model. Finally, the argmax (arguments of maximum) 

function. It identifies places in a function's region 

where the functional parameters are maximum. From 

n number of HSI class labels from 𝛷 =
{1, 2, 3,.  . , 𝑛}, the class assignment can be done 

using Eq. (2). 

 
𝐶𝑙𝑎𝑠𝑠 (𝑋𝑖) = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑆𝑚𝑎𝑥(𝐿)𝑖}           (3) 

4. Experimental study and analysis  

4.1 Datasets description  

To assess the proposed 3D-ICNN model 

performance, an experimental study was conducted 

on HSI datasets, including Salinas (SA), Pavia 

University (PU), and Indian Pines (IP).  

In addition, new datasets Ahmedabad1 (AH1), 

and Ahmedabad2 (AH2) have been used to check the 

robustness of the proposed model. These datasets are 

collected by the ISRO with AVIRIS-NG sensor, 

India [25]. The IIST dataset has 202 x 153 samples 

and 138 spectral bands, with 6 classes in the ground 

truth. The AH1 dataset has 351 spectral bands with a 

size of 300 x 200 pixels and the ground truth contains 

5 classes. The AH2 dataset has 370 spectral bands 

with a size of 300 x 200 pixels and the ground truth 

contains 7 classes. The details of these data sets are 

described in Table 1. 
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(a) (b) (c) 

 

 

 

 

                             (d)                         (e) 

Figure. 4 Classification maps of HSI: (a) AH1, (b) AH2, (c) PU, (d) SA, and (e) IP 

 

4.2 Experimental setup 

The experiments are conducted on the google 

cloud with Graphical Processing Unit (GPU) having 

25.51 GB RAM. To test the proposed method's 

generalization ability, randomly 20% selected as 

training set and 80% as test set from each dataset. 

Adam optimizer is used in the optimization process, 

along with a categorical cross-entropy with learning 

rate 10-4 and decay 10-6. The model has been trained 

for 100 epochs with batch normalization size 32. The 

experiments are repeated 10 times on each data set 

and the average results are presented.  

4.3 Results and analysis 

To test efficacy of the presented method, we 

employed conventional assessment measures: kappa  
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(a) (b) 

Figure. 5 Proposed model’s training and testing over the IP dataset: (a) Accuracy and (b) Loss 

   
  (a)  (b)   (c) 

 

  

 

                 (d) (e)  

Figure. 6 Confusion matrices of HSI: (a) AH1, (b) AH2, (c) PU (d) SA, and (e) IP 
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(K) coefficient, average accuracy (AA), and overall 

accuracy (OA). Kappa Coefficient can be defined as 

the measurement of the agreement between the actual 

values and predicted values. AA is represented as the 

average of the class-wise accuracy. OA can be 

described as the ratio of correctly classified samples 

and total samples. The presented 3D-ICNN model's 

results are compared to those of other HSI 

classification models, such as the 2DCNN [8], 

3DCNN [9], HybridSN [14], Hybrid-RI [15], AI-Net 

[16], and SyCNN [17]. Table 2 provides the 

classification accuracy obtained by all these methods. 

It is observed that the proposed method achieved 

99.86% overall-accuracy, 99.63% average-accuracy 

on Salinas, 99.95% overall-accuracy, 99.24% 

average-accuracy on Pavia, and 99.89% overall-

accuracy, 99.62% average-accuracy on IP datasets. 

Table 2 shows that the proposed model's 

classification accuracy is better than that of different 

approaches on the benchmark datasets in terms of 

evaluation metrics such as OA, AA, and Kappa. The 

accuracies for 2DCNN [8], 3DCNN [9], HybridSN 

[12], Hybrid-RI [15], AI-Net [16], and SyCNN [17] 

methods are taken from their respective papers, and 

the results are computed using publicly available 

code for the comparative methods. When compared 

to the state-of-the-art methods the proposed model's 

kappa, average-accuracy, and overall-accuracy 

values are significantly better. Compared with the 

HybridSN [12], the proposed method produces 

slightly better results in almost all cases. The 

HybridSN model used 30% samples for training. In 

the proposed method 20% samples used from each 

class to train the model. 

Table 3 shows the efficacy of proposed approach 

according to size of the training data. With fewer 

training data, the presented model achieved a better 

accuracy of classification than state-of-the-art 

methods. Experiments on other new datasets, AH1, 

and AH2, are conducted to verify efficiency and 

robustness of the approach. We have compared our 

method with 3D-CNN [10], HybridSN [12], AI-Net 

[16], and SyCNN [17] models using their publicly 

available code. Other methods could not be compared 

as their code is not available. It is observed that the 

proposed method achieved 86.25% overall-accuracy, 

86.98% average-accuracy on AH1, and 80.30% 

overall-accuracy, 77.62% average-accuracy on AH2 

datasets. Table 4 shows that the presented model 

achieved 2% to 3% improvement on the new datasets. 

The classification maps of the datasets such as 

AH1, AH2, PU, SA, and IP are generated by the 

proposed model are depicted in Fig. 4. When 

comparing the classification maps produced by the 

proposed approach to those produced by state-of-the-

art methods, some regions in the proposed method's 

classification maps are less noisy. The proposed 

method's accuracy and loss convergence over 100 

epochs of training and validation sets are shown in 

Fig. 5. It can be observed that the convergence occurs 

in around 50 epochs, demonstrating the method's 

rapid convergence, and the confusion matrices are 

presented in Fig. 6, which summarize the number of 

accurate and incorrect predictions with count values 

and break them down by each class. 

5. Conclusion 

In this work, it is recommended that a unique 3D-

Inception CNN model for HSI classification be 

employed, which has the potential to perform very 

well even with limited training data. This model takes 

advantage of a variety of filter types in each layer and 

efficiently learns features. It is not very deep, and as 

a result, it is not prone to becoming overfit. The 

results obtained from experiments conducted on the 

benchmark datasets demonstrate that the proposed 

method outperforms current approaches in terms of 

accuracy and precision. Further, the presented model 

efficiency is also evaluated on new datasets and it is 

significantly superior to the HybridSN and AI-Net 

models. It is the goal of this study in the future to 

reduce the training time of each inception module, 

which will in turn reduce the overall training time of 

the model. 

Conflicts of Interest  

“The authors declare no conflict of interest.” 

Author Contributions  

The paper Conceptualization, Murali and T. 

Hitendra; methodology, Murali; software, T. 

Hitendra; validation, Murali, T. Hitendra, and C. 

Shobha; formal analysis, T. Hitendra; investigation, 

C. Shobha; resources, T. Hitendra; writing—original 

draft preparation, Murali; writing—review and 

editing, Murali; visualization, Murali; supervision, T. 

Hitendra; project administration, T. Hitendra;  

Acknowledgments 

The authors would like to thanks to Dr. N. Rama 

Rao, Professor, Indian Institute of Space Science and 

Technology (IIST), Trivendrum for providing 

Ahmadabad City-1 (AH1) and Ahmadabad City-2 

(AH2) datasets. 



Received:  August 2, 2021.     Revised: October 27, 2021.                                                                                                233 

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022           DOI: 10.22266/ijies2022.0228.21 

 

References 

[1] L. Mou, P. Ghamisi, and X. Zhu, “Deep 

recurrent neural networks for hyperspectral 

image classification”, IEEE Transactions on 

Geoscience and Remote Sensing, Vol. 55, No. 7, 

pp. 3639-3655, 2017. 

[2] L. Zhang, L. Zhang, and B. Du, “Deep learning 

for remote sensing data: A technical tutorial on 

the state of the art”, IEEE Geoscience and 

Remote Sensing Magazine, Vol. 4, No. 2, pp. 22-

40, 2016. 

[3] J. Ma, Y. Ma, and C. Li, “Infrared and visible 

image fusion methods and applications: A 

survey”, Information Fusion, Vol. 45, pp. 153-

178, 2019. 

[4] M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, 

“Deep learning classifiers for hyperspectral 

imaging: A review”, ISPRS Journal of 

Photogrammetry and Remote Sensing, Vol. 158, 

pp. 279-317, 2019. 

[5] M. Hamouda, K. S. Ettabaa, and M. S. Bouhlel, 

“Smart feature extraction and classification of 

hyperspectral images based on convolutional 

neural networks”, IET Image Processing, Vol. 

14, No. 10, pp. 1999-2005, 2020. 

[6] W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, 

“Deep convolutional neural networks for 

hyperspectral image classification”, Journal of 

Sensors, Vol. 2015, 2015. 

[7] H. Wu and S. Prasad, “Convolutional recurrent 

neural networks for hyperspectral data 

classification”, Remote Sensing, Vol. 9, No. 3, p. 

298, 2017. 

[8] J. Yang, Y. Q. Zhao, and J. C. Chan, “Learning 

and transferring deep joint spectral–spatial 

features for hyperspectral classification”, IEEE 

Transactions on Geoscience and Remote 

Sensing, Vol. 55, No. 8, pp. 4729-4742, 2017. 

[9] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, 

“Deep feature extraction and classification of 

hyperspectral images based on convolutional 

neural networks”, IEEE Transactions on 

Geoscience and Remote Sensing, Vol. 54, No. 10, 

pp. 6232-6251, 2016. 

[10] X. Cao, F. Zhou, L. Xu, D. Meng, Z. Xu, and J. 

Paisley, “Hyperspectral image classification 

with Markov random fields and a convolutional 

neural network”, IEEE Transactions on Image 

Processing, Vol. 27, No. 5, pp. 2354-2367, 2018. 

[11] Y. Xu, L. Zhang, B. Du, and F. Zhang, 

“Spectral–spatial unified networks for 

hyperspectral image classification”, IEEE 

Transactions on Geoscience and Remote 

Sensing, Vol. 56, No. 10, pp. 5893-5909, 2018. 

[12] Q. Wang, J. Wan, and Y. Yuan, “Deep metric 

learning for crowdedness regression”, IEEE 

Transactions on Circuits and Systems for Video 

Technology, Vol. 28, No. 10, pp. 2633-2643, 

2017. 

[13] Q. Wang, J. Gao, and Y. Yuan, “Embedding 

structured contour and location prior in siamesed 

fully convolutional networks for road detection”, 

IEEE Transactions on Intelligent 

Transportation Systems, Vol. 19, No. 1, pp. 230-

241, 2017. 

[14] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. 

Chaudhuri, “HybridSN: Exploring 3-D–2-D 

CNN feature hierarchy for hyperspectral image 

classification”, IEEE Geoscience and Remote 

Sensing Letters, Vol. 17, No. 2, pp. 277-281, 

2019. 

[15] B. Alotaibi and M. Alotaibi, “A Hybrid Deep 

ResNet and Inception Model for Hyperspectral 

Image Classification”, PFG–Journal of 

Photogrammetry, Remote Sensing and 

Geoinformation Science, Vol. 88, No. 6, pp. 

463-476, 2020. 

[16] H. Zhang, Y. Liu, B. Fang, Y. Li, L. Liu, and I. 

Reid, “Hyperspectral Classification Based on 

3D Asymmetric Inception Network with Data 

Fusion Transfer Learning”, ArXiv Preprint 

ArXiv:2002.04227, 2020. 

[17] X. Yang, X. Zhang, Y. Ye, R. Y. K. Lau, S. Lu, 

X. Li, and X. Huang, “Synergistic 2D/3D 

convolutional neural network for hyperspectral 

image classification”, Remote Sensing, Vol. 12, 

No. 12, p. 2033, 2020. 

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep 

residual learning for image recognition”, In: 

Proc. of the IEEE Conference on Computer 

Vision and Pattern Recognition, pp. 770-778, 

2016. 

[19] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. 

Weinberger, “Densely connected convolutional 

networks”, In: Proc. of the IEEE Conference on 

Computer Vision and Pattern Recognition, pp. 

4700-4708, 2017. 

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, 

D. Anguelov, D. Erhan, V. Vanhoucke, and A. 

Rabinovich, “Going deeper with convolutions”, 

In: Proc. of the IEEE Conference on Computer 

Vision and Pattern Recognition, pp. 1-9, 2015. 

[21] A. G. Garcia, S. O. Escolano, S. Oprea, V. V. 

Martinez, and J. G. Rodriguez, “A review on 

deep learning techniques applied to semantic 

segmentation”, ArXiv Preprint 

ArXiv:1704.06857, 2017. 

[22] T. Tian, C. Li, J. Xu, and J. Ma, “Urban area 

detection in very high-resolution remote sensing 



Received:  August 2, 2021.     Revised: October 27, 2021.                                                                                                234 

International Journal of Intelligent Engineering and Systems, Vol.15, No.1, 2022           DOI: 10.22266/ijies2022.0228.21 

 

images using deep convolutional neural 

networks”, Sensors, Vol. 18, No. 3, p. 904, 2018. 

[23] Y. Li, Y. Zhang, X. Huang, and J. Ma, “Learning 

source-invariant deep hashing convolutional 

neural networks for cross-source remote sensing 

image retrieval”, IEEE Transactions on 

Geoscience and Remote Sensing, Vol. 56, No. 11, 

pp. 6521-6536, 2018. 

[24] J. Ma and J. Zhao, “Robust topological 

navigation via convolutional neural network 

feature and sharpness measure”, IEEE Access, 

Vol. 5, pp. 20707-20715, 2017. 

[25] M. K. Tripathi and H. Govil, “Evaluation of 

AVIRIS-NG hyperspectral images for mineral 

identification and mapping”, Heliyon, Vol. 5, No. 

11, p. e02931, 2019. 


