
Arid Zone Journal of Engineering, Technology and Environment. August, 2013; Vol. 9: 17-26 
Copyright© Faculty of Engineering, University of Maiduguri, Nigeria. 
Print ISSN: 1596-2490, Electronic ISSN: 2545-5818  
www.azojete.com.ng 

 

17 
 

DESIGN AND IMPLEMENTATION OF MOD-6 SYNCHRONOUS COUNTER 

USING VHDL   

 

Dibal, P.Y. 

(Department of Computer Engineering, University of Maiduguri, Maiduguri, Nigeria) 

e-mail address: yoksa77@gmail.com 

 

Abstract 

This paper deals with the design of a MOD-6 synchronous counter using VHDL (VHSIC Hardware Description 

Language). The VHSIC stands for Very High Speed Integrated Circuit. Using this approach, the behaviour of 

the counter is the most important aspect of the design. In the first section, the paper introduced counters in 

general, and their areas of specialization, like frequency synthesizers. The synchronous counter was then 

introduced, stating the behaviour of the flip-flops that make the counter. The modulus of a counter was defined. 

In the second section, the Xilinx ISE (Integrated Simulation Environment) and the ISIM (Integrated Simulator) 

were presented and briefly described with their respective snapshots. The structure of a typical VHDL code was 

presented, which included LIBRARY, ENTITY, and ARCHITECTURE. Each of these structures was then 

briefly described. The main work in this paper was then presented. The count sequence steps were stated as 

. VHDL was used to model the counter to count through six steps, outputting count 

values according to desired steps. The hardware implementation of the design was presented, where the 

implementation process was described, with a supporting diagram, followed by the floor-planning technique, in 

which the PORTS described in the VHDL design were assigned to the physical pins of the XC3S1000 FPGA 

(Field Programmable Gate Array) chip. The final steps of the hardware implementation process were then 

presented. These include bitstream generation and download to target device. The third section of the paper 

presented the results obtained. Simulation/timing results of the design were presented, showing the output of the 

counter at each state with respect to the clock signal. The result of the synthesis of the design was presented, 

which showed the FPGA area with the exact location of the pins on the FPGA chip. Finally, the fourth section 

presented the conclusion arrived at, in respect of the design that was carried out. 

Keywords: VHDL, MOD-6 Synchronous counter, FPGA, Xilinx ISE, XC3S1000, Spartan-3 

1. Introduction 

In almost all digital systems, counters are extensively used in areas such as frequency 

synthesizers, analog-to-digital converters and circuits used in communication systems (Gifty 

and Kashwan, 2012). A synchronous counter in particular, is the counter type in which all the 

flip-flops in the counter change their state in synchronism with the input clock signal (Anil, 

2007). The clock signal in a synchronous counter is simultaneously applied to all the clock 

input of the flip-flops (Rabiul and Jabayer, 2012). 

The modulus (MOD number) of a counter according to Anil (2007) is defined as the number 

of different logic states the counter goes through before it comes back to the initial state in 

order to repeat the count sequence. Also, from (Anil, 2007), an n-bit counter is said to have a 

modulus of 2
n
, when it goes through all its natural state, without skipping any of the states. 

Obviously, such a counter is said to have a modulus that is an integral power of 2. The 

information provided by the modulus number of a counter can be used to determine the 



Dibal: Design and Implementation of MOD-6 Synchronous Counter using VHDL.  AZOJETE, 9: 17-26, 2013 

18 
 

number of flip-flops required to build such a counter. However, since this paper focuses on 

the application of VHDL (VHSIC Hardware Description Language) to the design of a MOD-

6 counter, the use of the MOD number of a counter to determine the number of flip-flops 

required will not be looked at in details. 

The objective of this paper is to design a highly and easily modifiable MOD-6 synchronous 

counter using VHDL in the Xilinx ISE. The choice of VHDL is because circuits designed in 

hardware description languages like VHDL are highly portable in the sense that the count 

sequence of the counter can be easily changed from the source code to suite different 

applications of the same counter. 

2. Materials and Methods 

The VHDL was used to design a MOD-6 synchronous counter in the Xilinx ISE. Drawing 

from the definition of the MOD number of a counter, a MOD-6 counter goes through six 

logic states before going back to the initial state to repeat the count sequence, as shown in 

Figure 1: 

 

The behaviour of the circuit is such that the circuit starts from state 1 (which is actually 

binary 0), and then moves to the next state at the next appropriate clock signal. For the 

synchronous counter design presented in this paper, the counter will be able to go through the 

following steps: . 

2.1 Xilinx ISE 

The Xilinx ISE (Integrated Simulation Environment) provides the environment for VHDL, in 

which the design of the synchronous counter is usually carried out using the text based 

approach of hardware description (Xilinx , 2011). The environment allows for checking of 

syntax error in the model; it also allows for simulation using the ISIM (Integrated Simulator) 

plug-in, where the design of the model can be verified using waveform analysis. A snapshot 

of the Xilinx ISE and the ISIM are shown in Figures 2 and 3 

 

Figure 1: Behaviour of MOD-6 counter 



Dibal: Design and Implementation of MOD-6 Synchronous Counter using VHDL.  AZOJETE, 9: 17-26, 2013 

19 
 

 

 

 

 

2.2 Structure of VHDL code 

A typical VHDL code is made of the following sections (Pedroni, 2004): 

 LIBRARY  

 ENTITY 

 ARCHITECTURE 

The Library is where commonly used codes are placed; and by this means, they become 

available and reusable in other designs. The library structure is shown in Figure 4. 

 

 

Figure 2: Xilinx ISE 

Figure 3: ISIM Plug-in 

Figure 4: VHDL library structure 



Dibal: Design and Implementation of MOD-6 Synchronous Counter using VHDL.  AZOJETE, 9: 17-26, 2013 

20 
 

The Entity is where the design specifications of all input and output pins (PORTS) are made. 

That is, it is here the interface of the circuit to other circuit components or the outside world 

is made (Pedroni, 2004). The Architecture is where the description of how the circuit should 

behave or function is implemented. It has two parts: a declarative part, which is optional, 

where signals and constants are declared; and a code part, which describes the actual 

behaviour of the circuit (Pedroni, 2004) 

2.3 Design implementation 

The synchronous counter will be designed to go through the following steps as stated earlier:  

 

The implementation of the design is achieved by modelling the counter using VHDL, as 

shown in Figure 5. 

From the code listing for the design implementation, it can be seen that the model has two 

processes. The first process outputs the counter value when the clock is active high, as the 

count goes through the sequence of count by moving from one state to the next state. The 

second process moves the counter from the present state to the next state by transferring the 

content of the user input to the next state variable, and pointing the counter to the next state to 

go to. The VHDL design shown in (Figure 5) has three parts: the library part, the entity part, 

and the architecture part. 

In the Library part of the design, the IEEE library was declared, which contains functions, 

procedures as defined by the IEEE standard. Under the ieee library, the design will use 

std_logic_1164 package which specifies a multilevel logic system design. In the Entity part, 

the design will have only output ports because the synchronous counter designed have no 

data input. The output PORTS are clock, reset, and counterOUT (defined as 3-bit wide). 

The Architecture of this design has both declarative and code parts. In the declarative part, a 

user-defined data type called sequence_step is declared. It stores the six states the counter 

will pass through. Next, two signals, namely sequence_reg and sequence_next, both them 

being of the sequence_step step type, are declared. They store the present and next sequence 

of the counter. Finally, a next state signal, which is a type of standard_logic_vector is 

declared. It stores the next state of the count sequence. 

The code part of the Architecture has two processes. The first process monitors the reset input 

and the clock input signals. Members of the sensitivity list of this process are ‘clk’, and 

‘reset’. The second process has a CASE structure, which handles each of the possible states 

of the count sequence. Members of the sensitivity list are sequence_reg, and nextstate. 

 

 

 



Dibal: Design and Implementation of MOD-6 Synchronous Counter using VHDL.  AZOJETE, 9: 17-26, 2013 

21 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Modelling of MOD-6 synchronous counter 

2.4 Hardware Implementation 

The implementation of this design was carried out on an FPGA (field programmable gate 

array) chip, specifically on the XC3S1000 FPGA. The procedure for implementing the design 

on the XC3S1000 FPGA chip is presented in Figure 6: 

 

 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

 

entity MOD6 is 

    Port ( clk, reset : in STD_LOGIC; 

           counterOUT : out  STD_LOGIC_VECTOR (2 downto 0)); 

end MOD6; 

 

architecture Behavioral of MOD6 is 

type sequence_step is (one, two, three, four, five, six); 

signal sequence_reg, sequence_next : sequence_step; 

signal nextstate : STD_LOGIC_VECTOR (2 downto 0); 

 

begin 

  

 --State Register 

 Process(clk, reset) 

 begin 

  if (reset = '1') then 

   sequence_reg <= one; 

  elsif (clk'event and clk = '1') then 

   sequence_reg <= sequence_next; 

   counterOUT <= nextstate; 

  end if; 

 end process; 

  

 --Next State 

 Process(sequence_reg, nextstate) 

 begin 

  sequence_next <= sequence_reg; 

  case sequence_reg is 

   when one => 

    nextstate <= "000"; 

    sequence_next <= two; 

   when two => 

    nextstate <= "011"; 

    sequence_next <=three; 

   when three => 

    nextstate <= "101"; 

    sequence_next <= four; 

   when four => 

    nextstate <= "111"; 

    sequence_next <= five; 

   when five => 

    nextstate <= "110"; 

    sequence_next <= six; 

   when six => 

    nextstate <= "100"; 

    sequence_next <= one; 

  end case; 

 end process; 

     

 

end Behavioral; 

 

 



Dibal: Design and Implementation of MOD-6 Synchronous Counter using VHDL.  AZOJETE, 9: 17-26, 2013 

22 
 

 

Figure 6: Hardware Implementation process 

The first step in the hardware implementation is to floor-map the model to the target 

hardware. The floor-planning allows the connection of the inputs and outputs of the top level 

entity to the pins of the XC3S1000 FPGA chip. (Xilinx Spartan-3 FPGA data sheet, 2012). 

The general purpose I/O (GPIO) pins wereused, and the output wasmapped to a GPIO pin in 

Bank 0, the clk input was mapped to Bank 0, and the reset was mapped to Bank 3. Details of 

the FPGA pins and their corresponding Bank numbers can be found in the Xilinx Spartan-3 

FPGA data sheet. The mapping was done according to Table 1 below: 

 

 

The FPGA chip is usually divided into banks (sections). For the XC3S100, it has eight banks, 

from bank 0 to bank 7. For this design, four of the PORTS wereon bank 0, while the reset 

PORT wasin bank 3; the reason being that the pins of an FPGA are usually very close to 

each, and putting a sensitive signal like the reset signal in the same bank with other signal is 

usually not advisable. The FT256 pin number is the physical address of each pin on the 

FPGA chip. 

The implementation of the floor-planning (Table 1) is achieved using I/O Planning (Plan 

Ahead) – Pre-Synthesis module in the Xilinx ISE as shown in Figure 7. 

 

Table 1: Floor-planning table for FT256 pin assignments 



Dibal: Design and Implementation of MOD-6 Synchronous Counter using VHDL.  AZOJETE, 9: 17-26, 2013 

23 
 

 

 

After the floor-mapping, the next step is mapping, placing, and routing of the design in the 

Xilinx ISE; this is then followed by the bit stream generation, which condenses the whole 

design into 0s and 1s by generating a bitstream file which contains the complete design 

represented in binary format. The generated bit stream file for the design is shown in Figure 8 

below: 

 

 

 

The final step in the hardware implementation is to download design on the FPGA chip. This 

is achieved using the ISE iMPACT (a tool featuring batch and GUI operations, which allows 

a designer to perform device configuration and file generation) interface, where the generated 

bitstream file is attached to the FPGA chip as shown in Figure 9. 

 

 

 

 

Figure 7: Design floor-mapping 

Figure 8: Bitstream generated file 

Figure 9: Successfully downloaded bitstream file to target device 



Dibal: Design and Implementation of MOD-6 Synchronous Counter using VHDL.  AZOJETE, 9: 17-26, 2013 

24 
 

3. Results and Discussion 

Having successfully designed the synchronous counter, and downloaded it to the target 

hardware, a simulation was carried out, and the following result (Figure 10) was obtained. 

 

 

 

As seen in figure 10, the counter moves from state1 to state2, to state3, up to state6, exactly 

as described in Figure 1. In each of these states, the counter outputs the values stated in the 

design implementation, i.e. . Elaborating further, in state1 the 

counter outputs 000, in state2 it outputs 011, and in state3 it outputs 101, and so on, till it gets 

to state6 where it outputs 100. However, a closer look at Figure 10 shows a shift between the 

current state and output value. For example, instead of the counter outputting 000 in state1, it 

outputs 000 in state 2. This is because, the lag that is occurring between the current output 

value and the current state is caused by the time delay it takes the clock signal to attain the 

first rising edge. This design is a positive-edge clock triggered synchronous counter design.  

Figure 10 also shows that the count sequence is repeated twice from 0 to 25ps (pico seconds). 

The timing information for this design from 0 to 50ps is shown in Figure 11. 

 

 

 

Figure 10: Simulation / Timing result from 0 to 25ps 

Figure 11: Simulation / Timing result from 0 to 50ps 



Dibal: Design and Implementation of MOD-6 Synchronous Counter using VHDL.  AZOJETE, 9: 17-26, 2013 

25 
 

The synthesis of the design shows the area on the FPGA chip where the mapped-pins are 

located, based on the floor-mapping presented in Table 1. The locations of the pins on the 

FPGA are shown in Figure 12. 

 

 

 

4. Conclusions 

In this paper, the design of a MOD-6 counter was successfully carried out using the Xilinx 

ISE and the XC3S1000 FPGA chip. The behaviour of the counter was modelled using VHDL 

in the Xilinx ISE environment, and then verified for accuracy using the ISIM plug-in. The 

design was then implemented on the FPGA chip, using the technique of floor-planning and 

bit-stream generation. After generating the bitstream file, the design was then downloaded to 

the target device using the iMPACT interface. 

 References 

Anil, KM. 2007. Digital Electronics Principles: Devices and Applications. Sussex: John 

Wiley & Sons. 

Gifty, JB. and Kashwan, KR. 2012. Design and simulation of scalable fast parallel counter. 

International Journal of Applied Information Systems, 1(9): 28-33. 

Pedroni, VA. 2004. Circuit Design with VHDL. Massachusetts: MIT Press. 

Figure 12: Synthesis area information showing pin locations 



Dibal: Design and Implementation of MOD-6 Synchronous Counter using VHDL.  AZOJETE, 9: 17-26, 2013 

26 
 

Rabiul, SM. and Jobayer, HM. 2012. Gate level design of a digital clock with-asynchronous-

synchronous logic. Global Journal of Researches in Engineering Electrical and Electronics 

Engineering, 12(4): 16-22. 

Xilinx Inc. 2011. Xilinx ISE In-Depth Tutorial. [e-book] Colorado: University of Colorado 

Press. Available at: <http://download.xilinx.com/ISE/ise_indepth_tutorial_ug695.pdf> 

[Accessed 20 April 2013]. 

Xilinx Inc. 2012. Spartan-3 FPGA Family data sheet. [e-book] Available at: 

<http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf> [Accessed 22 April 

2013]. 

 

http://download.xilinx.com/ISE/ise_indepth_tutorial_ug695.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

