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Abstract: 
This paper presents a novel modeling technique for a VTOL electromechanical 
nonlinear dynamical system, based on fractional order derivatives. The proposed 
method evaluates the possible fractional differential equations of the electromechanical 
system model by a comparison against actual measurements and in order to estimate 
the optimal fractional parameters for the differential operators of the model, an extended 
Kalman filter was implemented. The main advantages of the fractional model over the 
classical model are the simultaneous representation of the nonlinear slow dynamics of 
the system due to the mechanical components and the nonlinear fast dynamics of the 
electrical components. 
 
Keywords: Fractional Calculus; Dynamical Electromechanical System; Fractional 
Parameters Estimation; Extended Kalman Filter. 
 
Resumen: 
Este artículo presenta una novedosa técnica de modelamiento dinámico no lineal, 
basada en derivadas de orden fraccional, para un sistema electromecánico de tipo 
VTOL. El método propuesto estudia la posibilidad de modelar dinámicamente el 
sistema electromecánico mediante ecuaciones diferenciales de carácter fraccional 
realizando una comparación con mediciones reales, de tal forma que con base en estas 
mediciones y un filtro de Kalman extendido, nosotros logremos  estimar los parámetros 
fraccionales óptimos para los operadores diferenciales fraccionales. La ventaja 
principal del modelamiento fraccional con respecto al modelamiento clásico, radica en 
que el primero logra representar mejor las diferentes dinámicas lentas y rápidas 
presentes en los sistemas electromecánicos debidas a las componentes mecánicas y 
eléctricas respectivamente. 
 
Palabras clave: Cálculo Fraccional; Sistema Dinámico Electromecánico; Estimación 
de Parámetros Fraccionales; Filtro de Kalman Extendido. 
 

1. Introduction 
 
Fractional calculus is a field of mathematical analysis in which integro-differential 

operators of arbitrary order have an essential role; this field goes back to the times of 

Leibniz, around 1695, but in the last few decades it has become a very active research 

topic. Some of the current applications are in viscoelastic materials, heat transfer and 

diffusion, wave propagation, electrical circuits, electromagnetic theory, modeling and 

control of dynamical systems to mention only a few (Miller and Ross, 1993; Tenreiro et al., 

2010; Rahimy, 2010). 

This research focuses on the modeling of electromechanical systems by fractional 

derivatives. It is motivated and somewhat related to the works by several authors, namely: 
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1. (Gómez et al., 2016): The authors present an analytical and numerical study of 
the differential equations for an RLC electric circuits dynamical model by fractional 
derivatives. The considered system does not include mechanical components and 
there are no actual measurements. 

2. (Chen et al., 2017): This reference introduces a design for DC-DC converters 
based on fractional order derivatives. There are comparisons with actual 
frequency measurements. 

3. (Schäfer and Krüger, 2006): The behavior of an iron core with saturation is 
evaluated based on changes in the frequency of the electromagnetic field, 
behavioral data is saved and used to design a fractional core circuit model. 
Although in this study actual measurements are used, there are no mechanical 
components in the system and the fractional parameters are not fully explained. 

4. (Özkan, 2014) and (Swain et al., 2017): These references propose fractional PID 
controls for electromechanical systems with integer order models. As proposed 
by (Podlubny, 1999), it is important to look for an alternative fractional derivatives 
model, since the proposed controls exhibit poor performance. 

5. (Lazarevi et al., 2016) and (Petrás, 2011): They show the direct relationship 
between modeling based on fractional derivatives and duality mechanical-
electrical of electromechanical systems. The model identification is made in 
frequency domain. 

 
The aim of this paper is the modeling of a dynamical electromechanical system by 

fractional differential equations. Furthermore, the fractional orders of the derivatives are 
optimal and are estimated by an extended Kalman filter (EKF), based on actual time 
measurements. As far as we know, this approach is new and worthy.  

The paper is organized as follows: Section 2 introduces the fractional derivatives by 
Grünwald-Letnikov and Caputo, the dynamical models for a VTOL electromechanical 
system and the EKF estimation procedure. The numerical results are the subject of Section 
3 and Section 4 is devoted to the conclusions. 

 
2. Methodology 
 
Firstly, we introduce the fractional order derivatives in the sense of Grünwald-Letnikov and 
Caputo. Subsequently we consider the mathematical model for the VTOL 
electromechanical system and the method of parameter estimation known as extended 
Kalman filter.  

 
2.1 Definitions of fractional order derivatives 

 
In the development of the fractional calculus several definitions for the arbitrary order 

derivatives and integrals have appeared. The best known are: the Grünwald-Letnikov (GL), 
the Caputo (C) and the Riemann-Liouville (RL) definitions. The first two are the ones 
implemented in this work (Podlubny, 1998). 

 
2.1.1 Grünwald - Letnikov derivative 

 

Let   𝜈∈ℝ. The Grünwald-Letnikov fractional derivative of order ν of a real function f is 
basically an extension of the backward finite difference formula (Swain et al., 2017). It is 
given by 
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where nh = t - a. 
 

This definition can be easily approximated by taking a discretization parameter h small 
enough. The numerical approximation is given by 

 

 
where m ï 1 < ɜ < m. 
 

2.1.2 Caputo derivative 
 

Let 𝜈∈ℝ. The Caputo fractional derivative of order ν of a real function f is given by 
 

 
 
where m ï 1 < ɜ < m. 
 

As stated in (Li and Ma, 2013) and (Podlubny, 1998) the Caputo initial value problem 
 

{
𝐷𝑎
𝐶
𝑡
𝜈𝑦(𝑡)=𝑓(𝑡), 0<𝜈<1

𝑦(0)=𝑦0
 

 

is equivalent to the Volterra integral equation of the second kind, given by 
 

𝑦(𝑡)=𝑦0+
1

𝛤(𝑣)
∫(𝑡−𝜏)𝜈−1𝑓(𝑦(𝜏))𝑑𝜏
𝑡

0

. 

The Caputo derivative can be approximated by a quadrature rule like a trapezoidal rule, i.e. 
 

𝑦(𝑡𝑘)=𝑦(𝑡𝑘−1)+
ℎ𝜈

2𝛤(𝑣)
𝑓(𝑦(𝑡𝑘−1)). 

 

Now we proceed to the modeling phase of our work. 
 

2.2 Modeling of an electromechanical system 

 
A Qnet vertical take-off and landing (VTOL) is the electromechanical system 

considered here. This system consists on a speed fan with helices (motor actuator) adjusted 

to a fixed base by one arm and a counterweight on the other side as it is shown in Figure 1. 

The air flow through the propellers affects the dynamics of the system, and changes the 

angular position of the weight by the rotation of the arm around the pivot. Some applications 

of this system in real world devices are helicopters, rockets, balloons, and harrier jets 

(Apkarian et al., 2011). 
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Figure 1. Force diagram for the electromechanical system. 

 
2.2.1 Physics of the system 

 
The mechanical, electrical and aerodynamic laws that explain the behavior of the 

system, allow us to characterize the nonlinear dynamical model of the system by the 

following set of equations: 

 

𝜔𝑏=
𝐾1𝜔𝑟

2−𝐾2𝜔𝑟
2|𝑠𝑖𝑛𝜃|−𝐶𝑝𝑐𝑜𝑠𝜃−𝐵𝑏𝜔𝑏−𝐾𝜃

𝐽𝑏
 

𝜃=𝜔𝑏 
 

𝑖𝑎=
𝑉−𝐾𝑒𝜔𝑟−𝑅𝑎𝑖𝑎

𝐿𝑎
 

𝜔𝑟=
𝐾𝑡𝑖𝑎−𝐵𝑟𝜔𝑟

𝐽𝑟
. 

 
This set of equations is denoted (NLS). In search of a nearby simpler set of equations, 

(Apkarian et al., 2011) propose a simplification for the first and the third equations given by 
 

𝜔𝑏=
−𝐾4𝑖𝑎−𝐵𝑏𝜔𝑏−𝐾𝜃

𝐽𝑏
 

 

and Ohm's Law 𝑖𝑎=
𝑉

𝑅𝑎
 respectively. 

 
The modification of the first equation corresponds to the replacement of the thrust 

𝐾1𝜔𝑟
2 and the drag 𝐾2𝜔𝑟

2|𝑠𝑖𝑛𝜃| by the standard torque motor relation 𝐾4𝑖𝑎.  

Based on this work, we propose a simplified system of equations which is nonlinear. 

It maintains the gravitational torque 𝐶𝑝𝑐𝑜𝑠𝜃 in the first equation and takes into account the 
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counter-electromotive torque in the arm and rotor angular velocities. The new simplified 

nonlinear system, denoted (SNLS), is  

 

𝜔𝑏=
𝐾3(𝑖𝑎−𝑇𝑐)−𝐶𝑝𝑐𝑜𝑠𝜃−𝐵𝑏𝜔𝑏−𝐾𝜃

𝐽𝑏
 

 

𝜃=𝜔𝑏 
 

𝑖𝑎=
𝑉−𝐾𝑒𝜔𝑟−𝑅𝑎𝑖𝑎

𝐿𝑎
 

 

𝜔𝑟=
𝐾𝑡(𝑖𝑎−𝑇𝑐)−𝐵𝑟𝜔𝑟

𝐽𝑟
 

 
The variables and parameters are described in Tables 1 and 2 which were identified 

by using the methodology proposed in (Apkarian et al., 2011). Since the actual 

measurements of the system are for the variables 𝑖𝑎 and 𝜃, then our analysis is based on 

these two variables. 

 
Table 1. Dynamical variables of the VTOL model 

Variable Description Unit 

𝜃 Arm angular position [𝑟𝑎𝑑] 
𝜔𝑏 Arm angular velocity ] 

𝑖𝑎 DC motor armature current [𝐴] 
𝜔𝑟 DC motor angular velocity [𝑟𝑎𝑑𝑠⁄] 
𝑉 DC motor armature voltage [𝑉] 

 
Table 2. Parameters of the VTOL model 

Variable Description Unit Value 

𝐽𝑏 Arm inertia moment [𝐾𝑔⋅𝑚2] 0.0035 

𝐵𝑏 Arm viscous resistance [𝑁⋅𝑚⋅𝑠] 0.0020 

𝐾 Arm damping constant [𝑁⋅𝑚] 0.0289 

𝐾1 Thrust  constant [𝜇𝑁⋅𝑚⋅𝑠] 6.2900 

𝐾2 Drag  constant [𝜇𝑁⋅𝑚⋅𝑠] 2.5800 

𝐾3 Aerodynamics constant (NL) ] 0.0127 

𝐾4 Aerodynamics constant (L)  ] 0.0027 

𝐶𝑝 Weight torque constant [𝑁⋅𝑚] 0.0228 

𝐿𝑎 Motor inductance [𝐻] 0.0538 

𝑅𝑎 Motor resistance ] 2.0000 

𝐾𝑒 Electromotive force constant [𝑉⋅𝑠] 0.0189 

𝐽𝑟 Motor inertia moment [𝜇𝐾𝑔⋅𝑚2] 4.9000 

𝐵𝑟 Motor viscous resistance [𝜇𝑁⋅𝑚⋅𝑠] 495.10 

𝐾𝑡 Motor torque constant [𝑁⋅𝑚 𝐴⁄] 0.0189 

𝑇𝑐 Helix charge torque [𝐴] 0.4421 

 
The estimation of the fractional orders of derivatives of the model is made by 

an extended Kalman Filter (EKF) procedure for which we follow (Sierociuk and 

Dzieliski, 2006); here a fractional order parameter estimation is proposed by the 

authors, this methodology is based on the Grünwald-Letnikov definition and uses an 

EKF structure which is described below. 
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2.2 EKF structure estimation 
 
Consider the following discrete nonlinear system: 

 

𝑥𝑘=𝑓𝑘−1(𝑥𝑘−1,𝑢𝑘−1,𝑤𝑘−1) 
 

𝑦𝑘=ℎ𝑘(𝑥𝑘,𝑣𝑘) 
 

𝑤𝑘∼𝑁(0,𝑄𝑘) 
 

             𝑣𝑘∼𝑁(0,𝑅𝑘) 
where: 

¶ 𝑓𝑘−1:ℝ
𝑛×ℝ𝑟×ℝ𝑛→ℝ𝑛 is a discrete vector field that relates the  system state 

variables at instant 𝑘, with themselves and the uncertainty of modeling at instant 𝑘−1. 
¶ ℎ𝑘−1:ℝ

𝑛×ℝ𝑝→ℝ𝑝 is a discrete vector field that relates the  system state variables 

with the output variables. 

¶ 𝑤𝑘 and 𝑣𝑘 represent modeling uncertainty and measurement noise respectively. 

¶ 𝑄𝑘 and 𝑅𝑘 are the matrices of variance in modeling uncertainty and measurement noise 

respectively. 
 

There are a prediction step and a correction step denoted by the indexes (−) and (+) 

respectively. First the initial conditions for the EKF are determined by the following 

equations where 𝑃 is the covariance matrix of the states. 
 

𝑥0
+=𝐸[𝑥0] 

 

𝑃0
+=𝐸[(𝑥0−𝑥0

+)(𝑥0−𝑥0
+)𝑇] 

 

Let 𝐹𝑘−1 be the Jacobian matrix of 𝑓at time step 𝑘−1. Thus, the prediction step is 
given by 

 

𝑃𝑘
−=𝐹𝑘−1𝑃𝑘−1

+ 𝐹𝑘−1
𝑇 +𝑄𝑘−1 

 
𝑥𝑘
−=𝑓𝑘−1(𝑥𝑘−1

+ ,𝑢𝑘−1,0) 
 

Finally, the correction step or state estimation is given by  
 

𝐾𝑘=𝑃𝑘
−𝐻𝑘
𝑇(𝐻𝑘𝑃𝑘

−𝐻𝑘
𝑇+𝑅𝑘) 

 
𝑃𝑘
+=(𝐼−𝐾𝑘𝐻𝑘)𝑃𝑘

− 

 
𝑥𝑘
+=𝑥𝑘

−+𝐾𝑘(𝑦𝑘−ℎ𝑘(𝑥𝑘,0)) 
 

where 𝐻𝑘 is the Jacobian matrix of ℎ at time step 𝑘. 

 
It should be noted that the state estimation requires system measurements and an 

idea of the noise variance present in these measurements and in the model. 
 

3. Results and discussion 
 

In Figures 2 and 3, a time step response of the three models are shown, this 

simulation was done by applying Euler method with step size 𝑇=0.0067[𝑠], and an input 

voltage 𝑉 4.5[𝑉] , which are the same step size and voltage of the actual measurements, 

which are also shown in the figures. The best agreement with experimental results is 
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obtained by the simplified nonlinear model (SNLS) and Table 3 is a short summary of this 

fact. 

 
Figure 2. 𝜃 Measures and models, step time response. 

 

 
Figure 3. 𝑖𝑎 Measures and models, step time response. 

 

Table 3. RMSE 𝜃 and 𝑖𝑎 for different models 

Model RMSE 𝜃 RMSE 𝑖𝑎 

NL. 3.5337 0.0937 

Simpl. NL. 1.4075 0.0937 

Simpl L. 2.6982 0.1285 

 
3.1 Fractional model for the system 

 
A fractional version of the simplified nonlinear model is denoted (FSNLS) and is 

given by  

 

𝑑𝛼𝜔𝑏
𝑑𝑡𝛼

=
𝐾3(𝑖𝑎−𝑇𝑐)−𝐶𝑝𝑐𝑜𝑠𝜃−𝐵𝑏𝜔𝑏−𝐾𝜃

𝐽𝑏
 

𝑑𝛽𝜃

𝑑𝑡𝛽
=𝜔𝑏 
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𝑑𝛾𝑖𝑎
𝑑𝑡𝛾
=
𝑉−𝐾𝑒𝜔𝑟−𝑅𝑎𝑖𝑎

𝐿𝑎
 

𝑑𝜈𝜔𝑟
𝑑𝑡𝜈

=
𝐾𝑡(𝑖𝑎−𝑇𝑐)−𝐵𝑟𝜔𝑟

𝐽𝑟
. 

 

To evaluate the performance of the new model a thorough sensitivity analysis is 

implemented. The unknown parameters are 𝛼, 𝛽,𝛾 and 𝜈 in (𝐹𝑆𝑁𝐿𝑆) which are allowed to 

take values in [0.1,1]. One of the main observations is that if the first and third equations in 

(FSNLS) had fractional derivatives, the matching with measurements is optimal. Figures 4 

and  5 illustrate this fact. 

 
Figure 4. 𝜃 sensitivity analysis when 𝛼 changes. 

 

 
Figure 5. 𝑖𝑎 sensitivity analysis when 𝛾 changes. 
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Based on a sensitivity analysis reported in (Rendón, 2018), the fractional model is 

given by (FSNLS) with 𝛽=1 and 𝜈=1. That is, the second and fourth equations are not 

fractional. The selection of the fractional derivative orders 𝛼 and 𝛾 is made by an extended 

Kalman filter procedure described below. 

 
3.2 Parameter Estimation 

 
In (Sierociuk and Dzieliski, 2006) it is shown that the EKF structure is strongly coupled 

to the fractional order parameters of the GL definition. The additional terms in the definition 

are considered as modeling noise and the covariance matrix 𝑄 is modified by a neural 

network. We take a different strategy given below. It consists on a discrete redefinition of 

model (FSNLS) changing GL derivate definition to Caputo derivative definition and 

parameters 𝛼 and 𝛾 are included as unknown parameters of the system. 

𝜔𝑏(𝑘+1)=𝜔𝑏(𝑘)+
ℎ𝛼(𝑘)

2𝐽𝑏𝛤(𝛼(𝑘))
(𝐶𝑝𝑐𝑜𝑠(𝜃(𝑘))+𝐾3(𝑖𝑎(𝑘)−𝑇𝑐)−𝐵𝑏𝜔𝑏(𝑘)−𝐾𝜃(𝑘)) 

 

𝜃(𝑘+1)=𝜔𝑏(𝑘)ℎ+𝜃(𝑘) 

 

𝑖𝑎(𝑘+1)=𝑖𝑎(𝑘)+
ℎ𝛾(𝑘)

2𝐿𝑎𝛤(𝛾(𝑘))
(𝑉(𝑘)−𝑅𝑎𝑖𝑎(𝑘)−𝐾𝑒𝜔𝑟(𝑘)) 

𝜔𝑟(𝑘+1)=(𝐾𝑡(𝑖𝑎(𝑘)−𝑇𝑐(𝑘))−𝐵𝑟𝜔𝑟(𝑘))
ℎ

𝐽𝑟
+𝜔𝑟(𝑘) 

 

𝛾(𝑘+1)=𝛾(𝑘) 

 

𝛼(𝑘+1)=𝛼(𝑘). 

 

 

If we also have the following measured variables and matrix variances of 

measurement and modeling 

 

𝑦𝑘=[
𝜃(𝑘)

𝑖𝑎(𝑘)
] 

𝑄=𝑑𝑖𝑎𝑔(0.01,0.001,1,1,1×10−5,1×10−5)                                           

𝑅=𝑑𝑖𝑎𝑔(0.1,0.1) 

   

then it is possible to estimate the fractional parameters 𝛼 and 𝛾 based on EKF 

methodology.  Figure 6 illustrates this point. No attempt on the identification of fractional 

orders 𝛽 and 𝜈 was made due to the results of the sensitivity analysis. Notice that the 

choices of 𝑄 and 𝑅 are based on the scaling of the measurements and some knowledge on 

the measurements and model noise variation. 

Figure 6 exhibits stationary behavior for parameter 𝛼 and a less stationary trajectory 

for 𝛾. Several fractional orders can be selected according to our results. Our pick is 𝛾=0.69 

and 𝛼=0.898 wich are among the best considered. 

Table 4 and Figure 7 summarize the results. They indicate that the fractional model 

with GL derivative is an improvement over the classical model for this electromechanical 

device. We believe our claim can be verified by other researchers. Notice that the fractional 
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model detects the initial current overshoot and none of the classical models introduced 

above are able to do that. 

 
Figure 6. Fractional parameters 𝛾 and 𝛼 estimation. 

 

 
Figure 7. Fractional models VS integer model (parameter estimation). 

 

Table 4. RMSE 𝜃 and 𝑖𝑎 for fractional models 

Fractional Model  RMSE 𝜃 RMSE 𝑖𝑎 

GL 𝛼=0.9, 𝛾=0.7  1.0964 0.0961 

Caputo 𝛼=0.9, 𝛾=0.7 2.2528 0.0890 

GL 𝛼=0.898, 𝛾=0.69  1.1012 0.0966 

Caputo 𝛼=0.898, 𝛾=0.69 2.2109 0.0888 
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4. Conclusions 
 
In this paper a new methodology for fractional modeling of a dynamical 

electromechanical nonlinear system is proposed. As a result, it turns out that fractional order 

derivatives in two of the four equations of system (FSNLS) provide an improvement over 

classical models. We reach this conclusion by considering actual measurements and a 

fractional parameter estimation based on an extended Kalman Filter (EKF) process. 
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