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Abstract: Modified graph clustering ant colony optimization (MGCACO) algorithm is an unsupervised feature 

selection (UFS) algorithm used in determining a subset of effective genes from microarray data. The feature subset 

construction is based on the ant colony optimization (ACO) algorithm, which guides the search process from clusters. 

However, the MGCACO algorithm is unable to choose all significant features from the clusters to form an optimal 

feature subset. This paper proposes an enhanced graph clustering ACO (EGCACO) to overcome the problem of feature 

selection in the MGCACO algorithm. A principal point of this algorithm is utilizing an adaptive selection technique 

that guides ACO for subset construction from the clusters of features. The adaptive technique for ant selection is based 

on the state of the search space. Experimental results indicated that the proposed EGCACO achieves the highest 

classification accuracy than five other common UFS algorithms on four classifiers, where it obtained 87.13%, 86 .19 %, 

87.38 % and 90.80 % for support vector machine, k-nearest neighbor, decision tree and random forest classifiers, 

respectively. In particular, the proposed algorithm can select the genes of the deoxyribonucleic acid microarray with 

consideration of relevance and redundancy among the genes. Therefore, the proposed EGCACO can be implemented 

to handle the high dimension feature space, such as image processing, text classification, and microarray data 

processing, which is critical for good and reliable results. 

Keywords: Unsupervised feature selection, Clustering, Parameter control, Ant colony optimization, Microarray. 

 

 

1. Introduction 

Feature selection (FS) is a procedure that 

removes irrelevant, redundant, or noisy data, and 

detects relevant features with the aim to improve 

predictive accuracy, increase comprehensibility, and 

accelerate data mining algorithms [1]. The selection 

of the features can be classified according to 

supervised, unsupervised, and semi-supervised [2, 3]. 

Supervised feature selection is employed when the 

class labels are available, while unsupervised feature 

selection (UFS) is used in the absence of class labels. 

Both unlabeled and labeled data are utilized in semi-

supervised FS methods. Unsupervised feature 

selection is more difficult than semi-supervised and 

supervised, as it is not assisted by class labels [4]. 

Many UFS methods have been proposed in recent 

years by various scholars [5-9]. It has several 

advantages, such as being impartial as experts or data 

analysts are not needed to categorize samples, and it 

can perform well even though no prior information is 

available. It is important for the exploratory analysis 

of biological data (e.g., the advances of 

deoxyribonucleic acid (DNA) microarray) and it 

provides an efficient way to discover the unknown 

meaningful insights into the classification of diseases 

[10]. The natural structure of DNA microarray data is 

high-dimensional with few records and many 

columns where they represent a well-known 

phenomenon called the “curse of dimensionality” 

[11]. Nevertheless, the genes (features) in the data are 

not entirely included for classification purposes as 

not all genes contain relevant information. Therefore, 

to achieve reliable, accurate, and effective 

performance, an effective data preprocessing process 

such as UFS should be implemented in DNA 

microarray classification [12]. In spite of this, UFS 

has several key disadvantages. It neglects the 

potential correlation between different features, and 
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therefore, the subsets generated may be suboptimal 

for the specific task of the discrimination. In addition, 

it depends on some mathematical principles without 

ensuring that the principles are universally valid for 

all data [13]. 

In recent years, more attention has been paid in 

particular to approaches based on metaheuristic as a 

search technique for optimization problems. Among 

those approaches are genetic algorithm (GA) [14, 15], 

ant colony optimization (ACO) [16–21], and particle 

swarm optimization (PSO) [22, 23]. Predominantly 

in high-dimensionality data, metaheuristic swarm 

search algorithms are very useful with regard to their 

global search capability [24]. ACO has been widely 

used as a metaheuristic swarm search algorithm for 

FS [25, 26]. In comparison to other swarm 

intelligence algorithms, ACO has several advantages 

including the capability of local and global search, 

long-term distributed memory, and learning 

reinforcement strategy [27–29] In dealing with FS, 

ACO is appropriate for handling high-dimensional, 

noise, irrelevant, and redundant datasets [30]. 

Nevertheless, there are several shortcomings in the 

existing ACO-based algorithms [27]. First, these 

algorithms involve a complete graph including whole 

possible feature combinations leading to high 

computational costs. Second, a learning model is 

utilized to evaluate the feature subsets that lead to an 

increase in the complexity of their computations. 

Third, many of these algorithms may not conduct a 

redundancy analysis to rule out strongly correlated 

features that can reduce the efficiency of the classifier. 

Finally, the effectiveness of such algorithms relies 

greatly on the selected subset size and the relationship 

with the learning model. To overcome these issues, 

feature clustering is utilized as one of the UFS 

methods that considers the correlation among 

features. The feature clustering model can reduce the 

dimensionality in unsupervised high-dimensionality 

data as a powerful tool in increasing the effectiveness 

of search for the optimal feature subset. This is 

achieved by clustering the most associated features in 

the same groups. Furthermore, the performance of the 

UFS process will be improved when it uses the 

information obtained from the clusters.  

One of the most popular algorithms that clusters 

the features is the modified graph clustering ACO 

(MGCACO), which is an extension from the graph 

clustering ACO (GCACO) algorithm [20, 22]. 

GCACO has achieved the highest performance 

accuracy for microarray dataset as compared to other 

well-known algorithms. This is due to the fact that the 

selection process is driven in such a manner that at 

least one feature is picked from each cluster along 

each ant search process, and comparatively less 

correlated features are injected in a large percentage 

with regard to more correlated features to the 

consecutive iteration. 

Both GCACO and MGCACO are based on the 

Louvain algorithm for community detection [32], 

which is used to detect the communities of the most 

correlated features by maximizing a modularity 

function and finding the local maximum. Such 

algorithms are easy and simple in determining the 

communities in large networks due to the greedy 

search method that utilizes modularity maximization 

as a goal to find the best community [33]. The 

GCACO algorithm is modified with the aim to 

improve the performance of GCACO. The new 

algorithm is called MGCACO and its performance 

outperforms GCACO and other well-known UFS 

algorithms. Its main disadvantage is the lack of 

setting (user-defined) the appropriate threshold value 

for a parameter that is responsible in guiding the 

ACO selection of the features from the clusters.  

This paper presents a study on a new technique that 

guides the ants to pick relevant features from the 

clusters. The proposed technique is constructed in 

three main phases.  In the first phase, the pheromone 

initialization is performed on two pheromone 

matrices i.e. for the feature search space and the ε 

value. This aims to reduce the size of the search space 

and overcomes the searching complexity. The second 

phase is where the ant selection process  that employs 

both the greedy search method and the probabilistic 

state transition rules. In each selection process, the ε 

value is reinforce with the appropriate adaptive 

adjustment. The last phase is the pheromone updating 

rule for the goodness of the selected ε value. This 

pheromone value becomes the feedback in guiding 

the search to an optimal ε value within the iterations. 

Thus, the advantage of the proposed algorithm is that 

the ε value can be automatically determined, rather 

than being determined by the user.  

The remainder of this paper is structured as 

follows. Sections 2 and 3 present the ACO-based 

UFS algorithms and the proposed method of ACO-

based adaptive selection technique, respectively. The 

data and experimental design are presented in Section 

4, while Section 5 displays the results and discussion. 

Finally, Section 6 summarizes the conclusions and 

future directions. 

2. ACO-based unsupervised feature 

selection algorithms 

Several bio-inspired algorithms based on the 

paradigm of swarm intelligence for UFS have been 

reviewed by S. Solorio-Fernández, J. A. Carrasco-

Ochoa, and J. F. Martínez-Trinidad [34]. The 



Received:  February 12, 2021.     Revised: March 11, 2021.                                                                                             334 

International Journal of Intelligent Engineering and Systems, Vol.14, No.3, 2021           DOI: 10.22266/ijies2021.0630.28 

 

algorithms are unsupervised feature selection based 

on ACO (UFSACO) microarray gene selection based 

on ACO (MGSACO), relevance-redundancy feature 

selection based on ACO (RRFSACO), and 

unsupervised probabilistic FS using ACO (UPFS). 

Swarm intelligence involves a group of artificial 

agents that attempt to mimic the natural behaviors of 

a population of animals. Every agent conducts a 

search mission individually, and handles a complex 

issue collectively. In general, the most popular 

algorithms that use metaheuristic search to select 

features are artificial bee colony [35], PSO [24], ACO 

[36], grey golf optimization [37], taboo search [38], 

and scatter [39]. Nevertheless, on the paradigm of 

metaheuristic based swarm intelligence, ACO is 

more flexible in the scope of FS than other algorithms 

[30, 39]. This is proven by the use of the distributed 

long-term memory, positive feedback, parallel nature 

implementation, similar function to the 

reinforcement learning scheme, and good exploration 

and exploitation capabilities due to greedy search and 

stochastic algorithm components [32].  

S. Tabakhi, P. Moradi, and F. Akhlaghian [41] 

introduced one of the first bio-inspired swarm 

intelligence paradigm known as UFSACO to choose 

a feature subset with minimum similarity (low 

redundancy) between features. In this algorithm, a 

complete undirected graph was used where nodes 

represented features and the similarities between the 

features were the weights on the edges. Similar 

features were considered redundant. The amount of 

pheromone depended on the feature counter value on 

the edge of the graph. In each step, an ant built its 

candidate solution by iteratively selecting the edge 

with the lowest iterative similarity and the greatest 

pheromone value. The pheromone value would 

decrease as it took place based on the intensified 

pheromone rule. Until a predetermined stopping 

criterion was reached (iteration number), the ants 

interactively traversed the graph, preferring low 

similarities and high pheromone values. Finally, a 

specific number (specified by user) of features that 

had high pheromone value and low redundancy was 

chosen. The UFSACO algorithm was evaluated in 

terms of the number of selected features and 

classification accuracy to achieve the final feature 

subset. Several well-known classical classifiers i.e., 

random forest, naïve Bayes, decision tree, and 

support vector machine (SVM) were employed in the 

performance evaluation of UFSACO on benchmark 

datasets. The datasets included Arrhythmia, 

Spambase, Ionosphere, Hepatitis, Wisconsin 

Diagnostic Breast Cancer, and Wine from the 

University of California Irvine (UCI) machine 

learning repository [43], and Madelon dataset, which 

was obtained from the NIPS2003 FS challenge [44]. 

Results showed the superior performance of 

UFSACO over the other algorithms.  

Other algorithms that have a similar approach to 

UFSACO are MGSACO [36], RRFSACO [45], and 

UPFS [46], which have also been proposed to solve 

classification problems that involves UFS. For both 

RRFSACO and MGSACO, in addition to quantifying 

the redundancy feature as in UFSACO, each feature’s 

relevance is further measured by its variance. 

Therefore, the aim of these algorithms is to choose 

attributes that reduce redundancy while maximizing 

relevance. The goal is to pick non-redundant 

attributes in UPFS by utilizing the similarity of cosine 

less than Pearson’s correlation [47].  

There are several limitations to the current ACO-

based FS algorithms. In the search process, the 

possibility of dependency among the features is 

ignored. These ACO algorithms presume that the 

attributes are conditionally independent. Therefore, 

once the ant chooses the next attribute, the feature 

dependency on those already picked is ignored. 

Consequently, the organized subset might include 

redundant attributes. To avoid this issue, the feature 

clustering approach is suggested. 

A hybrid UFS algorithm that depends on the 

Louvain algorithm for community detection [32] for 

modified binary ant system and clustering 

combination known as FSCBAS was presented by Z. 

Manbari, F. Akhlaghian Tab, and C. Salavati [40]. 

This algorithm dealt with data processing issues in a 

large dimension search space and offered global 

search as well as local search capabilities within and 

between clusters. FSCBAS, inspired by simulated 

annealing and genetic algorithm, introduced a novel 

redundancy rule for reduction to evaluate the 

correlation among chosen attributes and a damped 

mutation technique that prevented falling into a local 

optimum. However, its performance had low 

accuracy in terms of the number of chosen attributes 

from each dataset. 

The GCACO algorithm proposed by P. Moradi 

and M. Rostami [27] worked on the attributes 

represented as a graph with features (nodes) and 

feature-similarities (edges). Then, the community 

detection method was applied to cluster features 

(nodes) [32] and select a minimum redundancy 

attribute subset between the attributes collected from 

the clusters. Community detection in the weighted 

graph was significant for the comprehension of the 

graph structures and analysis of its properties. In the 

FS field of study, the purpose of community detection 

is to cluster identically strong and correlated 

attributes together in the same group [31]. This 

method determined the communities within the graph 
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by maximizing a task of modularity. This method was 

convenient and effective to classify communities 

within large networks. The method detected 

communities in two stages of a network. Every node 

in the first step was assigned to a community 

selection based on the greedy search operation to 

maximize the specific modularity of the network. The 

second step simply created a new network by 

merging those of the communities previously found. 

The process then iterated until a significant 

improvement of the modularity of the network was 

achieved and the features were then represented in a 

complete graph in each cluster [27]. The ACO-based 

FS algorithm was applied to create the feature subset 

from the clusters. In every iteration, an ant randomly 

traveled to a cluster and chose at least one attribute 

from the cluster depending on the predefined 

threshold value that guided the ant to choose the next 

feature from a different cluster; otherwise, the ant 

would remain in the current cluster. The efficiency of 

every solution (i.e., a set of features) was estimated 

by implementing a separability index once all ants 

traversed completely on the graph. The value of 

pheromone of every node was adjusted by utilizing 

the intensified pheromone rule. Finally, the feature 

with the highest pheromone would become a 

candidate in the final subset. The result of GCACO 

outperformed other well-known algorithms in terms 

of the number of feature subset and classification 

accuracy. This was because every ant in the graph 

cluster attempted to travel among features for 

minimum similarity and maximum target class 

dependence. 

Better performance than GCACO was obtained in 

a modified version called MGCACO, which was 

proposed by H. Ghimatgar, K. Kazemi, M. S. 

Helfroush, and A. Aarabi [31] with three changes. 

The first was the pheromone initialization that had 

been improved by considering the relevance of 

features to classes. Higher priority was given to more 

relevant features. Secondly, depending on the 

multiple discriminant analysis, MGCACO used an 

evaluation function that could effectively evaluate 

redundancy and the relevance of features. Finally, 

MGCACO utilized a better efficient cost mission, 

integrating redundancy and the relevance of features 

in a highly efficient manner, where features were 

sorted based on redundancy and relevance analyses. 

The MGCACO algorithm could address irrelevant as 

well as redundant features. However, the MGCACO 

algorithm showed sensitivity on determining the 

value of the parameter because a manual setting was 

used to set the appropriate value, which was between 

[0,1] to guide the ACO subset construction before 

execution [27, 31]. The value was considered very 

critical and highly data-dependent. Users might not 

consider the relevance, dependency, and 

homogeneity among the features in the search spaces. 

Therefore, a fixed value might reduce the quality of 

the feature subset selection in MGCACO. 

3. The proposed algorithm 

The proposed algorithm is an enhancement of 

MGCACO, called EGCACO in which a new 

approach is used for the ants in selecting an 

appropriate value to guide the subset construction. 

This is in contrast to the MCGACO algorithm where 

a fixed threshold value is used. 

The flowchart of EGCACO is shown in Fig. 1 

where the main processes are graph representation, 

feature clustering, and ACO-based selection. The 

enhancements in MGCACO are highlighted in the 

figure, which are pheromone initialization, ant 

selection, and pheromone updating rule. Significant 

features would be chosen by the ants based on the 

value of a parameter, ε, to be included in the feature 

subset. In general, the flow of EGCACO began with 

the pheromone initialization of a vector each for the 

ε values and the feature search space. This was then 

followed by the ant selection execution where each 

ant obtained an ε value to select the features by using 

both probabilistic state transition rules and greedy 

method. Finally, the pheromone updating rule was 

applied for both the selected ε value and the selected 

features. 

EGCACO followed the procedures in the ACO 

algorithm [48] for pheromone initialization, ant 

selection, and pheromone updating rule (feedback 

collection). A state transition probability function 

was used to select the ε value based on the amount of 

pheromone and heuristic. Stochastically, the 

selection of a single parameter value was conducted 

by ACO. Subsequently, during the learning process 

of the proposed algorithm, the quality collected for 

each discovered feature subset and the quality of the 

significant feature subset were determined as 

feedback collection. Then, to guide the search 

process, these feedback indicators were transformed 

into reward assignments. To determine whether the 

current 𝜀 value was dominated or not, the transition 

probability of ACO was utilized. The process was 

repeated in the learning process of the proposed 

algorithm. Pheromone initialization, ant selection, 

and pheromone updating rule are comprised in the 

ACO-based selection process. The three steps are 

described in the following flow chart. 

Pheromone initialization: To establish the feature 

selection process, the pheromone initialization  
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Figure.1 Flow chart of the EGCACO algorithm 
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required two vectors to implement the feedback 

collection of EGCACO. The first vector represented 

the quality of the threshold parameter values, referred 

to as 𝜏𝑝𝑛  = { 𝜏𝑝1, 𝜏𝑝2, 𝜏𝑝3, . . . , 𝜏𝑝𝑛}, which reflected 

the different 𝜀  values that were initiated using the 

proposed equation.  

 

  𝜏𝑝𝑛 =  ∅ (1) 

 

where ∅ is a constant number at time 𝑡 = 0 that can 

be set to any value in the range [0,1]. The second 

vector denoted the quality amount assigned to each 

feature and was represented as 𝜏𝑓𝑛  =
 { 𝜏𝑓1, 𝜏𝑓2, 𝜏𝑓3, . . . , 𝜏𝑓𝑛} . At time 𝑡 = 0 , the 

pheromone initialization was determined by 

performing the relevance of attributes to classes. 

Higher priority was given to more relevant features. 

The mutual information among any feature (𝑓𝑑) and 

classes was computed for this purpose as [31]: 

 

 

𝑀𝐼 (𝑑)

=  ∑ ∑ 𝑝(𝑓𝑑 [𝑚]. 𝑘) 𝑙𝑜𝑔 
𝑝(𝑓𝑑[𝑚]. 𝑝(𝑘)

𝑝(𝑓𝑑 [𝑚]. 𝑘)

𝑐

𝑘=1𝑚

   
(2) 

 

where 𝑓𝑑 [𝑚]  is the 

discretizing value of the dth feature for bin 𝑚 =
[1, 2, … . , 𝑀], in which M (number of bins) is set to 

10 in the MCGACO algorithm. The probability of the 

kth class is p(k)  and the number of classes is k.  
Ant selection: When the ACO algorithm began to 

solve the problem, two selection stages were 

implemented. In the first stage, each ant selected a 

parameter (node) that represented its direction in time 

t, which was determined by the proposed probability 

Equations (3) and (4). 

 

 

𝑃(𝑎𝑛)

= {
𝑎𝑟𝑔  𝑚𝑎𝑥𝑎𝑛  ∈ 𝑃        𝑖𝑓 𝑞 <   𝑞0

0,                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

(3) 

 

where 𝑃(𝑎𝑛)  is denoted as the probability for each 

parameter value and 𝑃(𝑎𝑛)  =  { 𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛} 

determines the selection probability of each ε value. 

q is the parameter in the range [0, 1]. The predefined 

constant, 𝑞0, is a random number. In the probabilistic 

method, the ant selected the next parameter with a 

new probability of 𝑃𝑛 calculated as follows: 

 

 

 𝑃𝑛 

= {

[𝜏𝑝𝑛(𝑡)]
𝛼

 [𝜋𝑛]𝛽

∑ [𝜏𝑝𝑛(𝑡)]
𝛼

 [𝜋𝑛]𝛽ℒ
𝑛=1

         𝑖𝑓 𝑞 >   𝑞0

0,                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  
(4) 

where α and β represent the significant predefined 

constant parameter value in the range [0, 1] of both 

the pheromone and the heuristic information, 

respectively. [𝜏𝑝𝑛(𝑡)]  is the quantity of quality 

correlated with each threshold value, while  [𝜋𝑛] 
indicates the heuristic information that is calculated 

for this purpose as: 

 

 𝜋𝑛 =  
1

𝑃(𝑣𝑛)
  (5) 

 

where 𝑃(𝑣𝑛)  indicates the threshold value for each 

parameter and 𝑃(𝑣𝑛)  =  { 𝑣1, v, 𝑣3, . . . , 𝑣𝑛} 

determines the initialization of each ε value between 

[0,1]. Thus, according to Equation (4), one of the 

parameters was selected corresponding to its 

probability value by using roulette wheel selection. 

In the second stage, each ant began to construct the 

feature subset from a group of clusters that were 

generated based on the Louvain algorithm for 

community detection [32]. Each cluster contained the 

most correlated normalized features from the training 

dataset. Thus, in every iteration, in a fully connected 

undirected graph, a 𝑗𝑡ℎ ant randomly selected at least 

one attribute from the cluster in its path. Then, by 

using probabilistic decision rules that depended on 

both probability and greedy method with the 

dependence on the selected parameter value 

(obtained from the first stage), the ant would directly 

pick the next feature from a different cluster; 

otherwise, the ant would remain in the current cluster. 

If 𝑞0 was less than q, then the 𝑗𝑡ℎ ant would pick the 

next feature by following the greedy method as [27]: 

 

 

𝑓𝑛𝑒𝑥𝑡

=

𝑎𝑟𝑔 𝑚𝑎𝑥
𝑓𝑑∈𝑈𝑓𝑚

𝑗  {𝜏𝑓𝑖(𝑓𝑑))𝛼. 𝜋(𝑓𝑑, 𝑉𝑓𝑗)𝛽 } 
(6) 

 

where 𝑈𝑓𝑚
𝑗
 is the set of features that has not yet been 

reached by the 𝑗𝑡ℎ ant in the existing cluster (𝑚𝑡ℎ 

cluster),  𝜏𝑓𝑖  is the pheromone quantity value 

correlated with feature (𝑓𝑑) , 𝑉𝑓𝑗  indicates the 

previously selected features (visited features), and 

𝜋(𝑓𝑑 , 𝑉𝑓𝑗) denotes the heuristic information function. 

A modified heuristic information function was 

introduced in MGCACO [31], which is defined as 

follows: 

 

 

𝜋(𝑓𝑑 , 𝑉𝑓𝑗) =  𝐹𝑠𝑐𝑜𝑟𝑒(𝑓𝑑)

−  
1

1

𝑁𝑉𝑓𝑗

 ∑ 𝑤(𝑓𝑑 , 𝑓𝑚)
𝑁𝑉𝑓𝑗

𝑚=1

 (7) 
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Table 1. Characteristics of the datasets 
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Wine Physical 13 178 3 - √ 

Hepatitis Life 19 155 2 √ √ 

Ionosphere Physical 34 351 2 - √ 

Spambase Computer 57 4601 2 - √ 

Arrhythmia Life 279 452 16 √ √ 

Madelon Artificial 500 4400 2 - √ 

Colon Microarray 2000 62 2 - √ 

Leukemia Microarray 7129 72 2 - √ 

 

Table 2. Confusion Matrices 

Actual Predicted 

Normal Abnormal 

Abnormal FN TP 

Normal TN FP 

 

Table 3. Parameter settings 

Parameter Description Value 

A Ants number 100 

I Iterations  50 

ρ Evaporation coefficient 0.7 

φ Initial amount of pheromone 0.06 

α Importance of the 

pheromone parameter 

0.8 

β Heuristic information 

parameter 

0.2 

q0 Exploration/exploitation 

parameter  
0.7 

 

where 𝐹𝑠𝑐𝑜𝑟𝑒(𝑓𝑑) denotes the score of feature 

𝑓𝑑 based on its relevance to the classes [49], 𝑁𝑉𝑓𝑗
 is 

the size of 𝑉𝑓, 𝑤(𝑓𝑑 , 𝑓𝑚) indicates the values of the 

Pearson’s correlation [47] among feature 𝑓𝑑  and 

feature 𝑓𝑚  that are obtained from all the features 

(𝑉𝑓𝑗) visited by the jth ant from all priors clusters. 

Therefore, in the greedy method, the features picked 

by the ants were those with maximum dependence 

and minimum parity to the features already selected 

on the target class. If 𝑞0  was larger than q, a 

probabilistic method for each of the features not 

visited yet in the current cluster (𝑓𝑑 ∈  𝑈𝑓𝑚
𝑗

)  is 

defined as follows [27]: 

 

 𝑃(𝑓𝑑) =  

 

[𝜏𝑓𝑖(𝑓𝑑)]
𝛼

 [𝜋(𝑓𝑑, 𝑉𝑓𝑗)]
𝛽

∑ [𝜏𝑓𝑖(𝑓𝑑)]𝛼 [𝜋(𝑓𝑑, 𝑉𝑓𝑗)]
𝛽

𝑓𝑑∈ 𝑈𝑚
𝑗

   𝐹𝑜𝑟  𝑓𝑑    

∈  𝑈𝑓𝑚
𝑗

   

(8) 

 

According to the roulette wheel rule, the next 

feature would be chosen. 

Pheromone updating rule: Once all the ants had 

executed their routes on the graph, and before ending 

each iteration i, the quantity of pheromone of each 

selected parameter and feature (𝑖. 𝑒. , 𝜏𝑝𝑛(𝑡), 𝜏𝑓𝑖(𝑓𝑑)) 

was updated in two stages. In the first stage, the 

proposed updating rule of the selected parameters is 

calculated as: 

 

 𝜏𝑝𝑥(𝑡+1) = (1 − 𝜌). 𝜏𝑝𝑥(𝑡) +  ∑ ∆𝑘
𝑖 (𝑡)

𝐴

𝑘=1

 (9) 

 

where the ρ value indicates the pheromone decay 

parameter to escape infinite accumulation with a 

particular parameter value, 𝜏𝑝𝑥(𝑡)  and 𝜏𝑝𝑥(𝑡+1) 

demonstrate the pheromone amounts on parameter 

𝑃(𝑛)  at times (𝑡) and (𝑡 + 1), respectively. A is the 

number of ants, ∆𝑘
𝑖 𝜏𝑝𝑥(𝑡) is the additional pheromone 

boost to parameter 𝑃(𝑛) by ant k, which is computed 

from the use of multiple discriminant analysis 

(MDA) [50] as follows: 
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 ∆𝑘
𝑖 (𝑡) =

𝑎𝑟𝑔𝑚𝑎𝑥𝑡 ∈ 𝑀𝐷𝐴𝑘=1
𝐴   

𝑀𝐷𝐴𝑛
  (10) 

 

In the second stage, the pheromone updating of 

the selected features was performed as follows [31]: 

 

 

𝜏𝑓𝑖+1(𝑓𝑑) = (1 − 𝜌). 𝜏𝑓𝑖(𝑓𝑑)

+  ∑ ∆𝑗
𝑖(𝑓𝑑)

𝐴

𝑗=1

 
(11) 

 

  ∆𝑗
𝑖(𝑓𝑑) = {

𝛾𝑗
𝑖 , 𝑓𝑑 ∈ 𝑓𝑆𝑗

𝑖

0, 𝑓𝑑 ∉ 𝑓𝑆𝑗
𝑖

  (12) 

 

where 𝑓𝑆𝑗
𝑖 is the feature chosen in the 𝑖𝑡ℎ iteration by 

the jth ant, 𝛾𝑗
𝑖 is denoted as MDA [50] identical in the 

ith iteration to the jth chosen subset. Suppose 𝑁𝑓𝑠 

features should be selected. At each iteration, all the 

features were sorted using on Equation (13) [31]. 𝑁𝑓𝑠 

features were chosen and the MDA values identical 

to these features were computed using Equation (14) 

[31]. If the MDA values were enhanced relative to the 

previous iteration, the pheromone values were 

permitted to be updated; otherwise, no change would 

be made. 

 

 
𝑆𝑓(𝑑) =  𝜏𝑓(𝑑). 𝐹𝑠𝑐𝑜𝑟𝑒(𝑓𝑑)     𝑑

= 1,2, … , 𝐷 
(13) 

 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑀𝐷𝐴(𝐹𝑒𝑎𝑡𝑢𝑟𝑒(1, … , 𝑁𝑓𝑠 (14) 

 

The processes (ant selection, pheromone 

updating rule) were repeated until the iterations were 

terminated. Finally, in representing the final feature 

subset, the features were sorted in descending order 

based on their pheromone values. The number of 

features that would be chosen was determined by 

multiplying a predetermined number of features, 

𝜔, with the number of clusters, K. 

4. Data and experimental design 

Experiments were conducted on different 

benchmark classification problems to demonstrate 

the credibility of EGCACO. The datasets used were 

Arrhythmia, Spambase, Ionosphere, Hepatitis, and 

Wine, which are available in the UCI machine 

learning repository [43], and three other datasets, i.e., 

Madelon, Colon, and Leukemia. The Madelon 

dataset was obtained from the NIPS2003 FS 

challenge [44], while the Colon and Leukemia 

datasets were obtained from the Bioinformatics 

Research Group at the Universidad Pablo de Olavide 

[51]. Table 1 summarizes the characteristics of those 

datasets. A non-linear method of normalization, i.e., 

SoftMax scaling [52], was utilized to scale attributes 

with extreme data values. The datasets varied in 

terms of the number of features/attributes (range of 

13–7129), records, class labels, application area, and 

types of feature values. The size of the dataset was 

categorized based on the number of features into four 

categories: small, medium, large, and very large [53]. 

A quarter of the datasets were classified as small with 

sizes in the range of 0–20 features, while 13% of the 

datasets were in the medium category with the 

number of features in the range 20–50. The large 

datasets comprised 13% of the total datasets with 

feature sizes ranging from 50 to 100. The remaining 

datasets (50% of the total number) were very large 

datasets, containing 100 and more features. In terms 

of missing values, only the Hepatitis, Spambase, and 

Arrhythmia datasets had 175, 280, and 350 cells with 

missing values, respectively. The missing values 

were replaced with the mean values of each 

respective features. All datasets were then 

normalized. Each dataset was divided into two sets, 

where two-thirds were for training and one-third was 

for testing. The training set was utilized to determine 

the feature subset, while the testing set was to 

evaluate the accuracy of the selected features. 

For each algorithm, ten independent runs were 

performed. The proposed algorithm was compared 

with other well-known ACO-based UFS algorithms 

(FSCBAS, MGCACO, GCACO, UFSACO, and 

MGSACO), where the filter method had been 

implemented in all the algorithms. To show the 

generality of the proposed algorithm, several well-

known classifiers including random forest, k-nearest 

neighbor (k-NN), decision tree, and SVM were used. 

These classifiers were implemented in the WEKA 

[54] software package. The metric for comparison 

was the generated feature subsets accuracy, AC, 

computed using Equation (15) as follows: 

 

 𝐴𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (15) 

 

where TN, TP, FN, and FP are the confusion matrices 

that describe the classification results (true or false). 

• TN: Correctly classified as normal 

• FN: Intrusions that are classified as normal  

•TP: Correctly classified as intrusion  

• FP: Normal behavior but classified as intrusion 

Table 2 shows the possible cases in identifying 

the cases. 
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Table 4. Average classification accuracy using SVM classifier 

Dataset # 

Selected 

features 

 EGCACO FSCBAS 

[40] 

MGCACO 

[31] 

GCACO 

[27] 

MGSACO 

 [36] 

UFSACO 

[41] 

Wine 6 Acc 

Std 

98.69 (1) 

± 1.40  

97.2 (3) 

± 0  

98 (2) 

± 1.72  

95.1 (5) 

± 2.6  

94.61 (6) 

± 2.52  

96.02 (4) 

± 2.04  
Hepatitis 6 Acc 

Std 

78.85 (6) 

± 2.10  

81.55 (3) 

± 3.74  

83.85 (1) 

± 4.82  

83.64 (2) 

± 2.83  

81.1 (4) 

± 1.13  

80.78 (5) 

± 0.4  
lonosphere 15 Acc 

Std 

89.15 (1) 

± 3.10  

85.62 (4) 

± 3.57  

86.24 (3) 

± 2.83  

86.79 (2) 

± 2.41  

81.6 (6) 

± 2.09  

84.96 (5) 

± 2.12  
SpamBase 24 Acc 

Std 

88.22 (2) 

± 0.80  

85.78 (3) 

± 0.22  

90.98 (1) 

± 0.90  

84.51 (4) 

± 2.12  

81.86 (6) 

± 2.67  

83 (5) 

± 2.67  
Arrhythmia 20 Acc 

Std 

86.29 (1) 

± 1.10  

68 (3) 

± 3.63  

70. 84 (2) 

± 3.83  

62 (4) 

± 5.2  

56.55 (5) 

± 1.4  

54.39 (6) 

± 0.29  
Madelon 40 Acc 

Std 

64.73 (1) 

± 3.32  

61.2 (3) 

± 2.07  

58.98 (6) 

± 2.83  

64.61 (2) 

± 5.58 

60.98 (4) 

± 0.27  

60.75 (5) 

± 0.24  
Colon 40 Acc 

Std 

92.38 (1) 

± 4.85  

87.59 (2) 

± 1.31  

84.76 (3) 

± 6.31  

81.99 (6) 

± 2.23  

83.88 (4) 

± 2.94  

82.1 (5) 

± 3.26  
Leukemia 40 Acc 

Std 

98.75 (1) 

± 1.90  

95.42 (3) 

± 0.67  

95.83 (2) 

± 3.22  

93.67 (4) 

± 2.35  

90.14 (5) 

± 5.17  

89.45 (6) 

± 3.28  
 

Table 5. Average classification accuracy using K-NN classifier 

 

Experiments were carried out on a computer 

using MATLAB 2020a with a 3.4 GHz CPU and 8.00 

GB of RAM. For a fair evaluation of the results, the 

parameter settings were adopted from the ACO- 

based UFS algorithms [27, 31, 39] as shown in Table 

3. 

5. Result and discussion 

The main aim of the EGCACO based UFS is to 

maximize dependency and minimize redundancy 

from the datasets, this can be measured using the 

accuracy as a performance metric since increased in 

accuracy reflects  decrease in computational cost 

[54] . Thus, for the performance of the EGCACO 

algorithm, the classification accuracy is used as an 

evaluation measure in comparing the achievement of 

the algorithm. Tables 4–7 show the average 

classification accuracy (Acc) and the standard 

deviation (Std) of EGCACO and five other UFS 

algorithms with SVM, decision tree, k-NN, and 

random forest classifiers, respectively. The best 

result was highlighted for each dataset while the 

figures in parentheses indicated the rank of the 

algorithms. 

Table 4 shows that the proposed EGCACO 

obtained the best result in six out of eight datasets 

when the SVM classifier was used. The proposed 

algorithm was unable to obtain the best classification 

accuracy with datasets that had missing values 

replaced and datasets that contained a combination of 

feature value types. In Table 5, EGCACO obtained 

Dataset # 

Selected 

features 

 EGCACO FSCBAS 

[40] 

MGCACO 

 [31] 

GCACO  

[27] 

MGSACO 

[36] 

UFSACO 

[41]  

Wine 6 Acc 

Std 

97.38 (2) 

 ± 1.82  

97.2 (3) 

 ± 0   

98 (1) 

± 2.02  

95.68 (5) 

± 2.78  

94.61 (6) 

 ± 2.52  

96.02 (4) 

± 2.04  
Hepatitis 6 Acc 

Std 

76.35 (6) 

± 3.65  

79.36 (5) 

± 3.74  

82.12 (1) 

 ± 6.97  

81.36 (2) 

± 1.33  

81.1 (3) 

± 1.13  

80.78 (4) 

± 0.41  
lonosphere 15 Acc 

Std 

90.84 (1) 

 ± 2.00  

85.62 (3) 

± 3.75  

86.5 (2) 

± 2.24  

85.36 (4) 

± 4.14  

81.6 (6) 

± 2.1  

84.96 (5) 

± 2.12  
SpamBase 24 Acc 

Std 

89.37 (2) 

 ± 0.70   

85.78 (5) 

± 0.22  

89.6 (1) 

± 1.26  

87.04 (4) 

 ± 1.32  

81.86 (6) 

± 2.68  

88.33 (3) 

± 0.68  
Arrhythmia 20 Acc 

Std 

81.56 (1) 

± 3.66  

57.31 (3) 

± 1.33  

64.07 (2) 

± 3.14  

53.75 (5) 

± 5.38  

55.25 (4) 

± 1.84  

50.87 (6) 

 ± 1.2  
Madelon 40 Acc 

Std 

65.54 (4) 

 ± 2.50  

59.8 (6) 

± 1.34  

60.94 (5) 

± 2.56  

76.21 (1) 

± 1.74  

75.85 (2) 

± 0.87  

75.13 (3) 

 ± 0.4  
Colon 40 Acc 

Std 

91.42 (1) 

± 3.01  

87.59 (2) 

± 2.52  

81.43 (4) 

± 5.01  

81.13 (5) 

± 4.32  

82.1 (3) 

 ± 2.79  

80.65 (6) 

 ± 2.28  
Leukemia 40 Acc 

Std 

97.08 (1) 

± 1.90  

95.42 (2) 

± 1.64  

93.75 (3) 

 ± 9.63  

88.02 (5) 

 ± 3.11  

88.06 (4) 

± 2.27  

87.92 (6) 

 ± 1.45  
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the best classification accuracy results on four 

datasets when the k-NN classifier was employed. K-

NN classifier is known to work well with numerical 

data. This was the case for the lonosphere, 

Arrhythmia, Colon, and Leukemia datasets. In spite 

of this, EGCACO was able to select significant 

features in the Arrhythmia dataset, which contained 

both types of data. 

Table 7 displays the classification accuracy for 

the algorithms using decision tree classifier. The 

proposed algorithm obtained the highest 

classification accuracy in six out of eight datasets. 

Decision tree classifier can work with both types of 

feature values. The proposed algorithm was able to 

select significant features to produce good 

classification accuracy even for databases with only 

continuous feature values such as the Colon database. 
The results in Table 8 showed that for the case of the 

random forest classifier, EGCACO was able to gain 

the highest accuracy in all the datasets except for the 

Wine dataset, which obtained the second rank with a 

very small percentage difference. Random forest 

classifier is known to operate well with datasets that 

have categorical data. Nevertheless, in this case, the 

proposed algorithm was able to select significant 

features for classification even for datasets that had 

both categorical and numerical data types. In all the 

experiments, EGCACO was able to obtain the best 

classification accuracy for large-sized datasets such  

 

Table 7. Average classification accuracy using decision tree classifier 

 

Table 8. Average classification accuracy using random forest classifier 

Dataset # 

Selected 

features 

 EGCACO FSCBAS 

[40] 

MGCACO 

 [31] 

GCACO 

[27] 

MGSACO 

[36] 

UFSACO 

[41]  

Wine 6 Acc 

Std 

95.74 (1) 

± 2.22 

93.83 (2) 

± 0 

93.17 (4) 

± 3.37 

93.57 (3) 

± 2.98 

92.93 (6) 

 ± 3.47 

93.09 (5) 

 ± 3.02 

Hepatitis 6 Acc 

Std 

75.19 (6) 

± 4.95 

79.36 (3) 

 ± 0 

78.08 (4) 

± 6.71 

80.31 (2) 

 ± 1.14 

80.26 (1) 

± 0.92 

77.04 (5) 

± 1.22 

lonosphere 15 Acc 

Std 

91.51 (1) 

 ± 2.94 

88.32 (5) 

± 1.41 

90.86 (2) 

 ± 4.21 

90.54 (3) 

± 1.98 

86.7 (6) 

± 2.14 

89.06 (4) 

± 1.51 

SpamBase 24 Acc 

Std 

92.51 (1) 

 ± 0.71 

89.68 (4) 

± 0.22 

90.88 (2) 

 ± 0.66 

89.12 (5) 

± 1.12 

89.83 (3) 

± 1.52 

89.08 (6) 

 ± 0.51 

Arrhythmia 20 Acc 

Std 

87.14 (1) 

± 1.44 

59.76 (3) 

 ± 1.37 

66.71 (2) 

 ± 3.22 

56.62 (4) 

± 4.13 

49.94 (6) 

± 2.05 

50.89 (5) 

± 2.32 

Madelon 40 Acc 

Std 

69.45 (5) 

 ± 4.40 

67.4 (6) 

± 1.25 

71.42 (4) 

 ± 3.50 

81.77 (1) 

± 2.38 

80.12 (2) 

± 0.57 

79.49 (3) 

 ± 0.67 

Colon 40 Acc 

Std 

90.48 (1) 

 ± 5.32 

86.13 (2) 

 ± 0.83 

78.09 (6) 

 ± 7.73 

84.23 (4) 

± 2.39 

85.17 (3) 

± 2.82 

82.91 (5) 

± 4.18 

Leukemia 40 Acc 

Std 

97.08 (1) 

± 2.76 

93.62 (2) 

 ± 0 

90.83 (3) 

± 3.63 

85.74 (5) 

± 1.52 

90.28 (4) 

± 4.29 

77.92 (6) 

 ± 2.96 

Dataset # 

Selected 

features 

 EGCACO FSCBAS 

[40] 

MGCACO 

 [31] 

GCACO 

 [27] 

MGSACO 

 [36] 

UFSACO 

 [41]  

Wine 6 Acc 

Std 

97.35 (2) 

± 1.50 

97.2 (3) 

 ± 0 

97.5 (1) 

 ± 2.53 

96.11 (4) 

 ± 2.32 

94.61 (6) 

± 2.53 

96.02 (5) 

 ± 2.04 

Hepatitis 6 Acc 

Std 

86.57 (1) 

 ± 2.40 

81.39 (3) 

± 0  

84.43 (2) 

± 4.30 

81.3 (4) 

± 1.76 

81.1 (5) 

± 1.14 

80.78 (6) 

± 0.41 

lonosphere 15 Acc 

Std 

94.03 (1) 

± 1.85 

85.77 (3) 

 ± 3.57 

93.59 (2) 

± 1.77 

85.1 (4) 

± 2.41 

81.6 (6) 

± 2.1 

84.95 (5) 

± 2.12 

SpamBase 24 Acc 

Std 

94.74 (1) 

 ± 0.75 

85.78 (5) 

± 0.23 

94.17 (2) 

± 0.75 

89.02 (4) 

± 1.98 

81.86 (6) 

 ± 2.68 

89.96 (3) 

 ± 0.54 

Arrhythmia 20 Acc 

Std 

83.57 (1) 

 ± 3.32 

66.38 (3) 

 ± 1.33 

75.36 (2) 

 ± 2.24 

61.18 (4) 

 ± 2.22 

57.22 (5) 

 ± 1.6 

50.05 (6) 

 ± 2.91 

Madelon 40 Acc 

Std 

83.31 (1) 

± 1.28 

61.19 (6) 

± 1.63 

76.51 (4) 

 ± 2.75 

72.27 (5) 

 ± 1.72 

83.29 (2) 

 ± 0.48 

83.24 (3) 

 ± 0.49 

Colon 40 Acc 

Std 

88.09 (1) 

± 4.87 

87.59 (2) 

± 2.53 

84.29 (3) 

± 4.28 

81.22 (6) 

± 3.95 

82.91 (4) 

± 2.18 

81.78 (5) 

 ± 4.93 

Leukemia 40 Acc 

Std 

98.75 (1) 

 ± 2.66 

95.42 (3) 

 ± 0.67 

98.75 (2) 

± 1.90 

89.69 (4) 

± 3.61 

89.36 (5) 

 ± 5.16 

86.12 (6) 

± 3.53 
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Figure.3 Average classification accuracy of all data 
 

as microarray datasets (i.e., Colon and Leukemia) 

when all the classifiers were used. Fig. 3 depicts the 

summary of accuracy for the algorithms with respect 

to the classifiers. Overall, it can be seen EGCACO 

showed superior performance. The ACO-based 

adaptive selection technique had the ability to select 

the appropriate ε value to be used in selecting 

significant features. Therefore, the ACO-based UFS 

process considered the dependency of the chosen 

features and chose a feature subset with reduced 

redundancy between them. Thus, the best results 

obtained by EGCACO were reported for all 

classifiers. 

6. Conclusion 

The proposed EGACO algorithm introduced an 

ACO-based adaptive feature selection technique that 

can maximize dependency and minimize redundancy 

among the features. The proposed technique is 

constructed with three main aspects/traits. The first 

aspect is pheromone initialization, where two 

pheromone matrices are initialized for the ε value and 

the feature search space, respectively. This 

overcomes the searching complexity where the 

search space is reduced in size. The second aspect is 

the ant selection procedure, which utilizes both 

probabilistic state transition rules and greedy search 

method. This aspect clearly reinforces the appropriate 

dynamic adjustment of the ε value in each selection. 

The last aspect is the pheromone updating rule for the 

quality of the selected ε value. This enables the search 

of an optimal ε value within the iterations. For most 

related ACO-based UFS methods, the evaluation 

outcome demonstrated that EGCACO is able to 

enhance classification accuracy with the proposed 

ACO-based adaptive selection of the ε value, which 

depends on the feedback from the search behavior. 

This has enabled  the proposed EGCACO to obtain 

the best classification accuracy compared to  five 

other popular UFS algorithms for all four classifiers.  

Percentages of the best accuracies are 87.13%, 

86 .19 %, 87.38 %, and 90.80 % for support vector 

machine, k-nearest neighbor, decision tree, and 

random forest classifiers, respectively. Future 

research direction is to focus on the adaptive 

adjustment of several parameters that are related to 

the ACO-based UFS algorithm. 
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