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Abstract: This work will be illustrating a model for dealing with multi level four dimensional fractional multi item 

transportation problem whose parameters in both objectives and constraints are considered as uncertain variables. The 

Fractional programming technique is useful in dealing with real life situations where the decision maker has to 

maximize or minimize the ratios of two objective functions. In any hierarchical system or decentralized system, multi 

level programming problem can be used to obtain efficient solution based on the preferences of each decision maker 

at each level. The usage of fractional method and level wise preference in real life problems helps us to obtain the 

efficiency of system and also enables hierarchical decision making which is common in day to day transportation firms. 

An equivalent deterministic model has been obtained for the multi level four dimensional fractional multi item 

transportation problem under uncertain environment by using expected and chance constrain model of uncertainty 

theory. Then the deterministic model is solved by using the modified fuzzy goal programming technique to obtain the 

compromise solution of the proposed model. The validity of the proposed model has been explained using the 

numerical example.  

Keywords: Uncertain variable, Multi level transportation, Fractional programming, Fuzzy goal programming, 

Compromise optimal solution.  

 

 

1. Introduction 

Transportation problems play a crucial role in 

transportation planning for organisations to enhance 

profit and time constraint. In the growing global 

competition, it is very much important for every 

company to find a way for profitable operations by a 

well-defined mechanism. Also, during a 

transportation process, transporting two or more 

items simultaneously could prove more beneficial. 

Considering availability of a variety of different 

transportation options, could convert a transportation 

problem (TP) into a solid transportation problem 

(STP). Similarly, considering various routes 

available for reaching a destination, could open up 

more possibilities and opportunities for a profitable 

operation for the organisation. The above quest arises 

the need for considering more parameters in the 

objective functions apart from the traditional ones 

like different routes and transportation of multiple 

items simultaneously. 

Therefore, accounting for multiple factors like 

origins, destinations, conveyances, multiple routes 

and multiple products converts a transportation 

problem into a four dimensional transportation 

problem (4DTP). 

A fractional transportation problem (FTP) is a 

special case of TP consisting of an objective function 

in the term of ratio of two non-identical functions. 

The advantage of fractional programming is that the 

ratio of economical terms represent the efficiency, 

making it helpful for the decision maker to weigh 

choices. 

In real life situations, the parameters such as 

transportation cost, time, demand and supply keep 

varying constantly due to many uncontrollable and 

non–human factors, leading to the study of 

transportation problems involving uncertainty. Liu, 

in 2015, illustrated that estimating the probability 

distribution for parameters can prove very tough in 

the absence of historical information. Also, in many 
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cases where fuzzy set theory was employed, 

counterintutive results were obtained. Therefore, an 

alternative way is seeking the help of experts for 

evaluation of an occurrence’s belief degree; the belief 

degrees can be handled and manipulated using the 

uncertainty theory proposed by Liu in 2009, which 

was then improvised in 2010. 

In this work, four dimensional multi item 

fractional transportation problem involving uncertain 

parameters has been formulated and solved 

considering a multi level heirarchical decision 

making system. In multi level programming 

problems the initial level decision maker solves the 

problem and passes the information on to the second 

level decision maker (DM) on the hierarchy. The 

second level DM uses the information passed on to 

him and solves the problem. Similarly, the DM at 

each level tries to maximize or minimize the 

objective function, using the variables which are 

generally impacted and constrained by the previous 

decision makers. The objective function’s heirarchy 

represents the order of the preference of the decision 

makers concerning the respective objectives. Till date, 

the multi level four dimensional multi item fractional 

transportation problem under uncertain environment 

has not been formulated and investigated yet, as per 

the knowledge of the authors. The uncertain multi 

level four dimensional multi item fractional 

transportation problem (UML4DMIFTP) proposed in 

this paper is very much nearby the operational 

procedure of real life transportation firms. The aim of 

this paper is to present a method to solve uncertain 

ML4DMIFTP. Utilising expected value and chance 

constraint models on uncertainty theory, we convert 

the above said problem into deterministic problem. 

We make use of the fuzzy goal programming 

technique to obatin the compromise solution of the 

proposed model as it considerably reduces the 

calculation in multi level problems as proved by 

Lachwani[33, 40]. 

In section 2, we have reviewed the relevant 

support research done through the available literature. 

We have presented some definitions and theorems of 

uncertainty theory which are used in the model in 

section 3. Notations are given under section 4. In 

section 5, the mathematical model of uncertain multi 

level four dimension multi-item fractional 

transportation problem (UML4DMIFTP) is 

introduced. Equivalent deterministic models by using 

expected value method and chance constraint method 

are given in the sections 5.1 and 5.2 respectively. In 

section 6, solution methodology for solving multi 

level fractional programming is presented. Section 7 

contains the procedure for solving the 

UML4DMIFTP, followed by section 8 consisting of 

a numerical example and section 9 containing 

conclusion. 

2. Literature review 

The idea of transportation problem was 

introduced by Hitchock [1] for dealing with 

transportation and distribution of goods. In 2018, a 

new approach for solving multi objective 

transportation problem (MOTP) was proposed by 

Lakhveer kaur [2]. Haley [3] in 1962, proposed the 

solution method for the solid transportation 

problem(STP) for the first time ever. Bhatia[4], in 

1981,  presented a solving procedure for obtaining the 

locally optimum basic feasible solution for STPs with 

indefinite quadratic objective functions. Charnes and 

cooper [5] in 1962, proposed a method for conversion 

of a linear fractional program into linear program. 

The fractional transportation problem was proposed 

for the first time by Swarup [6], which was then 

utilised extensively by many authors like Khurana 

and Arora [7], Joshi and Gupta [8]. Fuzzy goal 

programming approach for solving the bi-level linear 

fractional pogramming, involving a single decision 

maker at both levels, was proposed by Pramanik and 

Dey [9] in 2011. A genetic algorithm for solving 

linear fractional programming problem was proposed 

by Sameeullah, Devi and Palaniappan [10] in 2008. 

Dinkelbach [12] in 1967, developed the solving 

procedure for multi objective linear fractional 

programming problem (MOLFPP) which was later 

employed by Narun Guzel [11] for solving non linear 

single objective function. Shobana [13] proposed a 

new algorithm for finding optimal solution in STP, 

applying in α-cut method in uncertain environment. 

The interactive goal programming method for 

solving generalised STP was proposed by Acharya et 

al [14]. The optimal solution for the fully fuzzy multi 

objective multi item STP was proposed by Deepika 

Rani and Gulati [15]. Dheyab [16] developed a 

solving procedure for fuzzy linear fractional 

programming problem using linear ranking function. 

Jain [17] introduced a method for solving multi 

objective fractional programming problem by using 

the Gauss elimination method. Viwas [18] discussed 

the more for less paradox suitation which occurs in 

multi objective fractional transportation problem 

(MOFTP). A novel approach  for solving MOLFPP 

under fuzzy environment was presented by Moumita 

and De [19]. To deal with real life situations, 

uncertainty theory was proposed by Liu [20]. The 

transportation problem consisting uncertain supply 

and demand was solved by Guo [21] in his research 

article. Uncertain linear fractional problem and 

conversion of optimization problem into equivalent  
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Tabel 1. Review on some existing models 

Reference Article 

Fractional Objective Function Fuzzy  Uncertainty 

Single Objective  
Multi Objective Dimension 

Non-hierarchical Hierarchical 2D 3D 4D 2D 3D 4D 

Vishwas Deep Joshi [32]  ✔         

Lachwani [33]   ✔       

Shiang Taj Liu [34] ✔   ✔      

Sheema Sadia [35]  ✔  ✔      

Syed Aqib Jalil [36]  ✔     ✔   

Syed Aqib Jalil [31]   ✔  ✔     

Osman [37]   ✔ ✔      

Ali Mahmoodirad [23] ✔      ✔   

J Merlin Vinotha [38]  ✔  ✔      

Hamideen Abdei [39]   ✔  ✔     

Proposed Model ✔ ✔ ✔    ✔ ✔ ✔ 

 

crisp problem was proposed by Seyyed Mojtaba [22]. 

To solve uncertain linear fractional transportation 

problem, Ali Mahmooderad [23] proposed a model. 

The multi objective fractional transportation problem 

under uncertain environment was studied by Revathi 

and Mohanaselvi [24]. Solution algorithm for solving 

a multi level programming problem under uncertain 

conditions was proposed by Liu and Yao [25]. Gao 

and Kar [26] proposed a method to solve uncertain 

solid transportation problem involving product 

blending. To solve fixed charge multi item STP, few 

uncertain programming models were proposed by 

Zhang, Peng, Li and Chen [27]. A multi item STP 

under uncertain environment was studied by Dalman 

[28]. Cheng, Rao and Chen [29] studied about the 

multi diemensional Knapsack problem which was 

based on uncertain measures. The model for 

uncertain multi objective multi item four dimensional 

fractional transportation problems was studied by 

Revathi and Mohanaselvi [30]. The hierarchical  

decision making model for STP under uncertain 

conditions was studied by Syed Aqib Jalil, Shakeel 

Javaid and Syed Mohd Muneeb [31]. Table 1 

provides observations based on the existing literature 

on fractional transportation problems under uncertain 

environment based on the two dimensions (2D) 

(Traditional TP i.e. considers only origins and 

demands), three dimensions (3D) (Solid TP i.e. 

considers different conveyances along with origins 

and demands) and four dimensions (4D) (considers 

multiple items and multiple routes along with 3D). 

From Table 1, it is clear that there is a gap in terms of 

developing a ML4DMIFTP in uncertain environment. 

The most note-worthy aspect is that this study 

considers uncertainty in all parameters like, origins, 

demands, transports, items, transportation routes of a 

transportation problem for the first time. 

3. Preliminaries 

Here, we review some basic definitions and the 

concepts of uncertainty theory, which will  be applied 

in the subsequent sections.  

Definition 3.1:  [20, 41] Let   be a σ- algebra of 

collection of events Λ of a universal set Γ. A set 

function M is said to be uncertain measure defined on 

the σ- algebra where M{Λ} indicate the belief degree 

with which we believe that the event will happens and 

satisfies the following axioms: 

 

1. Normality Axiom: For the universal set Γ. 

We have 

 

M{Γ} = 1 (1) 

 

2. Duality Axiom: For any event Λ, we have  

 

M{Λ} +M{Λ𝑐} = 1    (2) 

 

3. Subadditivity Axiom: For every countable 

sequence of events Λ1,Λ2,... we have  

 

M {⋃Λ𝑖

∞

𝑖=1

} ≤∑M{Λ𝑖}

∞

𝑖=1

 

 

(3) 

 

4. Product Axiom: Let (Γ𝑖 , 𝑖 ,M𝑖) be 

uncertainty spaces for 1,2,3,...i = . The 
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product uncertain measure is an uncertain 

measure holds 

 

M{∏ Λ𝑖
∞
𝑖=1 } = ⋀ M{Λ𝑖}

∞
𝑖=1   (4) 

 

where Λ𝑖 ∈  𝑖  for 𝑖 = 1,2,… ,∞.   

Definition 3.2: [20] A function 𝜉: (Γ,,M)→R  is 

said to be an uncertain variable such that 

 

{𝜉 ∈ 𝐵} = {𝛾 ∈ 𝛤 𝜉(𝛾)⁄ ∈ 𝐵} (5) 

 

 is an event for any Borel set 𝐵 of real numbers.  

Definition 3.3: [20] The uncertainty distribution φ(x) 

of an uncertain variable ξ for any real number x is 

defined by 

 

𝜑(𝑥) = M{ξ≤x} (6) 

  

 Definition 3.4: An uncertainty distribution φ(x) is 

said to be regular uncertainty distribution if it is a 

strictly increasing and continuous function with 

respect to x at which 0 < 𝜑(𝑥) < 𝟏 and 

 

 

lim
x→−∞

φ(x) = 0  

 

(7) 

 

lim
x→∞

φ(x) = 1 (8) 

  

Definition 3.5: Let φ(x) be the regular uncertainty 

distribution of an uncertain variable ξ. Then 𝜑−1(𝛼) 
is called inverse uncertainty distribution of ξ and it 

exists on (0, 1). 

Definition 3.6: [20] The uncertain variable 𝜉𝑖  (𝑖 =
1,2,… , 𝑛) are said to be independent if 

 

M{⋂ (𝜉𝑖 ∈ 𝐵𝑖)
𝑛
𝑖=1 } = ⋀ M(𝜉𝑖 ∈ 𝐵𝑖)

𝑛
𝑖=1   (9) 

 

where  𝐵𝑖  (𝑖 = 1,2, . . , 𝑛) are called Borel sets of 

real numbers. 

Theorem 3.7: [42] The regular uncertainty 

distributions of independent uncertain variables  

𝜉𝑖  (𝑖 = 1,2, … , 𝑛) are 𝜙𝑖 (𝑖 = 1,2,… , 𝑛)   respecti-

vely. If the function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)  is strictly 

increasing and strictly decreasing with respect to 

𝑥1, 𝑥2, … , 𝑥𝑚  and 𝑥𝑚+1, 𝑥𝑚+2, … , 𝑥𝑛   respectively 

then the uncertain variable 𝜉 =
𝑓(𝜉1, 𝜉2, … , 𝜉𝑚, … , 𝜉𝑛)  has an inverse uncertainty 

distribution 

 

𝜓−1(𝛼) = 𝑓(𝜙1
−1(𝛼), 𝜙2

−1(𝛼),…, 

𝜙𝑚
−1(𝛼), 𝑓(𝜙𝑚+1

−1  (1 − 𝛼), 

𝜙𝑚+2
−1 (1 − 𝛼),… , 𝜙𝑛

−1(1 − 𝛼)) 

(10) 

Definition 3.8: [20] The expected value of uncertain 

variable ξ is given by 

 

𝐸(𝜉) = ∫ M{ξ≥x} 𝑑𝑥 −
∞

0

∫ M{ξ≤x} 𝑑𝑥
0

−∞

 

 

(11) 

This is valid only if at least one of the integral is 

finite. 

Theorem 3.9: [43] Let 𝜙𝑖 (𝑖 = 1,2,… , 𝑛) be regular 

uncertainty distributions of independent 𝜉𝑖 (𝑖 =
1,2,… , 𝑛)  with respectively. If the function 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is strictly increasing and strictly 

decreasing w.r.to 𝑥1, 𝑥2, … , 𝑥𝑚  and 

𝑥𝑚+1, 𝑥𝑚+2, … , 𝑥𝑛 respectively, then 

 

𝐸(𝜉) = ∫ 𝑓(𝜙1
−1(𝛼),… , 𝜙𝑚

−1(𝛼), 𝜙𝑚+1
−1 (1

1

0

− 𝛼) ,… , 𝜙𝑛
−1(1 − 𝛼))𝑑𝛼 

(12) 

 

From the above theorem, we know that  

 

𝐸(𝜉) = ∫ 𝜙−1(𝛼)𝑑𝛼
1

0

 (13) 

 

Where ξ is an uncertain variable with regular 

uncertainty distribution ϕ.    

Definition 3.10: [20] The distribution function of a 

normal uncertain variable is 

 

𝜙(𝑥) = [1 + 𝑒𝑥𝑝
[
𝜋(𝜇−𝑥)

𝜎√3
]
]
−1

, 𝑥 ≥ 0 (14) 

 

and it is denoted as 𝑁(𝜇, 𝜎);  𝜇, 𝜎 ∈ 𝑅 𝑤𝑖𝑡ℎ 𝜎 > 0. 
The inverse uncertainty distribution and the 

expected value of N(µ,σ) is defined as follows 

 

𝜙−1(𝛼) = 𝜇 +
𝜎√3

𝜋
𝑙𝑛

𝛼

1 − 𝛼
 

 

(15) 

 

𝐸[𝜉] = 𝜇 (16) 

4. Nomenclature  

The following notations have been introduced for 

constructing the proposed UML4DMIFTP model. 

Notation Definition 

s index for origin,s=1,2..S. 

D  index for destination,d=1,2,...D. 
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V index of conveyance,v=1,2...V 

R index of route of transportation 

W index of various product 

𝑍(𝑛) 
uncertain objective function at nth  level, 

where n=1,2....N. 

𝐶̃𝑠𝑑𝑣𝑟𝑤
(𝑛)

𝐷̃𝑠𝑑𝑣𝑟𝑤
(𝑛)

 

uncertain ratio of unit transportation 

actual cost and standard cost of wth  good 

from sth origin to dth destination by vth 

transport via rth road per unit distance of 

nth level objective function. 

𝐴̃𝑠𝑑𝑣𝑟𝑤
(𝑛)

𝑆̃𝑠𝑑𝑣𝑟𝑤
(𝑛)

 uncertain ratio of actual transportation 

time to the standard transportation time 

𝑎̃𝑠𝑤 

uncertain quantity of wth good available   

at sth origin 

𝑏̃𝑑𝑤 

uncertain  demand of the wth good at the 

dth destination 

𝑒̃𝑣 

uncertain  capacity of a single vth type 

transport 

𝑑
𝑁+
(𝑛)
, 𝑑

𝐷+
(𝑛)

 

positive deviational variable of the nth 

level objective’s numerator and 

denominator  respectively. 

𝑑𝑁−
(𝑛)
, 𝑑𝐷−

(𝑛)
 

negative deviational variable of the nth 

level objective’s numerator and 

denominator  respectively. 

𝑑+
(𝑛)
, 𝑑−

(𝑛) 
positive and negative deviational 

variables for nth level decision vectors. 

5. Mathematical formulation   

The proposed model for an uncertain multi level 

four diemension multi-item fractional transportation 

problem [UML4DMIFTP] is presented below. The 

proposed model is created by considering  w products 

to be transported from S origins to D destinations by 

means of v conveyances via rth route and objectives 

are to be minimized in all n levels, where n=1,2,…N. 

The general form of UML4DMIFTP is given in (10). 

where 𝑋̅𝑛 = {𝑋1
𝑛, 𝑋2

𝑛, … , 𝑋𝑀𝑛
𝑛  },  decision variables 

under the control of nth level decision maker. Here, 

𝑋̅ = 𝑋̅1𝑈𝑋̅2𝑈𝑋̅3, … , 𝑋̅𝑁. Due to the uncertainty that 

exists in the parameters, it cannot be optimized 

directly. An equivalent deterministic model for the 

proposed model is created by using the expected 

value and chance constraint model based on 

uncertainty theory for obtaining the compromise 

solution. In this proposed model, the parameters are 

considered as the normal uncertain variables. 

 

Level 1 

Min
𝑋̅1

𝑍̃(1)

=
∑ ∑ ∑ ∑ ∑ 𝐶̃𝑠𝑑𝑣𝑟𝑤

(1)
𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ 𝐷̃𝑠𝑑𝑣𝑟𝑤
(1)

𝑥𝑠𝑑𝑣𝑟𝑤
𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

 

 

Level 2 

Min
𝑋̅2

𝑍̃(2)

=
∑ ∑ ∑ ∑ ∑ 𝐶̃𝑠𝑑𝑣𝑟𝑤

(2)
𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ 𝐷̃𝑠𝑑𝑣𝑟𝑤
(2)

𝑥𝑠𝑑𝑣𝑟𝑤
𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

 

⋮ 
 

Level n 

Min
𝑋̅𝑛

𝑍̃(𝑛)

=
∑ ∑ ∑ ∑ ∑ 𝐶̃𝑠𝑑𝑣𝑟𝑤

(𝑛)
𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ 𝐷̃𝑠𝑑𝑣𝑟𝑤
(𝑛)

𝑥𝑠𝑑𝑣𝑟𝑤
𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

 

 

Subject to 

∑∑∑𝑥𝑠𝑑𝑣𝑟𝑤 ≤ 𝑎̃𝑠𝑤

𝑅

𝑟=1

   𝑠 = 1,2,… , 𝑆, 𝑤

𝑉

𝑣=1

𝐷

𝑑=1

= 1,2,… ,𝑊 

∑∑∑𝑥𝑠𝑑𝑣𝑟𝑤 ≤ 𝑏̃𝑑𝑤

𝑅

𝑟=1

   𝑑 = 1,2,… , 𝐷, 𝑤

𝑉

𝑣=1

𝑆

𝑠=1

= 1,2,… ,𝑊 

∑∑∑∑ 𝑥𝑠𝑑𝑣𝑟𝑤 ≤ 𝑒̃𝑣

𝑊

𝑤=1

𝑅

𝑟=1

𝐷

𝑑=1

      𝑣 = 1,2,… , 𝑉

𝑆

𝑠=1

 

𝑥𝑠𝑑𝑣𝑟𝑤 ≥ 0∀𝑠, 𝑑, 𝑣, 𝑟, 𝑤 (17) 

5.1 Expected value model 

An equivalent deterministic model for 

UML4DMIFTP has been presented in this section. 

By using the expected value method for normal 

uncertain variable and its properties, the equivalent 

deterministic model for UML4DMIFTP is given in 

Eq. (18). 

 

Level 1 

Min
𝑋̅1

𝑍(1)

=
∑ ∑ ∑ ∑ ∑ 𝐸(𝐶̃𝑠𝑑𝑣𝑟𝑤

(1) )𝑥𝑠𝑑𝑣𝑟𝑤
𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ 𝐸(𝐷̃𝑠𝑑𝑣𝑟𝑤
(1)

)𝑥𝑠𝑑𝑣𝑟𝑤
𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

 

 

Level 2 

Min
𝑋̅2

𝑍(2)

=
∑ ∑ ∑ ∑ ∑ 𝐸(𝐶̃𝑠𝑑𝑣𝑟𝑤

(2) )𝑥𝑠𝑑𝑣𝑟𝑤
𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ 𝐸(𝐷̃𝑠𝑑𝑣𝑟𝑤
(2) )𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

 

⋮ 
 

Level n 

Min
𝑋̅𝑛

𝑍(𝑛)

=
∑ ∑ ∑ ∑ ∑ 𝐸(𝐶̃𝑠𝑑𝑣𝑟𝑤

(𝑛)
)𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ 𝐸(𝐷̃𝑠𝑑𝑣𝑟𝑤
(𝑛) )𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

 



Received:  August 18, 2021.     Revised: September 30, 2021.                                                                                         634 

International Journal of Intelligent Engineering and Systems, Vol.14, No.6, 2021           DOI: 10.22266/ijies2021.1231.56 

 

Subject to 

∑∑∑𝑥𝑠𝑑𝑣𝑟𝑤 − 𝐸(𝑎̃𝑠𝑤) ≤ 0

𝑅

𝑟=1

   𝑠 = 1,2, … , 𝑆, 𝑤

𝑉

𝑣=1

𝐷

𝑑=1

= 1,2,… ,𝑊 

 

𝐸(𝑏̃𝑑𝑤) −∑∑∑𝑥𝑠𝑑𝑣𝑟𝑤 ≤ 0

𝑅

𝑟=1

        𝑑

𝑉

𝑣=1

𝑆

𝑠=1

= 1,2,… , 𝐷,𝑤 = 1,2,… ,𝑊 

∑∑∑∑ 𝑥𝑠𝑑𝑣𝑟𝑤 − 𝐸(𝑒̃𝑣) ≤ 0

𝑊

𝑤=1

𝑅

𝑟=1

𝐷

𝑑=1

𝑆

𝑠=1

 𝑣 = 1,2,… , 𝑉 

 

𝑥𝑠𝑑𝑣𝑟𝑤 ≥ 0∀𝑠, 𝑑, 𝑣, 𝑟, 𝑤 (18) 

5.2 Chance constrained 

An equivalent deterministic model for an 

UML4DMIFTP by using chance constraint method is 

presented in this section.  

 

Level 1 

Min
𝑋̅1

𝑍̃(1) =
∑ ∑ ∑ ∑ ∑ (𝜒(1))𝑠𝑑𝑣𝑟𝑤

−1 (𝛼1)𝑥𝑠𝑑𝑣𝑟𝑤
𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ (𝜙(1))𝑠𝑑𝑣𝑟𝑤
−1 (𝛾1)𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

 

 

Level 2 

Min
𝑋̅2

𝑍̃(2) =
∑ ∑ ∑ ∑ ∑ (𝜒(2))𝑠𝑑𝑣𝑟𝑤

−1 (𝛼2)𝑥𝑠𝑑𝑣𝑟𝑤
𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ (𝜙(2))𝑠𝑑𝑣𝑟𝑤
−1 (𝛾2)𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

 

⋮ 
 

Level n 

Min
𝑋̅𝑛

𝑍̃(𝑛) =
∑ ∑ ∑ ∑ ∑ (𝜒(𝑛))𝑠𝑑𝑣𝑟𝑤

−1 (𝛼𝑛)𝑥𝑠𝑑𝑣𝑟𝑤
𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ (𝜙(𝑛))𝑠𝑑𝑣𝑟𝑤
−1 (𝛾𝑛)𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

 

 

Subject to 

∑∑∑𝑥𝑠𝑑𝑣𝑟𝑤 ≤ 𝜓𝑠𝑤
−1(1 − 𝛼𝑠𝑤)

𝑅

𝑟=1

   𝑠 = 1,2, … , 𝑆, 𝑤 = 1,2,… ,𝑊

𝑉

𝑣=1

𝐷

𝑑=1

 

∑∑∑𝑥𝑠𝑑𝑣𝑟𝑤 ≥ 𝜃𝑑𝑤
−1(𝛽𝑑𝑤)

𝑅

𝑟=1

   𝑑 = 1,2,… , 𝐷, 𝑤 = 1,2, … ,𝑊

𝑉

𝑣=1

𝑆

𝑠=1

 

∑∑∑∑ 𝑥𝑠𝑑𝑣𝑟𝑤 ≤ 𝜆𝑣
−1(1 − 𝛽𝑣)

𝑊

𝑤=1

𝑅

𝑟=1

𝐷

𝑑=1

      𝑣 = 1,2,… , 𝑉

𝑆

𝑠=1

 

𝑥𝑠𝑑𝑣𝑟𝑤 ≥ 0∀𝑠, 𝑑, 𝑣, 𝑟, 𝑤 (19) 

Suppose that 𝐷̃𝑠𝑑𝑣𝑟𝑤
(𝑛) , (𝑛 =

1,2,… ,𝑁), 𝐶̃𝑠𝑑𝑣𝑟𝑤
(𝑛) , (𝑛 = 1,2,… , 𝑁), 𝑎̃𝑠𝑤 , 𝑏̃𝑑𝑤,𝑒̃𝑣,  are 

independent uncertain variables with regular 

uncertain distributions 

𝜒𝑠𝑑𝑣𝑟𝑤
(𝑛) , 𝜙𝑠𝑑𝑣𝑟𝑤

(𝑛) , 𝜓𝑠𝑤 , 𝜃𝑑𝑤, 𝜆𝑣, (𝑛 = 1,2, … ,𝑁 

respectively. The proposed UML4DMIFTP’s 

equivalent deterministic model using the chance 

constrained method is given in Eq. (19) where 
𝛼𝑛 , 𝛾𝑛, 𝛽𝑣 , 𝛼𝑠𝑤  and 𝛽𝑑𝑤   ∀𝑛, 𝑣, 𝑠, 𝑤&𝑑 are 

predetermined confidence levels and 𝛼𝑛, 𝛾𝑛, 𝛽𝑣 , 𝛼𝑠𝑤 

and 𝛽𝑑𝑤 ∈ (0,1), ∀𝑛, 𝑣, 𝑠, 𝑤&𝑑.  By applying the 

properties of chance constraint method for normal 

uncertain variable, an equivalent model of Eq. (19) is 

given in Eq. (20).  

Definition 5.3 A point  is said to be an efficient 

solution of UML4DMIFTP iff there does not exist 

another 𝑥 ∈ 𝑋  s.t. 𝑍𝑛(𝑥) ≤ 𝑍𝑛(𝑥
0),  and 𝑍𝑛(𝑥) <

𝑍𝑛(𝑥
0), for at least one n. 

6. Solution methodology 

When more than one goal is present, to obtain the 

satisfactory solution the goal programming technique 

was proposed by Charnes Clan Cooper [44]. The goal 

programming technique was further developed by 

T.Chang [45], Pal [46] etc. To solve multi objective 

transportation problem (MOTP), a new fuzzy goal 

programming technique was introduced by 

Mohammed [47], which was later used by Zangiabadi 

[48, 49] to solve MOTP containing linear as well as 

non-linear membership functions. The main aim of 

goal programming (GP) is to minimize the distance 

between Z and aspiration (or) target level 𝑍̅ . The 
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positive and negative deviational variables are 

defined as in Eq. (21) and Eq. (22).  

 

 

Level 1 

Min
𝑋̅1

𝑍̃(1) =
∑ ∑ ∑ ∑ ∑ (𝑒𝑠𝑑𝑣𝑟𝑤

1 +
𝜎𝑠𝑑𝑣𝑟𝑤
1

𝜋
√3 ln

𝛼1

(1−𝛼1)
)𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ (𝑒𝑠𝑑𝑣𝑟𝑤
1 +

𝜎𝑠𝑑𝑣𝑟𝑤
1

𝜋
√3 ln

𝛾1

(1−𝛾1)
)𝑊

𝑤=1
𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1 𝑥𝑠𝑑𝑣𝑟𝑤

 

 

Level 2 

Min
𝑋̅2

𝑍̃(2) =
∑ ∑ ∑ ∑ ∑ (𝑒𝑠𝑑𝑣𝑟𝑤

2 +
𝜎𝑠𝑑𝑣𝑟𝑤
2

𝜋
√3 ln

𝛼2

(1−𝛼2)
)𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ (𝑒𝑠𝑑𝑣𝑟𝑤
2 +

𝜎𝑠𝑑𝑣𝑟𝑤
2

𝜋
√3 ln

𝛾2

(1−𝛾2)
)𝑊

𝑤=1
𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1 𝑥𝑠𝑑𝑣𝑟𝑤

 

⋮ 
 

Level n 

Min
𝑋̅𝑛

𝑍̃(𝑛) =
∑ ∑ ∑ ∑ ∑ (𝑒𝑠𝑑𝑣𝑟𝑤

𝑛 +
𝜎𝑠𝑑𝑣𝑟𝑤
𝑛

𝜋
√3 ln

𝛼𝑛

(1−𝛼𝑛)
)𝑥𝑠𝑑𝑣𝑟𝑤

𝑊
𝑤=1

𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1

∑ ∑ ∑ ∑ ∑ (𝑒𝑠𝑑𝑣𝑟𝑤
𝑛 +

𝜎𝑠𝑑𝑣𝑟𝑤
𝑛

𝜋
√3 ln

𝛾𝑛

(1−𝛾𝑛)
)𝑊

𝑤=1
𝑅
𝑟=1

𝑉
𝑣=1

𝐷
𝑑=1

𝑆
𝑠=1 𝑥𝑠𝑑𝑣𝑟𝑤

 

 

Subject to 

∑∑∑𝑥 ≤ 𝑒𝑠𝑤 +
𝜎𝑠𝑤√3

𝜋
ln
1 − 𝛼𝑠𝑤
𝛼𝑠𝑤

,

𝑅

𝑟=1

   𝑠 = 1,2, … , 𝑆, 𝑤 = 1,2, … ,𝑊

𝑉

𝑣=1

𝐷

𝑑=1

 

∑∑∑𝑥 ≥ 𝑒𝑑𝑤 +
𝜎𝑑𝑤√3

𝜋
ln

𝛽𝑑𝑤
1 − 𝛽𝑑𝑤

,

𝑅

𝑟=1

   𝑑 = 1,2, … , 𝐷,𝑤 = 1,2,… ,𝑊

𝑉

𝑣=1

𝑆

𝑠=1

 

∑∑∑∑ 𝑥𝑠𝑑𝑣𝑟𝑤 ≤ 𝑒𝑣 +
𝜎𝑣√3

𝜋
ln
1 − 𝛽𝑣
𝛽𝑣

,

𝑊

𝑤=1

𝑅

𝑟=1

𝐷

𝑑=1

𝑣 = 1,2,… , 𝑉

𝑆

𝑠=1

 

𝑥𝑠𝑑𝑣𝑟𝑤 ≥ 0∀𝑠, 𝑑, 𝑣, 𝑟, 𝑤                                                                (20) 

 

𝐷𝑛
+ = max (0, 𝑍𝑛 − 𝑍̅𝑛)                  (21) 

 

𝐷𝑛
− = max (0, 𝑍̅𝑛 − 𝑍𝑛)                  (22) 

 

When the aim is to maximize 𝑍𝑛, we obtain the 

optimal solution by minimizing the negative 

deviational variable. Similarly, when the aim is to 

minimize 𝑍𝑛 , we obtain the optimal solution by 

minimizing the positive deviational variable. When 

we desire 𝑍𝑛 = 𝑍̅𝑛, we obtain the optimal solution by 

minimizing 𝐷𝑛
+ + 𝐷𝑛

− . To formulate membership 

functions the fuzzy goals and their aspiration levels 

has to be defined first. Firstly, we maximize and 

minimize the numerator and denominator objective 

functions individually for each level of decision 

making. After finding the maximum and minimum 

values of each objective function, we construct the 

payoff matrices. Each row’s maximum values 𝑁̅(𝑛) 

and 𝐷̅(𝑛)∀𝑛 = 1,2, … ,𝑁  are known as the aspired 

level or upper tolerance limit for the membership 

function of nth level numerator and denominator 

objectives respectively. Likewise, the minimum 

values of each row 𝑁(𝑛)and 𝐷(𝑛)∀𝑛 = 1,2,… ,𝑁 are 

lower tolerance limit for the membership function of 

the nth level numerator and denominator respectively.  
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The linear membership functions for fuzzy goals are defined as follows: 

𝜇 (𝑁(𝑛)(𝑋̅)) =

{
 
 

 
 

1 𝑖𝑓 𝑁(𝑛)(𝑋̅) ≤ 𝑁(𝑛)

𝑁̅(𝑛) −𝑁(𝑛)(𝑋̅)

𝑁̅(𝑛) − 𝑁(𝑛)
𝑖𝑓 𝑁(𝑛) ≤ 𝑁(𝑛)(𝑋̅) ≤ 𝑁̅(𝑛), ∀𝑛 = 1,2, … ,𝑁

0 𝑖𝑓 𝑁(𝑛)(𝑋̅) ≥ 𝑁̅(𝑛)

 (23) 

 

𝜇 (𝐷(𝑛)(𝑋̅)) =

{
 
 

 
 

0 𝑖𝑓 𝐷(𝑛)(𝑋̅) ≤ 𝐷(𝑛)

𝐷̅(𝑛)(𝑋̅) − 𝐷(𝑛)

𝐷̅(𝑛) − 𝐷(𝑛)
𝑖𝑓 𝐷(𝑛) ≤ 𝐷(𝑛)(𝑋̅) ≤ 𝐷̅(𝑛), ∀𝑛 = 1,2,… ,𝑁

1 𝑖𝑓 𝐷(𝑛)(𝑋̅) ≥ 𝐷̅(𝑛)

 (24) 

 

Comparably, the decision vector Xn’s membership function as follows, where (n=1,2,…N) . 

 

𝜇(𝑋𝑛) =

{
 
 

 
 

1 𝑖𝑓 𝑋𝑛 ≤ 𝑋

𝑋̅ − (𝑋𝑛)

𝑋̅ − 𝑋
𝑖𝑓 𝑋 ≤ (𝑋𝑛) ≤ 𝑋̅, ∀𝑛 = 1,2,… ,𝑁

0 𝑖𝑓 𝑋𝑛 ≥ 𝑋̅

 

 

(25) 

where 𝑋̅𝑛  and 𝑋𝑛  are represents the values of 

corresponding decision vectors at each level which 

yield the maximum and minimum values of the 

numerator part of the objective functions 𝑁̅𝑛(𝑋̅)  and 

𝑁𝑛(𝑋), ∀𝑛 = 1,2, … ,𝑁 − 1 at every level 

respectively is given by:   

 

𝑋̅𝑛 = Max
𝑋̅𝑛𝜖𝑋

{𝑁̅(𝑛)(𝑋̅), ∀𝑛 = 1,2,… ,𝑁} 

𝑋𝑛 = Min
𝑋̅𝑛𝜖𝑋

{𝑁𝑛(𝑋̅), ∀𝑛 = 1,2,… ,𝑁} 

 

(26) 

min𝛿 = ∑ 𝑑
𝑁+
(𝑛) + ∑ 𝑑

𝐷+
(𝑛) + ∑ 𝑑+

(𝑛)𝑁−1
𝑛=1

𝑁
𝑛=1

𝑁
𝑛=1       

 

Subject to  

 

𝜇(𝑁(𝑛)) + 𝑑𝑁−
(𝑛) − 𝑑

𝑁+
(𝑛) = 1, ∀𝑛 = 1,2,… ,𝑁 

𝜇(𝐷(𝑛)) + 𝑑𝐷−
(𝑛) − 𝑑

𝐷+
(𝑛) = 1, ∀𝑛 = 1,2,… ,𝑁 

𝜇(𝑋(𝑛)) + 𝑑−
(𝑛) − 𝑑+

(𝑛) = 1, ∀𝑛 = 1,2,… ,𝑁 

∑∑∑𝑥𝑠𝑑𝑣𝑟𝑤 − 𝐸(𝑎̃𝑠𝑤) ≤ 0

𝑅

𝑟=1

   𝑠 = 1,2, … , 𝑆, 𝑤

𝑉

𝑣=1

𝐷

𝑑=1

= 1,2,… ,𝑊 

𝐸(𝑏̃𝑑𝑤) −∑∑∑𝑥𝑠𝑑𝑣𝑟𝑤 ≤ 0

𝑅

𝑟=1

                  𝑑

𝑉

𝑣=1

𝑆

𝑠=1

= 1,2,… , 𝐷, 𝑤 = 1,2,… ,𝑊 

∑∑∑∑ 𝑥𝑠𝑑𝑣𝑟𝑤 − 𝐸(𝑒̃𝑣) ≤ 0

𝑊

𝑤=1

𝑅

𝑟=1

𝐷

𝑑=1

      𝑣

𝑆

𝑠=1

= 1,2,… , 𝑉 

𝑥𝑠𝑑𝑣𝑟𝑤 ≥ 0∀𝑠, 𝑑, 𝑣, 𝑟, 𝑤 (3) 
  

Since, the objective functions generally conflict 

each other, the completely satisfactory optimal 

solution is very rarely obtained; the highest degree of 

membership value for each fuzzy goal can be 1. So, 

we need to minimize the regret of each decision 

maker at all levels and every decision maker should 

try to maximize the membership function by reducing 

the distance between membership value and unity 

and minimize the positive deviational value. In this 

process all objective functions are simultaneously 

optimized. The model UML4DMIFTP (18) is written 

as (27). Therefore, we can note that only the sum of 

over deviational variables has to be minimized to 

reach the aspiration level. When the aspired level is 

reached, the negative deviational value is zero. When 

the achievement level is zero, negative deviational 

value becomes unity. UML4DMIFTP (27) becomes 

as follows: 

 

min𝛿 = ∑ 𝑑
𝑁+
(𝑛)
+ ∑ 𝑑

𝐷+
(𝑛)
+ ∑ 𝑑+

(𝑛)𝑁−1
𝑛=1

𝑁
𝑛=1

𝑁
𝑛=1       
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Subject to  

 

𝑁(𝑛) −𝑁(𝑛)(𝑋̅) + 𝑑𝑁−
(𝑛)
(𝑁̅(𝑛) −𝑁(𝑛)) ≥ 0, ∀𝑛

= 1,2, … ,𝑁 

 

−𝐷̅(𝑛) +𝐷(𝑛)(𝑋̅) + 𝑑𝑁−
(𝑛)(𝐷̅(𝑛) −𝐷(𝑛)) ≥ 0, ∀𝑛

= 1,2,… ,𝑁 

 

𝑋 − 𝑋(𝑛) + 𝑑−
(𝑛)(𝑋̅ − 𝑋) ≥ 0, ∀𝑛 = 1,2, … ,𝑁 − 1 

 

∑∑∑𝑥𝑠𝑑𝑣𝑟𝑤 − 𝐸(𝑎̃𝑠𝑤) ≤ 0

𝑅

𝑟=1

   𝑠 = 1,2, … , 𝑆, 𝑤

𝑉

𝑣=1

𝐷

𝑑=1

= 1,2,… ,𝑊 

 

𝐸(𝑏̃𝑑𝑤) −∑∑∑𝑥𝑠𝑑𝑣𝑟𝑤 ≤ 0

𝑅

𝑟=1

   𝑑

𝑉

𝑣=1

𝑆

𝑠=1

= 1,2,… , 𝐷,𝑤 = 1,2,… ,𝑊 

 

∑∑∑∑ 𝑥𝑠𝑑𝑣𝑟𝑤 − 𝐸(𝑒̃𝑣) ≤ 0,

𝑊

𝑤=1

𝑅

𝑟=1

𝐷

𝑑=1

 𝑣 = 1,2,… , 𝑉

𝑆

𝑠=1

 

 

𝑥𝑠𝑑𝑣𝑟𝑤 ≥ 0∀𝑠, 𝑑, 𝑣, 𝑟, 𝑤                 (28) 

7. Solution procedure for UML4DMIFTP 

Step 1: Formulate the decision making model for 

uncertain multi level four dimensional  multi item 

fractional transportation problem as in Eq. (17). 

Step 2: Obtain an equivalent deterministic model for 

UML4DMIFTP by using expected value model and 

chance constraint model on uncertainty theory as in 

Eq. (18) and Eq. (20). 

Step 3: Under the given constraints, for all objectives, 

calculate the individual max (𝑁̅(𝑛) and 𝐷̅(𝑛)) and  

min ( 𝑁(𝑛)  and 𝐷(𝑛) ) values of numerator and 

denominator for all levels respectively. 

Step 4: For all levels and all objectives, set the fuzzy 

goals and aspiration levels 𝑁(𝑛), 𝑁(𝑛) (or) 𝐷̅(𝑛), 𝐷(𝑛) 
for each and every numerator and denominator parts. 

Step 5: Compute the highest and lowest value of 

numerator part of all objectives respectively as 

defined in Eq. (26). 

Step 6: Set corresponding values of decision 

variables as aspiration levels for membership 

functions of the vector 𝑋(𝑛), ∀𝑛 = 1,2,… ,𝑁 − 1.          

Step 7: Find the membership functions of numerators 

𝜇(𝑁(𝑛)) , denominators 𝜇(𝐷(𝑛))  and decision 

variables 𝜇(𝑋(𝑛)). 

Step 8: For the proposed UML4DMIFTP, formulate 

the fuzzy goal programming model as in Eq (28). 
Step 9: Using generalized reduced gradient technique 

(LINGO-18.0 Suite Solver), solve the fuzzy goal 

programming model to have the compromise solution 

of proposed UML4DMIFTP. 

8. Numerical example 

When the problem analysed in the work aims of 

formulating an optimal transportation scheme 

considering real life objectives like minimisation of 

actual cost and standard cost ratio, minimizing time 

and breakability factor of product shipping. The 

problem considers a hierarchical decision making 

system wherein the higher level decision maker deals 

with minimizing the actual cost-standard cost ratio. 

The second level decision maker is associated with 

minimizing the time while the third level decision 

maker is interest on mimimizing the defective items 

which would be rejected. İn the situation considered 

in this paper, there are two items, origins, destinations, 

conveyances each. All the parameters involved are 

taken as normal variables as the data available for the 

problem is continous. The data for the availabilities 

in various sources,demands of the destinations and 

capacities of transports are presented in table 2, table 

3 and table 4 respectively.  

Table 5 contains the data for  ratio between the 

actual and standard transportation cost, ratio between 

the actual and standard transportation time and ratio 

between actual and standard demage items. For the 

formulation of the problem and getting the 

compromise solution, we may follow the following 

steps: 

Step 1: The decision making model is formulated for 

UML4DMIFTP for above data as of Eq. (17). 

Step 2: We convert the above UML4DMIFTP model 

into deterministic model by making use of expected 

value method on uncertainity theory as Eq. (18). 

Step 3: Calculate the individual max (𝑁̅(𝑛), 𝐷̅(𝑛))  

and min (𝑁(𝑛), 𝐷(𝑛)) for all levels under the given 

constraints.The optimal values of each numerator and 

denominator have been presented in table (6).  

Step 4: Using the steps 4-8 given in section 7, 

formulate the fuzzy goal programming model for 

UML4DMIFTP as in Eq. (28). 

Step 5: The problem obtained in step 8 has been 

solved using the reduced gradient technique to obtain 

the compromise solution of the proposed 

UML4DMIFTP problem. The compromise solution 

for the proposed UML4DMIFTP is: 
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Table 2. Availabilities in origin 

S w 𝑎̃𝑠𝑤 

1 

1 (200,10) 

2 (360,20) 

2 1 (225,30) 

 

 

Table 3. Demands in destination 

d w 
𝑏̃𝑑𝑤 

1 

1 (150,5) 

2 (125,10) 

2 1 (200,15) 

 

 

Table 4. Capacity of conveyance 

v r 𝑒̃𝑣𝑟 

1 

1 (280,15) 

2 (250,20) 

2 

1 (290,25) 

2 (380,10) 

 

Table 5. Ratios of actual and standard unit transportation cost, actual and standard transportation time, actual and 

standard damaged items 

s d v r 

Level 1 Level 2 Level 3 

Ratio of actual Unit cost 

and standard unit cost 

Ratio of actual and standard 

transportation time 

Ratio of actual and 

standard damage items 

𝐶̃𝑠𝑑𝑣𝑟1
(1)

𝐷̃𝑠𝑑𝑣𝑟1
(1)

 
𝐶̃𝑠𝑑𝑣𝑟2
(1)

𝐷̃𝑠𝑑𝑣𝑟2
(1)

 
𝐴̃𝑠𝑑𝑣𝑟1
(2)

𝑆̃𝑠𝑑𝑣𝑟1
(2)

 
𝐴̃𝑠𝑑𝑣𝑟2
(2)

𝑆̃𝑠𝑑𝑣𝑟2
(2)

 
𝐶̃𝑠𝑑𝑣𝑟1
(3)

𝐷̃𝑠𝑑𝑣𝑟1
(3)

 
𝐶̃𝑠𝑑𝑣𝑟2
(3)

𝐷̃𝑠𝑑𝑣𝑟2
(3)

 

1 

1 

1 

1 (28,1)

(38,2)
 

(32,2)

(32,3)
 

(28,0.5)

(18,2)
 

(12,3)

(27,1)
 

(19,1.5)

(21,2)
 

(19,2)

(16,3)
 

2 
(28,1.5)

(38,1.8)
 

(38,2)

(38,2.5)
 

(28,3)

(18,2)
 

(12,3)

(24,1.5)
 

(19,2)

(36,2.5)
 

(9,3)

(26,3.5)
 

2 

1 
(29,3)

(29,2)
 

(39,4)

(39,3)
 

(12,2.5)

(19,3)
 

(21,1.5)

(24,3.5)
 

(9,1)

(21,1.5)
 

(9,2)

(36,2.5)
 

2 
(29,2)

(29,1.5)
 

(29,3)

(29,2.5)
 

(18,2)

(19,3)
 

(18,2)

(19,2)
 

(29,2)

(36,3)
 

(39,2.5)

(16,3.5)
 

2 

1 

1 
(27,1)

(17,2)
 

(39,1.5)

(39,3)
 

(18,1)

(18,1)
 

(21,2.5)

(37,1.5)
 

(29,4)

(22,3)
 

(49,2.5)

(38,1.5)
 

2 
(39,2)

(39,4)
 

(39,3)

(39,4.5)
 

(16,2)

(37,2.5)
 

(27,1.5)

(37,3)
 

(39,1)

(22,2)
 

(39,2)

(22,2)
 

2 

1 
(29,2)

(29,1.5)
 

(34,1.5)

(30,2)
 

(16,1.5)

(18,1)
 

(21,2)

(21,0.5)
 

(39,3)

(42,4)
 

(11,5)

(31,4)
 

2 
(39,2.5)

(49,0.5)
 

(34,3.5)

(34,0.8)
 

(16,2)

(28,4)
 

(21,2.5)

(23,3.5)
 

(6,2.5)

(41,3)
 

(11,3.5)

(41,4)
 

2 

1 

1 

1 
(39,4)

(39,4)
 

(38,4.5)

(48,4)
 

(28,1.5)

(18,8)
 

(21,1.5)

(28,2)
 

(11,2)

(22,2)
 

(11,1.5)

(41,2)
 

2 
(39,1.5)

(39,2)
 

(39,3)

(39,2.5)
 

(18,2)

(18,3)
 

(18,1.5)

(18,4)
 

(26,1)

(41,2)
 

(26,1.5)

(21,2)
 

2 

1 
(31,2)

(31,4)
 

(34,2.5)

(34,3)
 

(18,1.5)

(18,5)
 

(22,1)

(25,0.5)
 

(16,3)

(17,1.5)
 

(31,2)

(23,2)
 

2 
(34,3)

(34,2)
 

(34,3.5)

(34,1.5)
 

(28,2)

(25,3)
 

(22,3)

(25,2.5)
 

(26,2)

(17,3)
 

(26,4)

(17,5)
 

2 

1 

1 
(38,2)

(38,1)
 

(35,4)

(35,1)
 

(28,3)

(18,1)
 

(22,1.5)

(10,1.5)
 

(26,1)

(37,2)
 

(12,1)

(43,2)
 

2 
(38,3)

(38,2)
 

(33,3.5)

(43,2)
 

(28,1.5)

(28,2)
 

(22,2)

(19,2.5)
 

(38,5)

(43,10)
 

(12,3)

(43,4)
 

2 

1 
(38,2)

(38,3)
 

(35,4)

(35,2)
 

(22,1.5)

(38,3)
 

(22,2)

(38,3.5)
 

(12,2)

(17,3)
 

(12,1)

(73,2)
 

2 
(38,2.5)

(38,3.5)
 

(38,3)

(38,2)
 

(23,1)

(38,2)
 

(23,1.5)

(18,2.5)
 

(21,4)

(43,5)
 

(31,3)

(73,4)
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Table 6. Minimum and maximum values of the numerator and denominator of all objectives 

Levels Objectives Max Min 

1 𝑍(1) 
Numerator 𝑁(1) = 46570 𝑁(1) = 23625 

Denominator 𝐷̅(1) = 50960 𝐷(1) = 21285 

2 𝑍(2) 
Numerator 𝑁(2) = 29760 𝑁(2) = 13765 

Denominator 𝐷̅(2) = 41315 𝐷(2) = 11710 

3 𝑍(3) 
Numerator 𝑁(3) = 44555 𝑁(3) = 7340 

Denominator 𝐷̅(3) = 62035 𝐷(3) = 15565 

𝛿 = 0, 𝑥11111 = 140, 𝑥12221 = 60, 𝑥21121 =
10, 𝑥21122 = 125, 𝑥22111 = 140, 𝑥22222 =

300, 𝑑𝑁+
1 = 𝑑𝑁+

2 = 𝑑𝑁+
3 = 𝑑𝐷+

1 = 𝑑𝐷+
2 = 𝑑𝐷+

3 =

0, 𝑑𝑁−
1 = 0.20, 𝑑𝑁−

2 = 0.27, 𝑑𝑁−
3 = 0.32, 𝑑𝐷−

1 =
0.69, 𝑑𝐷−

2 = 0.90, 𝑑𝐷−
3 = 0.57   

with the corresponding objective values 𝑍(1) =
0.933, 𝑍(2) = 1.246, 𝑍(3) = 0.548.  

Repeat the above said steps from 1 to 5 for chance 

constraint method for the proposed UML4DMIFTP 

to obtain the compromise solution of the model. The 

solution has been obtained by considering 

predetermined confidence level as: 𝛼𝑛 = 𝛾𝑛 =
𝛼𝑠𝑤 = 𝛾𝑑𝑤 = 𝛽𝑣 = 0.9∀𝑛, 𝑣, 𝑠, 𝑤&𝑑.  

The compromise solution has been given as 

follows 𝑍(1) = 0.86, 𝑍(2) = 1.146, 𝑍(3) = 0.648. 
The decision makers can obtain the optimal solutions 

flexibly, as per their desired conditions,  by using the 

chance constrained method. Considering diverse set 

of values for various parameters in the proposed 

model, will benefit the decision making under 

uncertain environment. 

9. Conclusion 

A network planning model has been presented for 

multi level four diemension muti item fractional 

transportation problem under uncertain variables on 

this paper. Multi level four diemensional multi item 

fractional transportation problem to handle real life 

situations has been discussed for the first time ever in 

this paper. The transportation problem discussed in 

the work has been considered by using fractional 

programming rather than the linear programming, we 

consider ratio of two linear functions to optimize 

which also yields us the efficiency of the system. The 

problem also considers decision making at various 

level i.e. hierarchical decision making system. It also 

eliminates the deadlock situations where 

contradicting objectives exist using goal 

programming method. The numerical example has 

been taken and solved to illustrate the solution 

procedure and also the validity of the model 

presented. The proposed model, unlike the others till 

date, can generally be used for any type of 2D/3D/4D 

fractional transportation problem and also yields the 

efficiency of the system. The above work can be 

extended by including multiple objectives in each 

level of decision making in the future. 
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