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Abstract

In this work, we considered two-person zero-sum games with fuzzy payoffs and ma-
trix games with payoffs of trapezoidal intuitionistic fuzzy numbers (TrIFNs). The
concepts of TrIFNs and their arithmetic operations were used. The cut-set based
method for matrix games with payoffs of TrIFNs was also considered. Compute
the interval-type value of any alfa-constrategies by simplex method for linear pro-
gramming. The proposed method is illustrated with a numerical example.

Keywords: Intuitionistic fuzzy set, matrix game, linear programming.

1 Introduction

The concept of an intuitionistic fuzzy set was proposed by Atanassov in 1986
[1]. This concept refered to the reflect of the relation among " 1 minus the
degree of membership","the degree of non-membership" and " the degree
of hesitation". The intuitionistic fuzzy set was rasterized by the degree of
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membership and the degree of non-membership. The intuitionistic fuzzy set
had more abundant and flexible than the fuzzy set with uncertain informa-
tion. Ishibuchi and Tanaka [2], Chanas and Kuchta [3], studies multiob-
jective programming in optimization of interval objective functions, solving
interval-valued objective optimization problems. More specifically, interval-
valued objective optimization problems could be converted into bi-objective
mathematical programming models. Then, the bi-objective mathematical
programming models were also solved using the existing methods of multi-
objective programming. Cevikel and Ahlat¢oglu [4] found fuzzy payoffs and
fuzzy goals of two-person zero-sum games. The payoff matrix with elements
was represented as a fuzzy number. For any pair of the strategies, a player
received a payoff that meant as a fuzzy number. Nan et al [5], focused a
lexicographic method for matrix games with payoffs of triangular intuition-
istic fuzzy numbers. Moreover Nan et al [6] also introduced a new ranking
method based on the value and used to solving matrix games with payoffs on
trapezoidal intuitionistic fuzzy numbers (TrIFNs) fuzzy goals. Hence, there
were also found the use of linear programming method for solving matrix
games [7|-[8]. Aggarwal et al [9], solved the matrix games with I-fuzzy pay-
offs: Pareto-optimal security strategies approach. Therefore, in this work,
two-person zero-sum games with fuzzy payoffs, matrix games with payoffs
of TrIFNs were considered. The concepts of TrIFNs and their arithmetic
operations were uesd. The matrix games of the cut-set based method with
payoffs of TrIFNs was aimed. The auxiliary linear programming models were
computed the interval-type value of any alfa-constrategies. This paper is or-
ganized as follows. In section 2, the definition, operations of TrIFNs and a
methodology for matrix games with payoffs TrIFN were focused. In section
3, matrix games with payoffs of TrIFNs were formulated. In section 4, an
application to voting share problem was reported. In the last section, section
5, conclusion was summerized.

2 Mathematical Preliminaries

In this section, we summarize some basic concept intuitionistic fuzzy set by
Atanassov [1], notation, definition and operation of trapezoidal intuitionistic
fuzzy number which are used throughout the paper.
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2.1 Some definitions of TrIFNs

Definition 1. [1] Let X be a nonempty set of the universe. If there are two
mapping on the set X :
pi: X —0,1]

x> piz(z)
and
vi: X —[0,1]
z— vi(z)

with the condition 0 < pz(z) + vz(x) < 1. The pg and vy are called de-
termining and intuitionistic fuzzy set A on the universal set X, denote by
{(z; pz(x), vz(z)) |z € X} we called pz and vy are membership function and
nonmembership function of A, respectively. pi(x) and vi(x) are called the
membership degree and nonmembership degree of an element x belonging to
A C X, respectively. F(X) is called the set of the intuitionistic fuzzy set on
the universal set X.

Definition 2. A Tr[FN A = ((l,e,d,r)stg,25) s a special intuitionistic
fuzzy set on the real number set R, whose membership and nonmembership
functions are defined as follows:

0 if v <
ty(x=1)/(c=1) ifl<z<ec
pxle) =4 5 fo<v<d (1)
ti(r—x)/(r —d) ifd<x<r
0 ifx >r
and )
1 if x <l
lc— a4 zz(x = 1)]/(c=1) ifl<z<c
vi(z) = Q 2z ifc<xz<d (2)
v —d+z5(r—x)/(r —d)] ifd<x<r
1 ifx>r

\
respectively, where | < ¢ < d < r, the values t7 and zz are mazimum
membership degree and minimum nonmembership degree of A, respectively,
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Fig. 1. A TrIFN A= ((Le,d,r)stg,25)

such that they satisfy the following condition: t; € [0,1],25 € [0,1] and
ti+z5¢€ 0, 1].
Let
mi(@) =1— () —vi(z) (3)
7;(z) is called the hesitancy degree of an element z € A. Tt is the degree of
indeterminacy membership of the element = to A.

From Definition 2, it is obvious that pz(x) + vz(z) = 1 for any z € R
if ty =1 and z; = 0. Hence, the TrIFN A= ((l,e,d,r);t 5, 25) degenerates
to A = ((I,¢,d,r);1,0), which is a trapezoidal fuzzy number [10]. Therefore,
the concept of the TrIFN is generalization of that of the trapezoidal fuzzy
number.

From A = ((l,c,d,r)st5,25) if c = d = p then A= ((l,p,r);tg, 25) that
is A= ((,p, r);ts,27) is a triangular intuitionistic fuzzy number (TIFN),
which is particular case of TrIFN. Likewise to algebraic operations of TIFN
and TrIFN are defined as follows.

Definition 3. Let A = ((li,c1,di, )5t 5, 25) and B= ((la, c2,do,m2)3 5, 25)
be two TrIFNs witht; #tg and z3 # zg, v # 0 be any real number. Then,
the algebraic operations of TrIFNs are defined as follows:

Z—}— § = <(l1 + lQ,Cl + Cz,dl + dg,?"l +T2);t;{/\t§,2g\/ Z§>, (4)
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A - B = <(l1 —T2,C1 — d?adl — C2, 71 — l2)7t;{/\t§,Z;{\/ Z§>’ (5)

<(l1l2,ClCQ,dldQ,T’lrg);tA" A tB’, ZA‘\/ Z§> ZfAV > O,E >0
AB = { ((lirg, crdz, dica, mile)it g A g, 25V 25) ifA<0,B>0 (6)
((r17m2, didy, crco, Lila);tz ANtg, 25 V 25) if A<0,B <0,

(<(l1/7”2,Cl/dg,dl/Cg,Tl/Zg);tg/\té,Zg\/Z§> ng> O,E >0
A/B: <(’I“1/’I“2,dl/dg,cl/CQ,ll/Zg),tg/\té,Zg\/Z§> ng<0,§>0
\<(7"1/l2,d1/02,01/d2,ll/Tg);tA"/\tE,ZA‘\/Z§> ZfAV< O,é < 0,

(7)
Ny <('7l17'7017’7d17’77“1)f tp2z) >0 ®)
((yri,vdy,yer, )itz 230 ify <0
and B B
AT = ((1/r, 1/dy, 1 e, 1))t g, 25)  ifA#0 (9)

where the symbols A is the minimum operator and \V is the mazimum opera-
tor.

2.2 A methodology for matrix games with payoffs

TrIFN
Let S1 = {p1,p2,-..,pm} and Sy = {71, 7, ...7,} be sets of pure strategies
for players I and II, respectively. The vector z = (z1,2s,...,7,,)T is mixed

strategies for player I where x; (i = 1,2, ...,m) is probability in player I. The

set of mixed strategies for player I is represented by X = {z| Z x;=1,2; >
i=1
0(G=12,...,m
Similarly, the vector y = (y1,%a, ..., y,)" is mixed strategies for player IT
where y; (j = 1,2,...,n) is probability in player II. The set of mixed strate-

gies for player ITis Y = {y| Zyj =1,y; >0(j=1,2,...,n)}. Assume that
j=1
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the payoff of players I is expressed with an TrIFN

Di; = <(lij7 Cijs dz‘jv Tij)? tﬁij’ Zﬁij>’

where lij S Cij S dij S Tij ’tﬁij c [O, 1] and Zﬁij c [0, 1](Z = ]_,2, .. ,m,] =
1,2,...,n). Therefore, the payoff player I at all mxn pure strategy situations
can be concisely expressed in the matrix format as follows:

1:)11 1:)12 l:)ln
5 _ -D‘21 -D‘22 D.2fn,
jjml jij Emn

denote by~.5 = (<lij7 Cij7 diju rij))mxn or .5 = (Eij)mxn-

FI'OII’I Dij = <(lija cija di]’,fjj); tﬁij’ 25”> lfCij = dij = pij(Z = 1, 2, e ,~m;j —
1,2,...,n) is reduced to D;; = ((lij, pij,7ij); tps 251,],) such that D;; =
((Lijs pigs mij);
thy,» 251,],) is call matrix games with payffs of TIFN, which is particular case
of matrix games with payoffs of TrIFN.

Definition 4. [11] Let
U= ((1,v2,v3,4);t5, 25) and @ = (w1, ws, ws,ws); tz, 2z)

be TrIFNs. If there are mized strategies x* € X and y* € Y so that for any
mixed strategies x € X and y € Y they satisfy the two conditions as follows:

(i) 2T Dy>v and

(ii) 2T Dy*<@, then (x*,y*,v,w) is called a reasonable solution of the matrix
game D with payoffs of TrIFN. x* and y* are called reasonable strateqy for
player I and II, respectively. v and w are called reasonable values of players
I and II, respectively.

The symbol ”%", ”E" and "=" are an intuitionistic fuzzy version of the
order relation "<", ">" and "=" on the real number set. The sets of all
reasonable values v and w for players I and II are denoted by V and W,
respectively.
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Definition 5. [11] Assume that there exist reasonable values v* € V and
w* € W for playersl and II, respectively. If there do not exist any reasonable
values v € V(v # V") and 0 € W(w # w*) so that they satisfy the conditions
as follows:

(i) V>0 and,

(i1) W<&*, then (x*,y*, v, w*) is called a solution of the matriz game D with
payoffs of trapezoidal intuitionistic fuzzy numbers. x* and y* are called the
mazximin strateqy and minimax strateqy for players I and II, respectively. v*
and W* are called the gain-floor of player I and the loss-ceiling of player 11,

respectively. x*T Dy* is called the value of the matriz game D with payoffs of
TrIFN.

2.3 Cut sets of TrIFN
Definition 6. /5] A (a, \)- cut set of A = ((L,¢,d,r); t1,25) is a crisp subset
of R, which is defined as follows:
Ay = {aluz(@) = a,vz(@) <A},

where 0 <a <tz7,2;<A<1land0<a+ A< 1
Definition 7. /5] The a-cut set and A-cut set of A = {((l,¢,d, r);ty, 25) are
a crisp subset of R, which is defined as follows:

A, = {alpg(z) 2 a)
and B

B = {alusle) < A}
respectively.

Using the membership function of A= ((l,c,d,r);ty, 25) and Definition

7 such that A, = {z|pz(x) > a} and A* = {z|v;(x) < A} are closed interval
and calculated as follows:

Ao = L) Ry(@)] = [ © (10)

)

F—o)l+ac (t;—oz)r%—ozd}
tz tz

and

(1=XNe+ A=zl 1=XN)d+ (A—zy)r

Y

AN = [LL(N), R (\)] = { } (11)

1—211 1—22

respectively.
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Definition 8. [12] Assume that the a-cut set and A-cut set of any TrIFNs A
and B are Ay = [Lz(@), Ry(a)], A* = [L5(N), B3N], Ba = [Lg(a), Rz(@)]
and B = [L’E()\), Rl’é()‘)]’ respectively. Then the ranking order of the TrIFNs
A and B is stipulated according to the two cases as follws:

(i) If Lg(a) > Lz(a) , Rg(a) > Riz(a) , L%(A) = L5(A) and RH(N) >
R'(X), then B> A

(it) If Lz(a) < Lz(e), Rg(e) < Rz(a), L5(A) < L%(A) and R (A) < R%(A),
then B < A,

3 Mathematical programming model for the TrIFN
matrix game

As the TrIFN matrix game is a zero - sum game, from Definition 3 expected
payoff for player I is computed as follows:

E(z,y) = 2 Dy

= Z Z lN)isz‘yj

i=1 j=1

= ((Z Z lijx:y;, Z Z CijLilYjs Z Z dij Yy, Z Z TiiTiY;);

=1 j=1 =1 j=1 =1 j=1 =1 j=1

which is a TrIFN.
And the expected payoff for player II obtained as follows:

E(z,y) =" (~D)y

=Y (~Dij)ay;
i=1 j=1
m n m n m n
= ((— Z Z TijTilY5, — Z Z dijriy;, — Z Z Cij LilYjs
i=1 j=1 i=1 j=1 i=1 j=1

_ Z Z lmay;); Mip, b V{zp, 1)

i=1 j=1
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Assume that player I is a maximizing player and player II is a minimizing
player. Player I should choose a mixed strategy z € X that maximizes the
minimum expected gain of player II, i.e.,

V= in{E 12
V= maxmin{E(z,y)}, (12)

which is called player I's gain-floor.
Similarly, player II should choose a mixed strategy y € Y that minimizes
the maximum expected loss of player I, i.e.,

. 5 .
& = min max{E(z,y)}, (13)

which is called player II’s loss-ceiling.
Hence, player I's gain-floor and player II's loss ceiling denoted by

v = ((v1,10,v3,14); s, 25)
and
w = ((wr, wa, w3, ws); tg, 25)-

From Definitions 4, 5 and Eqs.(12) and (13) the maximin strategy z*
and gain-floor 7* of player I and the minimax strategy y* and loss-ceiling w*
of player I can be generate by solving an intuitionistic fuzzy mathematical
programming model constructed as follows:

max{}
i=1
s.t. ¢ i (14)
i=1
(7 >0 (i=1,2, , M)
and
min{w}
( N
ZDZ].CEZ@}JE&VJ (Z: 1,2,...,m)(1’€X)
j=1
s.t. - (15)
> =1
i=1
\ Y >0 (j:1>2a an)?
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respectively, where v and w are TrIFNs.
From Eqs.(14), (15) and theorem [6] can be converted into an intuition-
istic fuzzy mathematical programming models as follows:
max{v}

3%277 (]:1,2,,71)

» (16)

{f m _
>_Di
i=1
T
i=1
(i >0 (1=1,2,...,m)

and
min{w}
("o B
j=1

st 4 — 17
doy=1 )
j=1

ly; >0 (j=1,2,...,n)

respectively. From Definitions 6 and 8 can be transformed into the interval-
valued bi-objective mathematical programming models as follows:

max{V,, 7}

Z(Ezg)a% >v, (j=1,2,...,n)
i;l
Ei')\xi>,lj)\ ‘:1,2,...,71
8 DSOEL ) -
S
=1
;>0 (i=1,2,...,m)

\

the a-cut set and A-cut set of the TrIFNs v and 51‘3’ =@=12,....,m;j =
1,2,...,n) are denoted by
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ﬂa:[y£7yf], /’7)\:[’/271/1):2]’ (5ij)a:[Lﬁ

and

(D) = (L5, (V). Ry, (V)]

respectively. From Eq.(18) can be written as the following interval-valued
bi-object mathematical programming model:

max{[vL, vf], v}, val}

> Lp,(@aizvi (G=12....n)
=1
> Rp (a2 vl (G=12,....n)
=1

L/~ )\;EZ>I/ ‘:172,...,7/11

o A 2, Wz vt ) 1)

2 B, Naizvi (1=12...m)
=1
> mi=1
=1
\‘TZZO (221727 7m)

where vZ vE v} vh and z;(i = 1,2,...,m) are decision variables.

In Eq.(19) two interval-valued objective functions, we will using the linear
weighted averaging method of multiobjective decision making, their weights
are the same as 1/2 hence, Eq.(19) can be aggregated into the interval-valued
mathematical programming model as follows:
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L A LR A
s v, + I/L7 v, +vp

2 2

¢ M
ZLﬁij(a)xl>yL (]:1’27' an)
i;l
ZREij(a)xl > vl (J=12,....n)
i;l

L's (Nx; > v =1,2,...,n

ZR'BU(A)@ >vr (7=1,2,...,n)
i=1
1=1

;>0 (i=1,2,...,m).

From Eq.(20) and Ishibuchi and Ianaka [2] the maximization problem
with the interval- valued objective function can be written as follows:

L A L A R A
v:+vy vi+uvr+vrv+v
ax{ a L « L a R

s.t.

2 4

¢ M

ZLEU(O()'%Z > VL (.] = 1727 :
i=1

> R, (a)as > vl (j=1,2,.
i=1

ZL/EU(/\)xZ >vr (j=1,2,.
i=1

ZRBU(/\)IZ >vy (j=1,2,.
i=1

>

i=1
(220 (i=1,2,....m)

(21)

From Eq.(21) and using the linear weighted averaging method of multi-
objective decision making [13| - [14]| can be written as follows:
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L ) L A R A
max{ﬁya+yL+(1—§)Va+VL+ya +1/R}

2 4

¢ M

YLy (@w=vl (j=1,2,...,n)
i=1

i=1

L's (Nx; >v 1 =1,2,...,n

ZRBU(A)IZ >vy (j=1,2,...,n)
i=1

ST

i=1
>0 (i=12....m)

where ¢ € [0, 1].

From Egs.(10) and (11) we can obtain the a-cut set and A-cut set of the
TrIFNs lN)ij = <(lij,cij,dij,rij);t]5ij, Zﬁij>(i =1,2,....m;5 =1,2,...,n) as
follows:

tﬁij tﬁij
(23)
and
(Dy) = |15, (N, R (V)]
(1= Nag + A =zp )l (1= Ndij + (A —up,)ri; (24)
N 1-— Zﬁij ’ 1-— Zﬁij
respectively.

From Eq.(22) can rewritten as the following linear programming model:
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max{fM +(1-¢)

%+%+ﬁ+%}
2

4

(I (s — @)l + ac;

Sz vk (j=1.2m)

z‘:l( I;z'j p

" (5 a)ri; + ad,;

Z D d JZL’ZZI/f (j=12,....n)

— lp. .

(L= Ney o+ (A= 25 )l

Z d Dis ]$iZV2 (j=1,2,...,n)
s.t.q = I —2zp, (25)

m (1= Ndij+ (A —z5 )13

3 d P g > vy (j=1,2,...,n)

i=1 1=25,

3=

i=1

;>0 (i=1,2,...,m)

where £ € [0,1], o € [0,t5], A € [25,1] and a4+ A € [0, 1].

Using the simplex method of linear programming, we can obtain the opti-
mal solution of Eq.(25), denote by (z*(a, \), v2*, v v}* v3*). where 2*(a, \)
is the maximin strategy of player I at the (o, \)-confidence level. vX* and
vB* are the lower and upper bounds of the gain-floor 7* of player I at the
a-confidence level, that is a- cut set 7% of *. Similarly, v2* and v are the
lower and upper bounds of the gain-floor v* of player I at the A-confidence
level, that is that is A-cut set v} of v*.

In the same way, from Defintion 8 and Eq.(17) can be written as the

following interval-valued bi-objective mathematical programming model:

min{@,, @}

S D)oty <Ta (i=1,2,...,m)
=1

(Eij))\yj <@ (i=1,2,...,m)
> vi=1
=1
\yj>0 (]:1a2> 777/)
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The a-cut set and A-cut set of the TrIFN w are denote by
Wo = [wé,wf} and @ = [wé,wg} ,

respectively.

From Eq.|26] can be written as the folowing interval-valued bi-objective
mathematical programming model:

min{[wk, wf], w}, wh]}

rn
ZLﬁzg(a{)ngw}[é (22172777")
i=1
N Ry (a)y; <wR (i=12,....m)
i=1
/ Ao
ol 21/515(/\)% <w; (i=1,2,...,m)

ZR%ij(/\)yj <wp (1=1,2,...,m)
i=1

> y=1
=1

ly; >0 (j=1,2,...,n)

L , R A

where w? w2 w} wi and y; (1 = 1,2,...,n) are decision variables.

From Eq.(27) and use the linear weighted veraging method of multiob-
jective decisionmaking [13| - [14] can be aggregated into the interval-valued
mathematical programming model as follows:
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L AR
min 4 | Y +wL,wa + wp
2 2

r n
Y Ly, (@)y <wp (i=1,2,...,m)
=1
N Ry (a)y; <wf (i=12,...,m)
=1

/ by .
. 2%]@% <wp (i=12,...,m)

(28)

SRy Ny Swp (i=1,2,...,m)
i=1

> y=1
=1

\ijO (7,:1,2,,77,)

From Eq.(28) and the maximization problem with the interval-valued ob-
jective function [2]| can be written as follows:

R A L A R A
wl+w wk+wr +wlf+w
min{ 0‘2 R a L4 el R}

rn
ZLﬁij(Q)ngwé (7,21,27,771)
1=1

st e Dy = (29)

Y yi=1

i=1
ly; >0 (1=1,2,...,n).

Similary, using the linear weighted averaging method of multiobjective
decision making, from Eqs.(23), (24) and (29) can be further aggregated and
convert into the linear programming model as follows:
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R A L A R A
W+ w W+ wr Fw +w
IIllIl{S « a L « R}

j=1 Dig
" (1= Ney+ O\ —z5 )l
Z( )eij + ( B,,) Ly <w) (i=1,2,...,m)
st = 1—25”_ (30)

“L (L= Ndig + (A= 25, )i

D

j:
n

1
> yi=1

j=1
\ijO (]:1,2,,n)

1—251”

J

For any adequately given values of the parameters &, « and A, using the
simplex medthod of linear programming, we can obtain the optimal solution
of Eq.(30), denote by (y*(a, \), wk* wB w* wr) where y*(a, \) is the min-
imax strategy of player IT at the (a, \)-confidence level. wX* and w? are the
lower and upper bounds of the gain-floor w* of player II at the a-confidence
level, that is a- cut set &% of W*. similarly, w}* and wy* are the lower and
upper bounds of the gain-floor w* of player II at the A-confidence level, that

is that is A- cut set w} of w*.

4 An application to voting share problem

In this examples 1 and 2, using Eqs.(25) and (30) to solve the problem.
Example 1.

Assume that there is an election where two major political parties M and
W participate and total number of voters in that regions is stable. It means
that the increase in percentage of votes for one political party results in the
same for the other political party. Suppose M has two strategies as
p1: the campaign by big rallies and superstar.
po2: co-operating with other small political parties to reduce secured votes of
the opposition.
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Simultaneously W takes two strategies:
71: Making lot of promises to the people.
To: campaigning by use of mixed media such as publication and television.

Let us consider matrix game D with payoffs of TrIFN, where the payoff
matrix of the political parties M is given as follows:

5 _ [ ((155,165,175,180);0.7,0.2) (130,146,150, 165);0.6,0.2)
| ((75,85,95,100);0.6,0.3)  ((160,170,184,190);0.8,0.1)

where the element ((155,165,175,180):0.7,0.2) in the matrix D is TrIFN
represent that when M choose the strategy p; and W choose the strategy
then votes of the political parties M is between 155 and 180 the maximum
confidence level and minimum non-confidence level of the head election ex-
ponent of D are 0.7 and 0.2, respectively. In this case, the hestiance degree
is 0.1 other elements in D may be identically explained.

From eqs.(25) and (30) the parameterized linear programming is obtained
as follows:

e §I/£+V2 +(1_€)V£+V2—Zl/f+y§}
(0.7 — a);575 1 16504361 . (0.6 — )75 + 8504362 .
(0.6 — a)130 + 1460 (0 8 — a0)160 +170a
1%
0.6 0.8 T2 = Va
(0.7 — )180 + 1750 (0 6 — a)100 + 950 o
X 1%
0.7 0.6 2= "a
(0.6 — )165 + 1500 (0 8 — a)190 +184a g
X 1%
0.6 2= "a
(1= A\)165+ (A — 0. ) (1 /\)85+()\ 0.3)75 \
s.t. 0 8 T2 > VL
(1 —A)146 + (A —0.2)13 (1 )\)170 + (A—0. 1)160 .
0 0.9 Hg) > vy,
(1—M\)175 +'%/\ — 0. 2)180 (1 )95 + (A — 0. 3)100 \
08 0.7 w2 = VR
(1—)\)150+()\—02)165 (1 A)184 + (A — 0.1)190
08 0.9 T2 = VR

(31)
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and
i £w§+w§ +(1_5)w£+w2+w§+w§
2 4
( (0.7 — a)155 + 165 0.6 — )130 + 146
( a)07 + ozy1+ ( a)06 + ay2§w£
(0.6 — )75 + 85« (0.8 — a)160 + 170« .
6 Y1 + Y2 S Wy
(07—&%80+1ﬂmf (0.6 — a)165 + 150a "
07 Y1+ 0.6 Y2 < wy
(0.6 — a)100 + 95 (0.8 — @)190 + 184« R
06 Y+ 3 Y2 < wy
(1 —X)165 + (X — 0.2)155 (1= X)146 + (XA — 0.2)130 \
s.t. 03 Y1+ 3 Y2 S wp
(1—X)85+ (A—0.3)75 (L—MNO+&—ano \
0.7 it 0.9 Y2 = Wi
(1—X)175+ (A —0.2)180 (1 —A)150 + (A — 0.2)165 \
0’ Y1+ 0’ Y2 < Wx
(1—X)95+ (A —0.3)100 (1 —A)184 + (A —0.1)190
0.7 nt 0.9 Y2 = h
Y1 +y2=1
Y1 2,92 20
(32)
respectively.

For the given £ = 0.8, « € [0,0.6] and A € [0.3,1]. The greatest possible
value of o and the smallest possible value of A are computed as follows:

min{tp, |i = 1,2;J = 1,2} = min{0.7,0.6,0.6,0.8} = 0.6

and

max{zp_|i =1,2;J =1,2} = max{0.2,0.2,0.3,0.1} = 0.3

respectively.

Solving Egs.(31) and (32) we computed by simplex method for linear
programming. The result as follows:

Player M’s gain-floor 7* stay in the ranges g<*a,>\> = [136.82,161.82]. When

(a,A) = (0.6,0.3),77, ,) = [148.18,157.75] is the most possible value of the
gain-floor 7* of player M, where 2*7 (a, \) = (0.824,0.176). And Player W’s
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loss-ceiling @* stay in the ranges wf, ,, = [139.76,168.57]. When (a,\) =
(0.6,0.3) , Wi, = [150.05,159.13] is the most possible value of the loss-
ceiling w* of player W, where y*T(a,\) = (0.306,0.694). Thus, the ap-
proximate values of player M’s gain-floor v* and player W’s loss-ceiling
&* which are TrIFNs are 7 = ((136.82, 148.18, 157.75, 161.82): 0.6, 0.3) and
w* = ((139.76, 150.05, 159.13, 168.57); 0.6, 0.3), respectively.

Example 2

From example 1 we will reduced matrix game D with payoffs of TrIFN
to matrix game D of TIFN as follows:

5 _ [ ((155,170,180);0.7,0.2) (130,148, 165):0.6,0.2)
~ | ((75,90,100);0.6,0.3)  {(160,177,190);0.8,0.1)

From eqs.(25) and (30) the parameterized linear programming is obtained
as follows:

e a+VL (1_€)VQL+V£+V§+V§}
4
( —
(0.7 — a)O1575 + 170a (0 6 — )75+ 9004962 > b
(0.6 — a)130 + 148 (0 8 — 03160 +1770
To = U,

0.6 0.8 «

(0.7 — a)180 + 170a (0 6 — )100 + 90
i) I/R

0.7 0.6 -

(0.6 — a)165 + 148 (0 8 — a)190 +177a 4
1%

0.6 2 =Ya
(1—M\)170+ (A — 0. ) (1 )\)90+()\ 0.3)75 \
(1—A)148 + (A —0.2)13 (1 )\)177+()\ 0.1)160

0.8 0,9
(1—A\)170 + (A — 0. 2)180 (1 )90 + (A — 0. 3)100 -

0.8 0.7 V2= Ve
(1—A)148 + (A — 0. )165 (1 M177 + (A —0.1)190

0.8 0.9 Y2 =R
T+ To = 1
T > 0, i) >0

(33)

and
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in gwf—i—w}% L _g)wg;—irw%—irwf—l—w}%
2 4
0.7 — a)155 + 170 0.6 — a)130 + 148
( a)07 + ozy1+ ( a)06 + ay2§w£
(0.6 — )75 + 90« (0.8 — a)160 + 177a .
G Y1+ Y2 < wy
(0.7 — 09)'180 + 170 (0.6 — a)165 + 148a "
0.7 it 0.6 Y2 < o
(0.6 — a)100 + 90« (0.8 — a)190 + 177« R
0.6 ot 0.8 Yo < o
(1—X)170+ (A — 0.2)155 (1= X)148 + (A — 0.2)130 \
(1—X)90 + (A —0.3)75 (1= \)177 + ?A‘ —0.1)160 \
0 7 Y1 + 0 9 Y2 S L
(1= X)170 + (X — 0.2)180 (1 —X)148 4+ (A — 0.2)165 \
0,8 nt 0,8 Y2 = Wi
(1—A)90 + (A — 0.3)100 N (1 —X)177+ (A —0.1)190 <
w
0.7 h 0.9 Y2 =h
Y1 +y2 =
Y1 >7y2 >0
(34)
respectively.

Solving Eqs.(33) and (34) we computed by simplex method for linear
programming. The result as follows: Player M’s gain-floor 7* stay in the
ranges 77, ,, = [136.82,161.82]. When (a,A) = (0.6,0.3), 77, ,, = 152.22 is
the most possible value of the gain-floor 7* of player M, where z*7(a, \) =
(0.806,0.194). And Player W’s loss-ceiling w* stay in the ranges C)z‘aN =
[139.76,168.57]. When (o, A) = (0.6,0.3) , ], 5y = 155.13 is the most possi-
ble value of the loss-ceiling @* of player W, where y* (a, \) = (0.284,0.716).
Thus, the approximate values of player M’s gain-floor 7* and player W’s loss-
ceiling w* which are TrIFNs are v* = ((136.82,152.22,161.82);0.6,0.3) and
&* = ((139.76,155.13, 168.57); 0.6, 0.3), respectively.

From examples 1 and 2 we will find the estimate values of player M’s
gain-floor 7* and player W’s loss-ceiling w* for matrix game with payoffs of
TIFN and matrix game with payoffs of TrIFN are a little different. The
matrix game with payoffs of TIFN is the most possible single value, while
the matrix game with payoffs of TrIFN is the range the most possible.
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5 Conclusion

Game theory is about the strategy of the decision of player. Good decisions
require accurate and precise data. But in some cases the information available
to a fuzzy uncertainty will affect the decision and payoffs.

In this work we have examples of two-person zero-sum games which only
two players who have defined the strategy of each player on two strategies. To
find the best response we have used the concept of the cut sets and concept of
solution of matrix games with payoffs of TrIFNs. Intuitionistic fuzzy linear
programming models are established for two playes, which change into bi-
objective parameterized linear programming model. Two linear programming
models are constructed to generate the maximin and minimax strategies for
players it is seen the solving TrIFN matrix games be comes to solving a pair
of intuitionistic fuzzy linear programming problems. This is one example
with respect to the election. We also can apply to the issue of market share,
inventory management|15], [16], finance[17], management and economics.
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