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,@ ) JEGEO . . . .
~~ " International Journal of Environment and Geoinformatics 7(2): 165-171 (2020)

Reaserch Article

Extraction of Roof Planes from Different Point Clouds Using RANSAC Algorithm

Fulya Gonultas, Muhammed Enes Atik’, Zaide Duran

Istanbul Technical University, Department of Geomatics Engineering, Istanbul, Turkey

* Corresponding author: M. E. Atik
E-mail: atikm@itu.edu.tr

Received 06 April 2020
Accepted 01 May 2020

How to cite: Gonultas, et al., (2020). Extraction of Roof Planes from Different Point Clouds Using RANSAC Algorithm. International
Journal of Environment and Geoinformatics (IJEGEO), 7(2): 165-171. DOI: 10.30897/ijege0.715510

Abstract

Solar energy is a renewable energy source directly from sunlight and its production depends on roof characteristics such as roof type
and size. In solar potential analysis, the main purpose is to determine the suitable roofs for the placement of solar panels. Hence, roof
plane detection plays a crucial role in solar energy assessment. In this study, a detailed comparison was presented between aerial
photogrammetry data and LIDAR data for roof plane recognition applying RANSAC (Random Sample Consensus) algorithm.
RANSAC algorithm was performed to 3D-point clouds obtained by both LIDAR (Laser Ranging and Detection) and aerial
photogrammetric survey. In this regard, solar energy assessment from the results can be applied. It is shown that, the RANSAC
algorithm detects building roofs better on the point cloud data acquired from airborne LIDAR regarding completeness within model,
since aerial photogrammetric survey provides noisy data in spite of its high-density data. This noise in the source data leads to
deformations in roof plane detection. The study area of the project is the campus of Istanbul Technical University. Accuracy

information of the roof extraction of three different buildings are presented in tables.

Keywords: Photogrammetry, RANSAC, Point Cloud, Roof Plane, UAV

Introduction

In the 21st century, long-term conservation of natural
resources, sustainability practices, and environmental
monitoring are of great importance throughout the world.
Planning of new urban areas in crowded cities is one of
the main issues of decision-makers and planners. With
developing technology, many advantages emerge for
also monitoring urbanization in urban and rural areas.
Automated roof detection methods are deployed using
effective techniques to detect and monitor buildings in
urban areas. Remote sensed data is widely used for fast
solutions such as tracking the Earth's surface. Feature
extraction techniques are commonly used to observe and
analyse specific objects (Atik et al., 2018).

In the recent past, the interest in accurate and detailed
3D building data acquired by airborne LIDAR systems
has been growing. Building Information Modelling
(BIM), snow load capacity estimating and modelling and
solar potential analysis can be given as examples of
application areas for building detection (Jochem et al.,
2009; Biiyiiksalih and Gazioglu, 2019). Today, solar
energy can be produced on the rooftops of private houses
as easily as in energy companies after detecting proper
building roofs.

Building reconstruction is applied by algorithms
generally on planar surfaces. However, a fundamental
issue that has not been completely solved occurs in
building detection. The data from laser scanning
measurements taken in the city area mostly includes
noise and incompleteness caused by tree points or

reflection (Huang et al., 2011; Biiyiiksalih, 2016; Avsar
et al., 2016). There are two different approaches to detect
roof planes in literature: Model-driven and data-driven.
In the model-driven approach, the algorithms try to find
the most suitable model and bring the model as an output
from model library computing parameter values. The
other approach, namely data-driven, visualizes the
building point cloud one by one and then brings the best
fitting part as output (Tarsha-Kurdi et al.,, 2008;
Biiyiiksalih et al., 2018).

In this contribution, a comparison of aerial
photogrammetry and LIDAR data in roof plane detection
presented with completeness values of each data source.
The aim of the study is utilizing RANSAC algorithm on
different input sources and assessing these two separate
results regarding their accuracy. The main aim of this
contribution is evaluating two different data inputs and
concluding which data is superior to another in the
aspect of accuracy, correctness and completeness.

Materials and Methods

Study Area

Study area of the project is located in Istanbul Technical
University (ITU)-Ayazaga Campus (Fig. 1). The three
buildings that have regular roof planes were selected
from both aerial images and LIDAR point clouds to
apply the algorithm. Besides single buildings and block
buildings, the study area contains small objects such as
cars and vegetation types. In the study area, trees that are
close to buildings were cleaned up from the buildings to
eliminate their influence on roof plane extraction.

165


https://orcid.org/0000-0001-5251-1986
https://orcid.org/0000-0003-2273-7751
https://orcid.org/0000-0002-1608-0119

Gonultas et al., | 1JEGEOQ 7(2):165-171 (2020)

Data Used
In the study, two distinct data sources were used: LIDAR
data and aerial photogrammetry data.

The airborne LIDAR point cloud was obtained using a
laser scanning system. The horizontal and vertical
accuracy of the LIDAR data are about 8 cm. Average
point density of the data is 16 points/m2. Point cloud
belonging to three buildings was selected. The selected
roofs were shown in Fig. 2, Fig. 3 and Fig.4.

Fig. 2. Aerial LiDAR data of Ari-1 building

47809

Fig. 3. Aerial LiDAR data of Turk Telekom Building

Fig. 4. Aerial LiDAR data of Faculty of Mining

For taking aerial photographs, DJI Phantom 4 Pro was
used. The UAV has a sensor with a calibrated focal
length of 3.61 mm. Flight parameters were selected as
the following: Forward-overlap and side-overlap is 80%
and 70%, respectively. The UAV was flown at a height
of 80 m. In total, 288 high resolution images were
acquired from the flight. Approximately a Ground
Sampling Distance (GSD) of 3.55 cm/pixel was
obtained. It means that one pixel in these images
represents 3.55 cm on the ground. Flight planning was
carried out with the help of a software, namely
Pix4Dcapture mobile phone application.  Aerial
photographs of the buildings were represented in Fig. 5,
Fig. 6 and Fig 7.

Fig. 6. Aerial photo of Turk Telekom building
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Fig. 7. Aerial photo of Faculty Of Mining

RANSAC

RANSAC algorithm developed by Fischler and Bolles
(1981) is a method to create appropriate solutions of
mathematical models in iteration processes. Parameters
corresponding to the mathematical model are defined
before iteration process. A consensus solution is
obtained as the best result (Carrilho and Galo, 2018).

_ log(1-2)
" log(1-w™) (Eq 1)
In the equation 1, n is the minimum number of points
which is required for the calculation of the
corresponding model. Since minimum 3 points can
define a plane, n is equal to 3 in the case of planar
models. Probability z is a minimum probability value of
finding at least one proper set of observations in N
iterations. z is usually in the range between 0.90 and
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Fig. 8. Flowchart of the proposed roof plane extraction method

0.99. w is the probability of observations allowed to be
incorrect (in percentage).

During the iteration process, algorithm is performed
many times and corresponding data set is removed from
the original point cloud. The next iteration continues on
the remaining points. Finally, iteration is terminated
when the number of non-modelled. Points is smaller than
defined threshold (Tarsha-Kurdi et al.,, 2008). An
essential advantage of RANSAC algorithm is that
number of trials and data size are not directly dependent
on each other. Thus, iterations can be quickly obtained
on even high-density point clouds (Carrilho and Galo,
2018). Other advantages of RANSAC algorithm are
listed below:

e Its concept is simple to apply

e It is a general algorithm and used in a wide variety
of applications

e It can robustly work, even if the data includes more
than 50% of outliers (Schnabel et al., 2007).

Experiment

In order to detect building rooftops, two different
sources were used for comparison. LIDAR data is
already a point cloud data and RANSAC algorithm is
applied on the LIDAR data directly. However, aerial
photogrammetry data has to be transformed into 3D
point cloud data to apply the proposed algorithm. A
software, namely Agisoft Photoscan, was utilized to
create a dense point cloud from the aerial images. For
the three roof datasets, three different dense point clouds
were created using 9, 11 and 20 aerial images,
respectively.
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For the selection of roof types, regularity plays an
important role as regular roof types can be easily
detected with the algorithm. Furthermore, the study
focuses on regular rooftop planes only. Therefore, a
height threshold was defined for the classification of
objects. The points below a predefined height threshold
were eliminated from original data to separate ground
and non-ground points. Non-ground points included
rooftops and high trees. Using all points without any
height threshold would result in deformations or
incorrect orientation of rooftops. Since each rooftop has
different height, threshold value was changed for each
building. Threshold values were determined depending
on the Z coordinates of the points and implemented on
MATLAB software.

RANSAC algorithm was performed using MATLAB
software (Zuliani, M., 2008). During the application of
RANSAC algorithm, the largest roof plane in the point
cloud data was detected and then this area was removed
from the original data. In the next iteration step, the

Fig. 9. Detected roof plane from LIDAR data (Ari-1
building)

Fig. 10. Detected roof plane from aerial photogrammetry
data (Ari-1 building)

second largest roof plane can be detected. So, in each
step, detected roof plane must be removed in order to
find other roof planes. A flowchart of the proposed roof
plane extraction method is shown in the Figure 8.

Results and Discussion

As shown in the following figures, roof planes were
extracted separately for LIDAR and aerial
photogrammetric data by using RANSAC algorithm.
The results from different data sources were compared to
each other regarding their error, accuracy, correctness,
completeness, by calculating confusion matrix of each
plane. The values of reference class were manually
calculated on both LIDAR and aerial photogrammetric
data. Building roofs consist of multiple surfaces. In the
study, these surfaces were extracted separately. Because
RANSAC algorithm works as surface extraction one by
one. Detected planes were shown in Fig. 9, Fig. 10, Fig.
11, Fig. 12, Fig. 13 and Fig. 14.

455276
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455272 44805

Fig. 11. Detected roof plane from LIDAR data (Turk
Telekom building)

Fig. 12. Detected roof plane from aerial photogrammetry
data (Turk Telekom building)
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Fig. 13. Detected roof plane from LIDAR data (Faculty
of mining)

Fig. 14. Detected roof plane from aerial photogrammetry
data (Faculty of mining)

Table 1 shows confusion matrix containing True Positive
(TP), True Negative (TN), False Positive (FP) and False
Negative (FN) values. These values are components of
confusion matrix which defines reference class and
model class.

Table 1. Confusion matrix (Alpaydin E., 2010).

Detected model class

True class . .
(Reference) Positive Negative  Total
True Positive Fals_e
N (TP) Negative p
Positive (FN)
Negative False Positive Trut_a
(FP) Negative n
(TN)
Total p’ n’ N

TP: True Positive refers to plane points which are
included inside the detected model.

TN: True Negative refers to non-plane points which are
outside the detected model.

FP: False Positive refers to plane points which are not
included inside the detected model.
FN: False Negative refers to non-plane points which are
included inside the detected model.

Error, accuracy, correctness, completeness of the
detected plane model can be easily derived from the
confusion matrix values. Formulas of the values are
mentioned below (Alpaydin, 2010).

FP+FN

Error = (Eq. 2)
Accuracy = TP+ — 1 — error (Eq. 3)
Correctness = e (Eq.4)
Completeness = —— (Eq.5)

The following tables indicate a result of the proposed
method. In the results, error means the probability of
incorrectly detected points in total. In contrast to error,
accuracy refers to the probability of correctly detected
points in total. Correctness is the probability of correctly
detected plane points. Completeness means how many
points that are detected as plane points are plane points
in the reality.

Some planes were not detected by using dense point
cloud from aerial images. Because there are many tree
points on the rooftops and those points cover a part of
roof planes. But, on the LIDAR data, all the planes were
extracted without any problem. According to the results
above, RANSAC algorithm extract more completed
model planes on LIDAR data. Because dense point cloud
created by aerial photogrammetry produces noisier data.
Noisy data can lead to incompleteness in model. But,
LIDAR data has more error which means how many
points in total are mistakenly detected. The correctness
value is greater than 95 percent on all surfaces.

The roof plane detection from the roof surfaces obtained
with the LIDAR point cloud has lower accuracy. The
reason for this is that the density of the data is lower than
the aerial photogrammetry. Only in the Turk Telecom
building LIDAR has higher accuracy. However, there is
no big difference with air photogrammetry. The
percentages of the results were represented in Table 2,
Table 3 and Table 4.

Table 2: Analysing of detected roof planes (Ari 1) in regard to their confusion matrix value

Error Accuracy Correctness Completeness
Aerial p. LIDAR Aerial p. LIDAR Aerial p. LIDAR Aerial p. LIDAR
data data data data data data data data

1 32% 46 % 68 % 54 % 100 % 97% 28 % 44 %

2 30% 47 % 70 % 53 % 97 % 97 % 28 % 44 %

3 34 % 46 % 66 % 54 % 98 % 98 % 24 % 44 %

4 31% 47 % 69 % 53 % 99 % 96 % 23 % 42 %

5 20 % 55 % 80 % 45 % 96 % 95 % 28 % 3%

6 - - - - - - - -
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Table 3. Analyse of detected roof plane (Turk Telekom) in regard to their confusion matrix values.

Error Accuracy Correctness Completeness
Aerial LIDAR Aerial LIDAR Aerial . LIDAR Aerial .
p.data data p. data data data i data data i LIDAfress
1 41 % 40 % 59 % 60 % 100 % 97 % 48 % 58 %
2 64 % 46 % 36 % 54 % 100 % 100 % 35 % 52 %
3 85 % 60 % 15 % 40 % 99 % 99 % 12 % 30 %
4 86 % 64 % 14 % 36 % 98 % 96 % 11 % 26 %

Table 4. Analyse of detected roof planes (Faculty of Mines) in regard to their confusion matrix values.

Error Accuracy Correctness Completeness

Aerial LIDAR Aerial LIDAR Aerial p. LIDAR Aerial p.

p.data data p.data data data data data LI eleif
1 7% 16 % 93 % 84 % 96 % 97 % 73% 85 %
2 7% 19 % 93 % 81 % 96 % 96 % 73 % 82 %
Accuracy value which means how many points in total References
are correctly detected is usually better on dense point
cloud data. Also, correctness value which means how Alpaydin, E. (2010). Introduction to Machine

many plane points are correctly detected is also better
on dense point cloud data, in contrast to LIDAR data.

Non-roof points like ground points should be properly
cleaned until there are mostly roof points on the data

on which the algorithm is performed. Because the non-
roof points can be also detected as plane, if many
ground-points exist and they can also define a plane
surface.

Conclusion

In recent years, a lot of algorithms have been
developed which detect roof planes. RANSAC
algorithm which is one of the most used algorithms on
LIDAR data to extract mathematical shapes is
represent in this study for a comparison of between
aerial photogrammetry and LIDAR data. However, as a
main result of this study, data source is very important
for successful roof plane detection. In block buildings,
algorithm has difficulties to find plane points correctly.
It is concluded that irregular shapes of the roofs are not
successfully detected. Moreover, tree points or ground
points can negatively affect the roof plane detection.

In future studies, larger roof planes can be preferred for
better accuracy analysis. For aerial photogrammetry
data, more photos should be used. Because, the planes
acquired by aerial photogrammetry have many gaps on
the rooftop plane. These gaps could be filled with the
help of more aerial photographs and completeness
value could be increased in this manner.

Reference class can be defined according to other
criteria in forthcoming studies. Defining a reference
class manually like in this study can cause incorrect
classification of points. Considering the results of the
study, laser data and optical data can be integrated and
used together, since they complement each other.
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