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Abstra
t

In this work, we 
onsidered two-person zero-sum games with fuzzy payo�s and ma-

trix games with payo�s of trapezoidal intuitionisti
 fuzzy numbers (TrIFNs). The


on
epts of TrIFNs and their arithmeti
 operations were used. The 
ut-set based

method for matrix games with payo�s of TrIFNs was also 
onsidered. Compute

the interval-type value of any alfa-
onstrategies by simplex method for linear pro-

gramming. The proposed method is illustrated with a numeri
al example.

Keywords: Intuitionisti
 fuzzy set, matrix game, linear programming.

1 Introdu
tion

The 
on
ept of an intuitionisti
 fuzzy set was proposed by Atanassov in 1986

[1℄. This 
on
ept refered to the re�e
t of the relation among " 1 minus the

degree of membership","the degree of non-membership" and " the degree

of hesitation". The intuitionisti
 fuzzy set was rasterized by the degree of
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membership and the degree of non-membership. The intuitionisti
 fuzzy set

had more abundant and �exible than the fuzzy set with un
ertain informa-

tion. Ishibu
hi and Tanaka [2℄, Chanas and Ku
hta [3℄, studies multiob-

je
tive programming in optimization of interval obje
tive fun
tions, solving

interval-valued obje
tive optimization problems. More spe
i�
ally, interval-

valued obje
tive optimization problems 
ould be 
onverted into bi-obje
tive

mathemati
al programming models. Then, the bi-obje
tive mathemati
al

programming models were also solved using the existing methods of multi-

obje
tive programming. Cevikel and Ahlatçoglu [4℄ found fuzzy payo�s and

fuzzy goals of two-person zero-sum games. The payo� matrix with elements

was represented as a fuzzy number. For any pair of the strategies, a player

re
eived a payo� that meant as a fuzzy number. Nan et al [5℄, fo
used a

lexi
ographi
 method for matrix games with payo�s of triangular intuition-

isti
 fuzzy numbers. Moreover Nan et al [6℄ also introdu
ed a new ranking

method based on the value and used to solving matrix games with payo�s on

trapezoidal intuitionisti
 fuzzy numbers (TrIFNs) fuzzy goals. Hen
e, there

were also found the use of linear programming method for solving matrix

games [7℄-[8℄. Aggarwal et al [9℄, solved the matrix games with I-fuzzy pay-

o�s: Pareto-optimal se
urity strategies approa
h. Therefore, in this work,

two-person zero-sum games with fuzzy payo�s, matrix games with payo�s

of TrIFNs were 
onsidered. The 
on
epts of TrIFNs and their arithmeti


operations were uesd. The matrix games of the 
ut-set based method with

payo�s of TrIFNs was aimed. The auxiliary linear programming models were


omputed the interval-type value of any alfa-
onstrategies. This paper is or-

ganized as follows. In se
tion 2, the de�nition, operations of TrIFNs and a

methodology for matrix games with payo�s TrIFN were fo
used. In se
tion

3, matrix games with payo�s of TrIFNs were formulated. In se
tion 4, an

appli
ation to voting share problem was reported. In the last se
tion, se
tion

5, 
on
lusion was summerized.

2 Mathemati
al Preliminaries

In this se
tion, we summarize some basi
 
on
ept intuitionisti
 fuzzy set by

Atanassov [1℄, notation, de�nition and operation of trapezoidal intuitionisti


fuzzy number whi
h are used throughout the paper.
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2.1 Some de�nitions of TrIFNs

De�nition 1. [1℄ Let X be a nonempty set of the universe. If there are two

mapping on the set X:

µÃ : X → [0, 1]

x 7→ µÃ(x)

and

νÃ : X → [0, 1]

x 7→ νÃ(x)

with the 
ondition 0 ≤ µÃ(x) + νÃ(x) ≤ 1. The µÃ and νÃ are 
alled de-

termining and intuitionisti
 fuzzy set Ã on the universal set X, denote by

{〈x;µÃ(x), νÃ(x)〉|x ∈ X} we 
alled µÃ and νÃ are membership fun
tion and

nonmembership fun
tion of Ã, respe
tively. µÃ(x) and νÃ(x) are 
alled the

membership degree and nonmembership degree of an element x belonging to

Ã ⊆ X, respe
tively. F (X) is 
alled the set of the intuitionisti
 fuzzy set on

the universal set X.

De�nition 2. A TrIFN Ã = 〈(l, c, d, r); tÃ, zÃ〉 is a spe
ial intuitionisti


fuzzy set on the real number set R, whose membership and nonmembership

fun
tions are de�ned as follows:

µÃ(x) =





0 if x < l

tÃ(x− l)/(c− l) if l ≤ x < c

tÃ if c ≤ x ≤ d

tÃ(r − x)/(r − d) if d < x ≤ r

0 if x > r

(1)

and

νÃ(x) =





1 if x < l

[c− x+ zÃ(x− l)]/(c− l) if l ≤ x < c

zÃ if c ≤ x ≤ d

[x− d+ zÃ(r − x)/(r − d)] if d < x ≤ r

1 if x > r

(2)

respe
tively, where l ≤ c ≤ d ≤ r, the values tÃ and zÃ are maximum

membership degree and minimum nonmembership degree of Ã, respe
tively,
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Fig. 1: A TrIFN Ã = 〈(l, c, d, r); tÃ, zÃ〉

su
h that they satisfy the following 
ondition: tÃ ∈ [0, 1], zÃ ∈ [0, 1] and
tÃ + zÃ ∈ [0, 1].

Let

πÃ(x) = 1− µÃ(x)− νÃ(x) (3)

πÃ(x) is 
alled the hesitan
y degree of an element x ∈ Ã. It is the degree of

indetermina
y membership of the element x to Ã.
From De�nition 2, it is obvious that µÃ(x) + νÃ(x) = 1 for any x ∈ R

if tÃ = 1 and zÃ = 0. Hen
e, the TrIFN Ã = 〈(l, c, d, r); tÃ, zÃ〉 degenerates

to Ã = 〈(l, c, d, r); 1, 0〉, whi
h is a trapezoidal fuzzy number [10℄. Therefore,

the 
on
ept of the TrIFN is generalization of that of the trapezoidal fuzzy

number.

From Ã = 〈(l, c, d, r); tÃ, zÃ〉 if c = d = p then Ã = 〈(l, p, r); tÃ, zÃ〉 that

is Ã = 〈(l, p, r); tÃ, zÃ〉 is a triangular intuitionisti
 fuzzy number (TIFN),

whi
h is parti
ular 
ase of TrIFN. Likewise to algebrai
 operations of TIFN

and TrIFN are de�ned as follows.

De�nition 3. Let Ã = 〈(l1, c1, d1, r1); tÃ, zÃ〉 and B̃ = 〈(l2, c2, d2, r2); tB̃, zB̃〉
be two TrIFNs with tÃ 6= tB̃ and zÃ 6= zB̃, γ 6= 0 be any real number. Then,

the algebrai
 operations of TrIFNs are de�ned as follows:

Ã+ B̃ = 〈(l1 + l2, c1 + c2, d1 + d2, r1 + r2); tÃ ∧ tB̃, zÃ ∨ zB̃〉, (4)
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Ã− B̃ = 〈(l1 − r2, c1 − d2, d1 − c2, r1 − l2); tÃ ∧ tB̃, zÃ ∨ zB̃〉, (5)

ÃB̃ =





〈(l1l2, c1c2, d1d2, r1r2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã > 0, B̃ > 0

〈(l1r2, c1d2, d1c2, r1l2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã < 0, B̃ > 0

〈(r1r2, d1d2, c1c2, l1l2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã < 0, B̃ < 0,

(6)

Ã/B̃ =





〈(l1/r2, c1/d2, d1/c2, r1/l2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã > 0, B̃ > 0

〈(r1/r2, d1/d2, c1/c2, l1/l2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã < 0, B̃ > 0

〈(r1/l2, d1/c2, c1/d2, l1/r2); tÃ ∧ tB̃, zÃ ∨ zB̃〉 if Ã < 0, B̃ < 0,

(7)

γ/Ã =

{
〈(γl1, γc1, γd1, γr1); tÃ, zÃ〉 if γ > 0

〈(γr1, γd1, γc1, γl1); tÃ, zÃ〉 if γ < 0
(8)

and

Ã−1 = 〈(1/r1, 1/d1, 1/c1, 1/l1); tÃ, zÃ〉 if Ã 6= 0 (9)

where the symbols ∧ is the minimum operator and ∨ is the maximum opera-

tor.

2.2 A methodology for matrix games with payo�s

TrIFN

Let S1 = {ρ1, ρ2, . . . , ρm} and S2 = {τ1, τ2, . . . τn} be sets of pure strategies

for players I and II, respe
tively. The ve
tor x = (x1, x2, . . . , xm)
T
is mixed

strategies for player I where xi (i = 1, 2, . . . , m) is probability in player I. The

set of mixed strategies for player I is represented by X = {x|

m∑

i=1

xi = 1, xi ≥

0 (i = 1, 2, . . . , m)}.
Similarly, the ve
tor y = (y1, y2, . . . , yn)

T
is mixed strategies for player II

where yj (j = 1, 2, . . . , n) is probability in player II. The set of mixed strate-

gies for player II is Y = {y|
n∑

j=1

yj = 1, yj ≥ 0 (j = 1, 2, . . . , n)}. Assume that
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the payo� of players I is expressed with an TrIFN

D̃ij = 〈(lij, cij, dij, rij); tD̃ij
, zD̃ij

〉,

where lij ≤ cij ≤ dij ≤ rij , tD̃ij
∈ [0, 1] and zD̃ij

∈ [0, 1](i = 1, 2, . . . , m; j =

1, 2, . . . , n). Therefore, the payo� player I at allm×n pure strategy situations

an be 
on
isely expressed in the matrix format as follows:

D̃ =




D̃11 D̃12 · · · D̃1n

D̃21 D̃22 · · · D̃2n
.

.

.

.

.

.

.

.

.

.

.

.

D̃m1 D̃m2 · · · D̃mn




denote by D̃ = (〈lij , cij, dij, rij〉)m×n or D̃ = (D̃ij)m×n.

From D̃ij = 〈(lij, cij, dij, rij); tD̃ij
, zD̃ij

〉 if cij = dij = pij(i = 1, 2, . . . , m; j =

1, 2, . . . , n) is redu
ed to D̃ij = 〈(lij, pij, rij); tD̃ij
, zD̃ij

〉 su
h that D̃ij =

〈(lij, pij, rij);
tD̃ij

, zD̃ij
〉 is 
all matrix games with pay�s of TIFN, whi
h is parti
ular 
ase

of matrix games with payo�s of TrIFN.

De�nition 4. [11℄ Let

ν̃ = 〈(ν1, ν2, ν3, ν4); tν̃ , zν̃〉 and ω̃ = 〈(ω1, ω2, ω3, ω4); tω̃, zω̃〉

be TrIFNs. If there are mixed strategies x∗ ∈ X and y∗ ∈ Y so that for any

mixed strategies x ∈ X and y ∈ Y they satisfy the two 
onditions as follows:

(i) x∗T D̃y≥̃ν̃ and

(ii) xT D̃y∗≤̃ω̃, then (x∗, y∗, ν̃, ω̃) is 
alled a reasonable solution of the matrix

game D̃ with payo�s of TrIFN. x∗ and y∗ are 
alled reasonable strategy for

player I and II, respe
tively. ν̃ and ω̃ are 
alled reasonable values of players

I and II, respe
tively.

The symbol "≤̃", "≥̃" and "=̃" are an intuitionisti
 fuzzy version of the

order relation "≤", "≥" and "=" on the real number set. The sets of all

reasonable values ν̃ and ω̃ for players I and II are denoted by V and W,

respe
tively.
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De�nition 5. [11℄ Assume that there exist reasonable values ν̃∗ ∈ V and

ω̃∗ ∈ W for playersI and II, respe
tively. If there do not exist any reasonable

values ν̃ ∈ V (ν̃ 6= ν̃∗) and ω̃ ∈ W (ω̃ 6= ω̃∗) so that they satisfy the 
onditions

as follows:

(i) ν̃≥̃ν̃∗ and,

(ii) ω̃≤̃ω̃∗
, then (x∗, y∗, ν̃∗, ω̃∗) is 
alled a solution of the matrix game D̃ with

payo�s of trapezoidal intuitionisti
 fuzzy numbers. x∗ and y∗ are 
alled the

maximin strategy and minimax strategy for players I and II, respe
tively. ν̃∗

and ω̃∗
are 
alled the gain-�oor of player I and the loss-
eiling of player II,

respe
tively. x∗T D̃y∗ is 
alled the value of the matrix game D̃ with payo�s of

TrIFN.

2.3 Cut sets of TrIFN

De�nition 6. [5℄ A (α, λ)- 
ut set of Ã = 〈(l, c, d, r); tÃ, zÃ〉 is a 
risp subset
of R, whi
h is de�ned as follows:

Ãλ
α = {x|µÃ(x) ≥ α, νÃ(x) ≤ λ},

where 0 ≤ α ≤ tÃ, zÃ ≤ λ ≤ 1 and 0 ≤ α + λ ≤ 1.

De�nition 7. [5℄ The α-
ut set and λ-
ut set of Ã = 〈(l, c, d, r); tÃ, zÃ〉 are
a 
risp subset of R, whi
h is de�ned as follows:

Ãα = {x|µÃ(x) ≥ α}

and

Ãλ = {x|νÃ(x) ≤ λ}

respe
tively.

Using the membership fun
tion of Ã = 〈(l, c, d, r); tÃ, zÃ〉 and De�nition

7 su
h that Ãα = {x|µÃ(x) ≥ α} and Ãλ = {x|νÃ(x) ≤ λ} are 
losed interval

and 
al
ulated as follows:

Ãα =
[
LÃ(α), RÃ(α)

]
=

[
(tÃ − α)l + αc

tÃ
,
(tÃ − α)r + αd

tÃ

]
(10)

and

Ãλ =
[
L′
Ã
(λ), R′

Ã
(λ)
]
=

[
(1− λ)c+ (λ− zÃ)l

1− zÃ
,
(1− λ)d+ (λ− zÃ)r

1− zÃ

]
(11)

respe
tively.



Linear programming model for solution of matrix game 16

De�nition 8. [12℄ Assume that the α-
ut set and λ-
ut set of any TrIFNs Ã

and B̃ are Ãα = [LÃ(α), RÃ(α)], Ã
λ = [L′

Ã
(λ), R′

Ã
(λ)], B̃α = [LB̃(α), RB̃(α)]

and B̃λ = [L′
B̃
(λ), R′

B̃
(λ)], respe
tively. Then the ranking order of the TrIFNs

Ã and B̃ is stipulated a

ording to the two 
ases as follws:

(i) If LB̃(α) ≥ LÃ(α) , RB̃(α) ≥ RÃ(α) , L′
B̃
(λ) ≥ L′

Ã
(λ) and R′

B̃
(λ) ≥

R′
Ã
(λ), then B̃ ≥ Ã

(ii) If LB̃(α) ≤ LÃ(α), RB̃(α) ≤ RÃ(α), L
′
B̃
(λ) ≤ L′

Ã
(λ) and R′

B̃
(λ) ≤ R′

Ã
(λ),

then B̃ ≤ Ã.

3 Mathemati
al programming model for the TrIFN

matrix game

As the TrIFN matrix game is a zero - sum game, from De�nition 3 expe
ted

payo� for player I is 
omputed as follows:

E(x, y) = xT D̃y

=
n∑

i=1

n∑

j=1

D̃ijxiyj

= 〈(

m∑

i=1

n∑

j=1

lijxiyj,

m∑

i=1

n∑

j=1

cijxiyj ,

m∑

i=1

n∑

j=1

dijxiyj,

m∑

i=1

n∑

j=1

rijxiyj);

∧ {tD̃ij
},∨{zD̃ij

}〉

whi
h is a TrIFN.

And the expe
ted payo� for player II obtained as follows:

E(x, y) = xT (−D̃)y

=
n∑

i=1

n∑

j=1

(−D̃ij)xiyj

= 〈(−

m∑

i=1

n∑

j=1

rijxiyj,−

m∑

i=1

n∑

j=1

dijxiyj,−

m∑

i=1

n∑

j=1

cijxiyj,

−
m∑

i=1

n∑

j=1

lijxiyj);∧{tD̃ij
},∨{zD̃ij

}〉.
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Assume that player I is a maximizing player and player II is a minimizing

player. Player I should 
hoose a mixed strategy x ∈ X that maximizes the

minimum expe
ted gain of player II, i.e.,

ν̃ = max
x∈X

min
y∈Y

{E(x, y)}, (12)

whi
h is 
alled player I's gain-�oor.

Similarly, player II should 
hoose a mixed strategy y ∈ Y that minimizes

the maximum expe
ted loss of player I, i.e.,

ω̃ = min
y∈Y

max
x∈X

{E(x, y)}, (13)

whi
h is 
alled player II's loss-
eiling.

Hen
e, player I's gain-�oor and player II's loss 
eiling denoted by

ν̃ = 〈(ν1, ν2, ν3, ν4); tν̃ , zν̃〉

and

ω̃ = 〈(ω1, ω2, ω3, ω4); tω̃, zω̃〉.

From De�nitions 4, 5 and Eqs.(12) and (13) the maximin strategy x∗

and gain-�oor ν̃∗ of player I and the minimax strategy y∗ and loss-
eiling ω̃∗

of player II 
an be generate by solving an intuitionisti
 fuzzy mathemati
al

programming model 
onstru
ted as follows:

max{ν̃}

s.t.





m∑

i=1

D̃ijxiyj≥̃ν̃ (j = 1, 2, . . . , n)(y ∈ Y )

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(14)

and

min{ω̃}

s.t.





n∑

j=1

D̃ijxiyj≤̃ω̃ (i = 1, 2, . . . , m)(x ∈ X)

n∑

i=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n),

(15)
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respe
tively, where ν̃ and ω̃ are TrIFNs.

From Eqs.(14), (15) and theorem [6℄ 
an be 
onverted into an intuition-

isti
 fuzzy mathemati
al programming models as follows:

max{ν̃}

s.t.





m∑

i=1

D̃ijxi≥̃ν̃ (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(16)

and

min{ω̃}

s.t.





n∑

j=1

D̃ijyj≤̃ω̃ (i = 1, 2, . . . , m)

n∑

j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n)

(17)

respe
tively. From De�nitions 6 and 8 
an be transformed into the interval-

valued bi-obje
tive mathemati
al programming models as follows:

max{ν̃α, ν̃
λ}

s.t.





m∑

i=1

(D̃ij)αxi ≥ ν̃α (j = 1, 2, . . . , n)

m∑

i=1

(D̃ij)
λxi ≥ ν̃λ (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(18)

the α-
ut set and λ-
ut set of the TrIFNs ν̃ and D̃ij = (i = 1, 2, . . . , m; j =
1, 2, . . . , n) are denoted by
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ν̃α = [νLα , ν
R
α ], ν̃λ = [νλL, ν

λ
R], (D̃ij)α = [LD̃ij

(α), RD̃ij
(α)]

and

(D̃ij)
λ = [L′

D̃ij
(λ), R′

D̃ij
(λ)],

respe
tively. From Eq.(18) 
an be written as the following interval-valued

bi-obje
t mathemati
al programming model:

max{[νLα , ν
R
α ], [ν

λ
L, ν

λ
R]}

s.t.





m∑

i=1

LD̃ij
(α)xi ≥ νLα (j = 1, 2, . . . , n)

m∑

i=1

RD̃ij
(α)xi ≥ νRα (j = 1, 2, . . . , n)

m∑

i=1

L′
D̃ij

(λ)xi ≥ νλL (j = 1, 2, . . . , n)

m∑

i=1

R′
D̃ij

(λ)xi ≥ νλR (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(19)

where νLα , ν
R
α , ν

λ
L, ν

λ
R and xi(i = 1, 2, . . . , m) are de
ision variables.

In Eq.(19) two interval-valued obje
tive fun
tions, we will using the linear

weighted averaging method of multiobje
tive de
ision making, their weights

are the same as 1/2 hen
e, Eq.(19) 
an be aggregated into the interval-valued

mathemati
al programming model as follows:
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max

{[
νLα + νλL

2
,
νRα + νλR

2

]}

s.t.





m∑

i=1

LD̃ij
(α)xi ≥ νLα (j = 1, 2, . . . , n)

m∑

i=1

RD̃ij
(α)xi ≥ νRα (j = 1, 2, . . . , n)

m∑

i=1

L′
D̃ij

(λ)xi ≥ νλL (j = 1, 2, . . . , n)

m∑

i=1

R′
D̃ij

(λ)xi ≥ νλR (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m).

(20)

From Eq.(20) and Ishibu
hi and Ianaka [2℄ the maximization problem

with the interval- valued obje
tive fun
tion 
an be written as follows:

max

{
νLα + νλL

2
,
νLα + νλL + νRα + νλR

4

}

s.t.





m∑

i=1

LD̃ij
(α)xi ≥ νLα (j = 1, 2, . . . , n)

m∑

i=1

RD̃ij
(α)xi ≥ νRα (j = 1, 2, . . . , n)

m∑

i=1

L′
D̃ij

(λ)xi ≥ νλL (j = 1, 2, . . . , n)

m∑

i=1

R′
D̃ij

(λ)xi ≥ νλR (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m).

(21)

From Eq.(21) and using the linear weighted averaging method of multi-

obje
tive de
ision making [13℄ - [14℄ 
an be written as follows:
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max

{
ξ
νLα + νλL

2
+ (1− ξ)

νLα + νλL + νRα + νλR
4

}

s.t.





m∑

i=1

LD̃ij
(α)xi ≥ νLα (j = 1, 2, . . . , n)

m∑

i=1

RD̃ij
(α)xi ≥ νRα (j = 1, 2, . . . , n)

m∑

i=1

L′
D̃ij

(λ)xi ≥ νλL (j = 1, 2, . . . , n)

m∑

i=1

R′
D̃ij

(λ)xi ≥ νλR (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(22)

where ξ ∈ [0, 1].

From Eqs.(10) and (11) we 
an obtain the α-
ut set and λ-
ut set of the

TrIFNs D̃ij = 〈(lij , cij, dij, rij); tD̃ij
, zD̃ij

〉(i = 1, 2, . . . , m; j = 1, 2, . . . , n) as
follows:

(D̃ij)α =
[
LD̃ij

(α), RD̃ij
(α)
]
=

[
(tD̃ij

− α)lij + αcij

tD̃ij

,
(tD̃ij

− α)rij + αdij

tD̃ij

]

(23)

and

(D̃ij)
λ =

[
L′
D̃ij

(λ), R′
D̃ij

(λ)
]

=

[
(1− λ)aij + (λ− zD̃ij

)lij

1− zD̃ij

,
(1− λ)dij + (λ− uD̃ij

)rij

1− zD̃ij

]
(24)

respe
tively.

From Eq.(22) 
an rewritten as the following linear programming model:
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max

{
ξ
νLα + νλL

2
+ (1− ξ)

νLα + νλL + νRα + νλR
4

}

s.t.





m∑

i=1

(tD̃ij
− α)lij + αcij

tD̃ij

xi ≥ νLα (j = 1, 2, . . . , n)

m∑

i=1

(tD̃ij
− α)rij + αdij

tD̃ij

xi ≥ νRα (j = 1, 2, . . . , n)

m∑

i=1

(1− λ)cij + (λ− zD̃ij
)lij

1− zD̃ij

xi ≥ νλL (j = 1, 2, . . . , n)

m∑

i=1

(1− λ)dij + (λ− zD̃ij
)rij

1− zD̃ij

xi ≥ νλR (j = 1, 2, . . . , n)

m∑

i=1

xi = 1

xi ≥ 0 (i = 1, 2, . . . , m)

(25)

where ξ ∈ [0, 1], α ∈ [0, tD̃], λ ∈ [zD̃, 1] and α + λ ∈ [0, 1].

Using the simplex method of linear programming, we 
an obtain the opti-

mal solution of Eq.(25), denote by (x∗(α, λ), νL∗α , νR∗
α , νλ∗L , ν

λ∗
R ). where x∗(α, λ)

is the maximin strategy of player I at the 〈α, λ〉-
on�den
e level. νL∗α and

νR∗
α are the lower and upper bounds of the gain-�oor ν̃∗ of player I at the

α-
on�den
e level, that is α- 
ut set ν̃∗α of ν̃∗. Similarly, νλ∗L and νλ∗R are the

lower and upper bounds of the gain-�oor ν̃∗ of player I at the λ-
on�den
e
level, that is that is λ-
ut set ν̃∗λ of ν̃∗.

In the same way, from De�ntion 8 and Eq.(17) 
an be written as the

following interval-valued bi-obje
tive mathemati
al programming model:

min{ω̃α, ω̃
λ}

s.t.





n∑

j=1

(D̃ij)αyj ≤ ω̃α (i = 1, 2, . . . , m)

n∑

j=1

(D̃ij)
λyj ≤ ω̃λ (i = 1, 2, . . . , m)

n∑

j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n).

(26)
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The α-
ut set and λ-
ut set of the TrIFN ω̃ are denote by

ω̃α =
[
ωL
α , ω

R
α

]
and ω̃λ =

[
ωλ
L, ω

λ
R

]
,

respe
tively.

From Eq.[26℄ 
an be written as the folowing interval-valued bi-obje
tive

mathemati
al programming model:

min{[ωL
α , ω

R
α ], [ω

λ
L, ω

λ
R]}

s.t.





n∑

i=1

LD̃ij
(α)yj ≤ ωL

R (i = 1, 2, . . . , m)

n∑

i=1

RD̃ij
(α)yj ≤ ωR

α (i = 1, 2, . . . , m)

n∑

i=1

L′
D̃ij

(λ)yj ≤ ωλ
L (i = 1, 2, . . . , m)

n∑

i=1

R′
D̃ij

(λ)yj ≤ ωλ
R (i = 1, 2, . . . , m)

n∑

i=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n)

(27)

where ωL
α , ω

R
α , ω

λ
L, ω

λ
R and yj (i = 1, 2, . . . , n) are de
ision variables.

From Eq.(27) and use the linear weighted veraging method of multiob-

je
tive de
isionmaking [13℄ - [14℄ 
an be aggregated into the interval-valued

mathemati
al programming model as follows:
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min

{[
ωL
α + ωλ

L

2
,
ωR
α + ωλ

R

2

]}

s.t.





n∑

i=1

LD̃ij
(α)yj ≤ ωL

R (i = 1, 2, . . . , m)

n∑

i=1

RD̃ij
(α)yj ≤ ωR

α (i = 1, 2, . . . , m)

n∑

i=1

L′
D̃ij

(λ)yj ≤ ωλ
L (i = 1, 2, . . . , m)

n∑

i=1

R′
D̃ij

(λ)yj ≤ ωλ
R (i = 1, 2, . . . , m)

m∑

i=1

yj = 1

yj ≥ 0 (i = 1, 2, . . . , n).

(28)

From Eq.(28) and the maximization problem with the interval-valued ob-

je
tive fun
tion [2℄ 
an be written as follows:

min

{
ωR
α + ωλ

R

2
+
ωL
α + ωλ

L + ωR
α + ωλ

R

4

}

s.t.





n∑

i=1

LD̃ij
(α)yj ≤ ωL

α (i = 1, 2, . . . , m)

n∑

i=1

RD̃ij
(α)yj ≤ ωR

α (i = 1, 2, . . . , m)

n∑

i=1

L′
D̃ij

(λ)yj ≤ ωλ
L (i = 1, 2, . . . , m)

n∑

i=1

R′
D̃ij

(λ)yj ≤ ωλ
R (i = 1, 2, . . . , m)

n∑

i=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n).

(29)

Similary, using the linear weighted averaging method of multiobje
tive

de
ision making, from Eqs.(23), (24) and (29) 
an be further aggregated and


onvert into the linear programming model as follows:
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min

{
ξ
ωR
α + ωλ

R

2
+ (1− ξ)

ωL
α + ωλ

L + ωR
α + ωλ

R

4

}

s.t.





n∑

j=1

(tD̃ij
− α)lij + αcij

tD̃ij

yj ≤ ωL
α (i = 1, 2, . . . , m)

n∑

j=1

(tD̃ij
− α)rij + αdij

tD̃ij

yj ≤ ωR
α (i = 1, 2, . . . , m)

n∑

j=1

(1− λ)cij + (λ− zD̃ij
)lij

1− zD̃ij

yi ≤ ωλ
L (i = 1, 2, . . . , m)

n∑

j=1

(1− λ)dij + (λ− zD̃ij
)rij

1− zD̃ij

yi ≤ ωλ
R (i = 1, 2, . . . , m)

n∑

j=1

yj = 1

yj ≥ 0 (j = 1, 2, . . . , n).

(30)

For any adequately given values of the parameters ξ, α and λ, using the

simplex medthod of linear programming, we 
an obtain the optimal solution

of Eq.(30), denote by (y∗(α, λ), ωL∗
α , ωR∗

α , ωλ∗
L , ω

λ∗
R ) where y∗(α, λ) is the min-

imax strategy of player II at the 〈α, λ〉-
on�den
e level. ωL∗
α and ωR∗

α are the

lower and upper bounds of the gain-�oor ω̃∗
of player II at the α-
on�den
e

level, that is α- 
ut set ω̃∗
α of ω̃∗. similarly, ωλ∗

L and ωλ∗
R are the lower and

upper bounds of the gain-�oor ω̃∗
of player II at the λ-
on�den
e level, that

is that is λ- 
ut set ω̃∗
λ of ω̃∗.

4 An appli
ation to voting share problem

In this examples 1 and 2, using Eqs.(25) and (30) to solve the problem.

Example 1.

Assume that there is an ele
tion where two major politi
al parties M and

W parti
ipate and total number of voters in that regions is stable. It means

that the in
rease in per
entage of votes for one politi
al party results in the

same for the other politi
al party. Suppose M has two strategies as

ρ1: the 
ampaign by big rallies and superstar.

ρ2: 
o-operating with other small politi
al parties to redu
e se
ured votes of

the opposition.
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Simultaneously W takes two strategies:

τ1: Making lot of promises to the people.

τ2: 
ampaigning by use of mixed media su
h as publi
ation and television.

Let us 
onsider matrix game D with payo�s of TrIFN, where the payo�

matrix of the politi
al parties M is given as follows:

D̃ =

[
〈(155, 165, 175, 180); 0.7, 0.2〉 〈(130, 146, 150, 165); 0.6, 0.2〉
〈(75, 85, 95, 100); 0.6, 0.3〉 〈(160, 170, 184, 190); 0.8, 0.1〉

]

where the element 〈(155, 165, 175, 180); 0.7, 0.2〉 in the matrix D̃ is TrIFN

represent that when M 
hoose the strategy ρ1 and W 
hoose the strategy τ1
then votes of the politi
al parties M is between 155 and 180 the maximum


on�den
e level and minimum non-
on�den
e level of the head ele
tion ex-

ponent of D̃ are 0.7 and 0.2, respe
tively. In this 
ase, the hestian
e degree

is 0.1 other elements in D̃ may be identi
ally explained.

From eqs.(25) and (30) the parameterized linear programming is obtained

as follows:

max

{
ξ
νLα + νλL

2
+ (1− ξ)

νLα + νλL + νRα + νλR
4

}

s.t.





(0.7− α)155 + 165α

0.7
x1 +

(0.6− α)75 + 85α

0.6
x2 ≥ νLα

(0.6− α)130 + 146α

0.6
x1 +

(0.8− α)160 + 170α

0.8
x2 ≥ νLα

(0.7− α)180 + 175α

0.7
x1 +

(0.6− α)100 + 95α

0.6
x2 ≥ νRα

(0.6− α)165 + 150α

0.6
x1 +

(0.8− α)190 + 184α

0.8
x2 ≥ νRα

(1− λ)165 + (λ− 0.2)155

0.8
x1 +

(1− λ)85 + (λ− 0.3)75

0.7
x2 ≥ νλL

(1− λ)146 + (λ− 0.2)130

0.8
x1 +

(1− λ)170 + (λ− 0.1)160

0.9
x2 ≥ νλL

(1− λ)175 + (λ− 0.2)180

0.8
x1 +

(1− λ)95 + (λ− 0.3)100

0.7
x2 ≥ νλR

(1− λ)150 + (λ− 0.2)165

0.8
x1 +

(1− λ)184 + (λ− 0.1)190

0.9
x2 ≥ νλR

x1 + x2 = 1

x1 ≥ 0, x2 ≥ 0

(31)
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and

min

{
ξ
ωR
α + ωλ

R

2
+ (1− ξ)

ωL
α + ωλ

L + ωR
α + ωλ

R

4

}

s.t.





(0.7− α)155 + 165α

0.7
y1 +

(0.6− α)130 + 146α

0.6
y2 ≤ ωL

α

(0.6− α)75 + 85α

0.6
y1 +

(0.8− α)160 + 170α

0.8
y2 ≤ ωL

α

(0.7− α)180 + 175α

0.7
y1 +

(0.6− α)165 + 150α

0.6
y2 ≤ ωR

α

(0.6− α)100 + 95α

0.6
y1 +

(0.8− α)190 + 184α

0.8
y2 ≤ ωR

α

(1− λ)165 + (λ− 0.2)155

0.8
y1 +

(1− λ)146 + (λ− 0.2)130

0.8
y2 ≤ ωλ

L

(1− λ)85 + (λ− 0.3)75

0.7
y1 +

(1− λ)170 + (λ− 0.1)160

0.9
y2 ≤ ωλ

L

(1− λ)175 + (λ− 0.2)180

0.8
y1 +

(1− λ)150 + (λ− 0.2)165

0.8
y2 ≤ ωλ

R

(1− λ)95 + (λ− 0.3)100

0.7
y1 +

(1− λ)184 + (λ− 0.1)190

0.9
y2 ≤ ωλ

R

y1 + y2 = 1

y1 ≥, y2 ≥ 0

(32)

respe
tively.

For the given ξ = 0.8, α ∈ [0, 0.6] and λ ∈ [0.3, 1]. The greatest possible
value of α and the smallest possible value of λ are 
omputed as follows:

min{tD̃ij
|i = 1, 2; J = 1, 2} = min{0.7, 0.6, 0.6, 0.8} = 0.6

and

max{zD̃ij
|i = 1, 2; J = 1, 2} = max{0.2, 0.2, 0.3, 0.1} = 0.3

respe
tively.

Solving Eqs.(31) and (32) we 
omputed by simplex method for linear

programming. The result as follows:

Player M's gain-�oor ν̃∗ stay in the ranges ν̃∗〈α,λ〉 = [136.82, 161.82]. When

〈α, λ〉 = 〈0.6, 0.3〉, ν̃∗〈α,λ〉 = [148.18, 157.75] is the most possible value of the

gain-�oor ν̃∗ of player M, where x∗T (α, λ) = (0.824, 0.176). And Player W's
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loss-
eiling ω̃∗
stay in the ranges ω̃∗

〈α,λ〉 = [139.76, 168.57]. When 〈α, λ〉 =

〈0.6, 0.3〉 , ω̃∗
〈α,λ〉 = [150.05, 159.13] is the most possible value of the loss-


eiling ω̃∗
of player W, where y∗T (α, λ) = (0.306, 0.694). Thus, the ap-

proximate values of player M's gain-�oor ν̃∗ and player W's loss-
eiling

ω̃∗
whi
h are TrIFNs are ν̃∗ = 〈(136.82, 148.18, 157.75, 161.82); 0.6, 0.3〉 and

ω̃∗ = 〈(139.76, 150.05, 159.13, 168.57); 0.6, 0.3〉, respe
tively.

Example 2.

From example 1 we will redu
ed matrix game D̃ with payo�s of TrIFN

to matrix game D̃ of TIFN as follows:

D̃ =

[
〈(155, 170, 180); 0.7, 0.2〉 〈(130, 148, 165); 0.6, 0.2〉
〈(75, 90, 100); 0.6, 0.3〉 〈(160, 177, 190); 0.8, 0.1〉

]

From eqs.(25) and (30) the parameterized linear programming is obtained

as follows:

max

{
ξ
νLα + νλL

2
+ (1− ξ)

νLα + νλL + νRα + νλR
4

}

s.t.





(0.7− α)155 + 170α

0.7
x1 +

(0.6− α)75 + 90α

0.6
x2 ≥ νLα

(0.6− α)130 + 148α

0.6
x1 +

(0.8− α)160 + 177α

0.8
x2 ≥ νLα

(0.7− α)180 + 170α

0.7
x1 +

(0.6− α)100 + 90α

0.6
x2 ≥ νRα

(0.6− α)165 + 148α

0.6
x1 +

(0.8− α)190 + 177α

0.8
x2 ≥ νRα

(1− λ)170 + (λ− 0.2)155

0.8
x1 +

(1− λ)90 + (λ− 0.3)75

0.7
x2 ≥ νλL

(1− λ)148 + (λ− 0.2)130

0.8
x1 +

(1− λ)177 + (λ− 0.1)160

0.9
x2 ≥ νλL

(1− λ)170 + (λ− 0.2)180

0.8
x1 +

(1− λ)90 + (λ− 0.3)100

0.7
x2 ≥ νλR

(1− λ)148 + (λ− 0.2)165

0.8
x1 +

(1− λ)177 + (λ− 0.1)190

0.9
x2 ≥ νλR

x1 + x2 = 1

x1 ≥ 0, x2 ≥ 0

(33)

and
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min

{
ξ
ωR
α + ωλ

R

2
+ (1− ξ)

ωL
α + ωλ

L + ωR
α + ωλ

R

4

}

s.t.





(0.7− α)155 + 170α

0.7
y1 +

(0.6− α)130 + 148α

0.6
y2 ≤ ωL

α

(0.6− α)75 + 90α

0.6
y1 +

(0.8− α)160 + 177α

0.8
y2 ≤ ωL

α

(0.7− α)180 + 170α

0.7
y1 +

(0.6− α)165 + 148α

0.6
y2 ≤ ωR

α

(0.6− α)100 + 90α

0.6
y1 +

(0.8− α)190 + 177α

0.8
y2 ≤ ωR

α

(1− λ)170 + (λ− 0.2)155

0.8
y1 +

(1− λ)148 + (λ− 0.2)130

0.8
y2 ≤ ωλ

L

(1− λ)90 + (λ− 0.3)75

0.7
y1 +

(1− λ)177 + (λ− 0.1)160

0.9
y2 ≤ ωλ

L

(1− λ)170 + (λ− 0.2)180

0.8
y1 +

(1− λ)148 + (λ− 0.2)165

0.8
y2 ≤ ωλ

R

(1− λ)90 + (λ− 0.3)100

0.7
y1 +

(1− λ)177 + (λ− 0.1)190

0.9
y2 ≤ ωλ

R

y1 + y2 = 1

y1 ≥, y2 ≥ 0

(34)

respe
tively.

Solving Eqs.(33) and (34) we 
omputed by simplex method for linear

programming. The result as follows: Player M's gain-�oor ν̃∗ stay in the

ranges ν̃∗〈α,λ〉 = [136.82, 161.82]. When 〈α, λ〉 = 〈0.6, 0.3〉, ν̃∗〈α,λ〉 = 152.22 is

the most possible value of the gain-�oor ν̃∗ of player M, where x∗T (α, λ) =
(0.806, 0.194). And Player W's loss-
eiling ω̃∗

stay in the ranges ω̃∗
〈α,λ〉 =

[139.76, 168.57]. When 〈α, λ〉 = 〈0.6, 0.3〉 , ω̃∗
〈α,λ〉 = 155.13 is the most possi-

ble value of the loss-
eiling ω̃∗
of player W, where y∗T (α, λ) = (0.284, 0.716).

Thus, the approximate values of player M's gain-�oor ν̃∗ and player W's loss-


eiling ω̃∗
whi
h are TrIFNs are ν̃∗ = 〈(136.82, 152.22, 161.82); 0.6, 0.3〉 and

ω̃∗ = 〈(139.76, 155.13, 168.57); 0.6, 0.3〉, respe
tively.

From examples 1 and 2 we will �nd the estimate values of player M's

gain-�oor ν̃∗ and player W's loss-
eiling ω̃∗
for matrix game with payo�s of

TIFN and matrix game with payo�s of TrIFN are a little di�erent. The

matrix game with payo�s of TIFN is the most possible single value, while

the matrix game with payo�s of TrIFN is the range the most possible.



Linear programming model for solution of matrix game 30

5 Con
lusion

Game theory is about the strategy of the de
ision of player. Good de
isions

require a

urate and pre
ise data. But in some 
ases the information available

to a fuzzy un
ertainty will a�e
t the de
ision and payo�s.

In this work we have examples of two-person zero-sum games whi
h only

two players who have de�ned the strategy of ea
h player on two strategies. To

�nd the best response we have used the 
on
ept of the 
ut sets and 
on
ept of

solution of matrix games with payo�s of TrIFNs. Intuitionisti
 fuzzy linear

programming models are established for two playes, whi
h 
hange into bi-

obje
tive parameterized linear programmingmodel. Two linear programming

models are 
onstru
ted to generate the maximin and minimax strategies for

players it is seen the solving TrIFN matrix games be 
omes to solving a pair

of intuitionisti
 fuzzy linear programming problems. This is one example

with respe
t to the ele
tion. We also 
an apply to the issue of market share,

inventory management[15℄, [16℄, �nan
e[17℄, management and e
onomi
s.
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erdélyi-kober fra
tional integrals on the unbounded interval. Progress

in Fra
tion Di�erentiation and Appli
ations, 2(3):153�168, 2016. doi:

10.18576/pfda/020301.


