
Received: April 5, 2018 152

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.14

Software Fault Prediction based on GSO-GA Optimization with Kernel based

SVM Classification

Yogomaya Mohapatra1* Mitrabinda Ray2

1Orissa Engineering College, Bhubaneswar, Odisha, India

2Siksha ‘O’ Anusandhan University, Bhubaneswar, Odisha, India
* Corresponding author’s Email: mohapatrayogomaya@gmail.com

Abstract: The two main challenges of Software Defect Prediction are high dimensionality and class imbalance. The

first challenge is high dimensionality where the number of features extracted from software modules becomes larger

due to growth in size and complexity of modern software systems. The extracted features may be redundant or

irrelevant. The problem of high dimensionality can be solved by an important pre-processing procedure that is

feature selection. The second challenge is class-imbalanced data, where the major defects in a software system are

found in few modules. The earlier methods failed to provide good solution for class imbalance and high

dimensionality. Also, the prediction accuracy of the existing methods is low. To overcome these major drawbacks an

optimal Group Search Optimization –Genetic Algorithm (GSO-GA) based fault prediction in software testing with

kernel based SVM classification is used for improving the software quality. To evaluate the performance of the

proposed approach that is hybrid Group Search Optimization-Genetic Algorithm (GSO-GA) based fault prediction is

compared with existing Group Search Optimization (GSO). The GSO-GA based models have produced better results

and accuracy in terms of existing software metrics like Average Percentage of Faults Detected (APFD), Problem

Tracking Reports (PTR), and time and memory usage. From the experimental results, we observe that the average

percentage of faults detected in our proposed approach is higher than the existing method.

Keywords: Software fault prediction, Prediction, Group search optimization, Genetic algorithm.

1. Introduction

Software development organizations are under

more pressure than any time in recent times.

Development costs keep on rising. Minimizing

defects is an efficient approach to hold development

costs down, which is a main concern for any

association [1]. A huge amount of research in

Software Engineering has been devoted to improve

the efficiency of testing. Among these, considerable

efforts have been aimed towards the definition of

techniques able to predict the components of a

software system that more likely will contain faults

[2]. Regression testing provides many benefits such

as enabling refactoring of code with high confidence

to catching product faults or functional regressions

prior to product release [3]. In software engineering,

defect prediction can precisely estimate the most

defect-prone software components and help software

engineers allocate limited resources to those bits of

the systems that are most likely to contain defects in

testing and maintenance phases [4]. Software fault

prediction approaches use previous software metrics

and fault data to predict fault-prone modules for the

next release of software [5].

Researchers have identified a bunch of problems

in this area of software defect prediction and have

tried to offer the answers as well [6]. As recent

software system has grown in size and complexity,

quality assurance such as testing and inspection

have become increasingly important not only for

software developers but also for software purchases

who are responsible for acceptance testing and/or

software services deployment [7]. Software quality

models generally predict, for a program module,

either the number of defects it is likely to have or

Received: April 5, 2018 153

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.14

the quality-based risk category it belongs to, e.g.,

faultprone (fp) or not-fault-prone (nfp) [8].

The number of features to be extracted increases

as the size of the software increases and many of

these features may be redundant or irrelevant [9].
To overcome the major drawbacks of high

dimensionality and class imbalance, to reduce the

error rate we have used software fault prediction

based on GSO-GA optimization with kernel based

SVM classification in this paper. The contribution of

this paper is to explore the capabilities of (GSO-GA)

for software fault prediction. We build our fault

prediction model using (GSO-GA) and kernel based

SVM in JAVA platform. The performance of the

constructed model is evaluated in terms of software

metrics like APFD, PTR, execution time and

memory usage.

The rest of the paper is organized as follows.

Section 2 contains related work. Section 3 explains

the proposed methodology- (GSO-GA) based fault

prediction model. Section 4 gives the experimental

results with comparative analysis. Finally, the paper

is concluded in Section 5.

2. Related work

Software reliability prediction plays an

important role in the analysis of software quality and

balance of software cost. Recently Support Vector

Regression (SVR) has been widely applied to solve

nonlinear predicting problems and has obtained

good performance in many situations, but it is

difficult to optimize SVR’s parameters.

C. Jin et al. [10] have proposed Estimation of

Distribution Algorithms (EDA) to maintain diversity

of population and hybrid Improved Estimation

Distribution Algorithms (IEDA) and SVR model,

called IEDA-SVR to optimize parameters of SVR

and predict software reliability.

R. W. Li, et al. [11] has proposed a three-way

decisions framework for cost-sensitive software

defect prediction. Experimental results on NASA

data sets show that the two-stage classification

method which integrates three-way decisions and

ensemble learning can obtain higher accuracy and a

lower decision cost in comparison to the traditional

two-way decision method.

X. Yang et al. [12] have introduced a learning-

to-rank approach software defect prediction model

by optimizing the ranking performance.

L. Yu, et al. [13] have proposed a novel

evolutionary programming (EP) based asymmetric

weighted least squares support vector machine

(LSSVM) ensemble learning methodology.

H. Mahalingap, et al. [14], has proposed a paper,

a new classification and prediction methodology is

put forth to progress the accuracy of defect forecast

based on Cost Random Forest algorithm (CRF)

which reduces the effects of faults in irrelevant

software modules. The proposed algorithm predicts

the quantity of faults present in the modules of

software in less time and classify based on measures

of similarity obtained from Robust Similarity

clustering technique.

Prediction of fault proneness of modules in

software is one of the ways to ensure the

achievement of software quality and reliability. N. S.

Agrawa et al. [15], has proposed few models for

detecting software fault prone modules, the intend of

our work is to increase the reliability of the software

by using an approach named Rough Fuzzy c-means

(RFCM) clustering algorithm to analyze the fault

proneness of the software modules under test.

3. Proposed methodology

Figure.1 Proposed kernel SVM based software defect

prediction

Find the best test case

Input test case

 Failure

 Time

 Line coverage

 Loop coverage

Feature extraction

Classification by kernel SVM

Performance measures

Feature optimization by GSO-GA

Received: April 5, 2018 154

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.14

The proposed optimal Group Search

Optimization – Genetic Algorithm (GSO-GA) fault

prediction model is divided into 4 phases as shown

in the Fig. 1.

The 4 phases are feature extraction, feature

optimization, finds the best test case, classification

by kernel SVM. Initially the test cases are taken as

input for our study. The input test cases are given to

the feature extraction phases. In this phase, we are

extracting the features like failure, time, line

coverage and loop coverage. Then the extracted test

cases are optimized with the aid of GSO-GA

algorithm. In this phase, we are mainly focused on

feature optimization. These optimized features are

used to find the best test cases. These best test cases

are classified with the aid of kernel based SVM to

predict the defects. Finally, performance analysis is

performed. The proposed work is implemented in

JAVA platform. The proposed work is compared

with the existing methods and algorithms to prove

that the proposed work is the best one.

3.1 Feature extraction

Initially the test cases are taken as input for our

study. Input test cases are given to the feature

extraction phase. In this phase we are extracting the

features like failure, time, line coverage, and loop

coverage. These features are taken from the test

cases.

3.1.1. Line coverage

Line coverage is as well recognized as the

statement coverage or segment coverage. Only

correct circumstances are enfolded using line

coverage. It as well events the excellence of the

code and makes sure the flow of dissimilar path in

that code.

𝐿𝑖𝑛𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑜.𝑜𝑓 𝐿𝑖𝑛𝑒 𝑒𝑥𝑐𝑒𝑟𝑐𝑖𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝐿𝑖𝑛𝑒𝑠
 (1)

3.1.2. Loop coverage

These coverage metrics hear says whether each

loop body is applied zero times, exactly once and

more than once. This metrics reports whether loop

body is applied exactly once and more than once for

do-while loops. And also, while-loops and for-loops

achieve more than once. This information is not

accounted using other coverage metrics. Similarly,

all the test cases are produced. Next resulting test

case generation is optimized in to the GSO-GA

algorithm. Since we will produce test cases in each

time it encloses some resemblance on each time.

3.2 Feature optimization

 The extracted test cases are optimized with the

aid of GSO-GA algorithm. In this phase we are

mainly focused on feature optimization. We also

considered the problems of existing methods and

addressed such limitations with the aid of our

proposed optimal GSO-GA algorithm

3.2.1. Group Search Optimization-Genetic Algorithm

(GSO-GA)

In this algorithm, the population is termed as a

group and the individuals residing within the group

are known as members. The members within a

group are of three kinds, namely, the producers, the

scroungers and the rangers. The activity of the

producers as well as the scroungers relies on the PS

model. The rangers move in an arbitrary manner.

Producers: These members go in search of

resources.

Scroungers: These members link the resources,

which the producer discovers.

Rangers: These are the members that make

movements in an arbitrary manner and perform

searching in an organized way, so that efficient

finding of resources could be achieved.

Φmax = maximum

search angle
dmax = maximum

search distance
Fi = Fitness

computation
τmax = maximum

turning angle
dUi = upper limit dLi = lower limit

n = dimension of

search space
Ψ = head angle

Zi = producer ε = uniform random

sequence
Li = members direction

Initialize the search solution as well as the head angle:

The solution that is obtained after searching

takes the thickness, period, the wall size and the

temperature applied into account. Zi represents

producer.

𝑍𝑖 =
𝑍11 𝑍12 …. 𝑍1𝑚

𝑍21 𝑍22 …. 𝑍2𝑚

𝑍𝑛1 𝑍𝑛2 …. 𝑍𝑛𝑚

 (2)

For every individual, the head angle can be

stated as in Eq. (3).

𝛹𝑖
𝑠 = (𝛹𝑖1……..

𝑠 𝛹𝑖(𝑛−1)
𝑠) (3)

Received: April 5, 2018 155

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.14

The member’s direction of search relies on the

head angle and it is given as in Eq. (4).

𝐿𝑖
𝑠(𝛹𝑖

𝑠) = (𝑙𝑖1……..
𝑠 𝑙𝑖(𝑛)

𝑠) (4)

Polar and Cartesian coordinate transformation is

employed to assess the direction of search in

accordance with the head angle.

𝐿𝑖1
𝑠 = 𝛱𝑝=1

𝑛−1 cos(𝛹𝑖𝑝
𝑠) (5)

𝐿𝑖𝑗
𝑠 = sin(𝛹𝑖(𝑗−1)

𝑠 𝛱𝑝=𝑗
𝑛−1 cos(𝛹𝑖𝑝

𝑠)) (6)

Where (𝑗 = 2 … 𝑛 − 1)

𝐿𝑖𝑛
𝑠 = sin(𝛹𝑖(𝑛−1)

𝑠) (7)

Fitness function

Optimization in the mathematical modeling can

be accomplished using the sigmoid function, when it

is included in the process involving artificial neural

network. The optimized mathematical model can be

yielded with the optimization of αij and βij in the

function. The value of error in the mathematical

model can be computed as the difference between

the original value and the obtained value.

𝑓𝑖 = ∑ 𝛼𝑗
ℎ
𝑗=1 × [

1

1+𝑒𝑥𝑝(− ∑ 𝑍𝑖𝛽𝑖𝑗
𝑁
𝑖=1)

] (8)

𝐹𝑖 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑 (9)

Find the producer Zp of the group:

The member with the best fitness of Zi is called

as the producer and it is specified as Zp.

Producer performance

During the execution of the GSO algorithm, the

activity of the producer Zp at ‘s’ iteration can be

elucidated as follows:

 (i) The producer performs the scanning

operation at zero degree

𝑍𝑧 = 𝑍𝑝
𝑠 + 𝜀1𝑑𝑚𝑎𝑥𝐿𝑝

𝑠 (𝛹𝑠) (10)

(ii) The producer performs the scanning

operation at the right hand side hypercube

𝑍𝑟 = 𝑍𝑝
𝑠 + 𝜀1𝑑𝑚𝑎𝑥𝐿𝑝

𝑠 (𝛹𝑠 + 𝜀2
Φ𝑚𝑎𝑥

2⁄) (11)

(iii) The producer performs the scanning

operation at the left hand side hypercube

𝑍𝑙 = 𝑍𝑝
𝑠 + 𝜀1𝑑𝑚𝑎𝑥𝐿𝑝

𝑠 (𝛹𝑠 − 𝜀2
Φ𝑚𝑎𝑥

2⁄) (12)

Where, ε1 points to a normally distributed

random number with zero mean and unity standard

deviation; ε2 stands for a uniformly distributed

random sequence that takes value between zero and

one. The maximum search angle Φmax can be

expressed as

Φ𝑚𝑎𝑥 =
𝜋

𝑐2 (13)

Here, the constant c can be stated as:

𝐶 = 𝑟𝑜𝑢𝑛𝑑(√𝑛 + 1) (14)

Where, n denotes the dimension of the search

space.

∴ Φ𝑚𝑎𝑥 =
𝜋

𝑛+1
 (15)

The computation of maximum search distance

dmax involves the following equations.

d𝑚𝑎𝑥 = ‖𝑑𝑈−𝑑𝐿‖ = √∑ (𝑑𝑈𝑖 − 𝑑𝐿𝑖)2𝑛
𝑖=1 (16)

Where, dUi and dLi indicates the upper limit and

the lower limit of ith dimension, respectively. The

best location containing the most useful resource

can be obtained with the help of Eqs. (16), (17), and

(18). The present best location would take a new

best location, if its resource is found as not better

than that in the new location. Else, the producer will

maintain its location and turn its head according to

the head angle direction that is arbitrarily generated

using Eq. (19).

𝛹𝑠+1 = 𝛹𝑠 + 𝜀2 𝜏𝑚𝑎𝑥 (17)

Where, τmax indicates the maximum turning

angle that is computed using the following equation.

τ𝑚𝑎𝑥 =
Φ𝑚𝑎𝑥

2
 (18)

When the producer is unable to identify a better

position even after the completion of m iterations, its

head would then assume its initial position as given

in Eq. (22).

𝛹𝑠+𝑐 = 𝛹𝑠 (19)

Received: April 5, 2018 156

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.14

Scrounger performance

In all iterations, several members that exclude

the producer are also chosen and they are called as

scroungers. The scrounging action of GSO usually

involves the area copying activity. During the sth

iteration, the activity of area copying that the ith

scrounger performs can be modeled as a motion to

reach the producer in a closer way and it is

expressed as:

𝑍𝑠+1 = 𝑍𝑖
𝑠 + 𝜀3 𝑂(𝑍𝑝

𝑠 − 𝑍𝑖
𝑠) (20)

Where, O specifies the Hadamard product that

computes the product of the two vectors in an entry-

wise manner and ε3 denotes a uniform random

sequence lying in the interval of (0, 1). The ith

scrounger continues its searching activity to make a

choice of the better occasion for linking. The

designing of the scrounging action involves the

turning of the head in the ith scrounger to a novel and

arbitrarily generated angle.

Ranger performance

The rangers are the remaining members of the

group, which have been displaced from their present

location. The rangers can also find the resources

effectively through random walks or an organized

searching procedure.

𝑑𝑖 = 𝑐. 𝜀1. 𝑑𝑚𝑎𝑥 (21)

The random walk to a novel point can be

expressed as:

𝑍𝑠+1 = 𝑍𝑖
𝑠 + 𝑑𝑖𝐿𝑖

𝑠(Ψ𝑠+1) (22)

Once the entire process gets completed, the

fitness of the updated solution is evaluated. The best

solution will be gained, if the process is repeated for

‘s’ number of iterations. The Group Search

Optimization algorithm (GSO) and the related

mathematical modeling allow the temperature of the

wall to be envisaged effectively. Here, we include

genetic algorithm for GSO weight updation it will

be clearly explained on below section.

3.2.2. Genetic algorithm (GA)

The novel adaptive genetic algorithm is used to

optimize the weights. In case A possesses fitness

superior to that of B, then A is chosen, ignoring B.

Nevertheless, they reproduce to create one or

multiple offspring.

Generation of chromosomes

The initial solutions are generated randomly and

each solution is termed as the gene. The individual

genes are incorporated as chromosomes and it is

called the solution set. The numbers of genes are

included with the chromosomes and the solution set

for the population is created. The population of the

genetic algorithm encompasses the chromosomes

and the population size is activated as permanent.

The numbers of solutions are activated in

accordance with the typical genetic technique. In

this case, the initial solutions are called the weight.

Cross over

In the cross over, the two parent chromosomes

are chosen with the intention of exchanging their

genes between them. The following example

illustrates the parent chromosomes parent 1 and

parent 2.

Shape of Parent 1 & 2

1 2 3 1 2 3 1 2

Parent 1

3 2 1 3 2 1 3 1

Parent 2

In parent 1 & 2 chromosomes, the bold lettered

remain without any modification in their locations

and the remaining gene of the chromosomes is

exchanged between the parent chromosomes.

Subsequent to the crossover, the chromosome takes

the following shape.

Shape of new chromosome 1 & 2

1 2 3 1 2 1 3 2

New chromosome 1

3 2 3 1 2 1 3 1

New chromosome 2

Mutation

Subsequent to the crossover, the new

chromosome is transformed for augmenting the

effectiveness of the solution and the bold depicts the

transformed gene of the chromosome. In the novel

mutation process, the matching order is selected

within the offspring and it is exchanged from its

position to other place for achieving the most

brilliant optimal solution. The shift varying mutation

approach is used in the mutation function and the

orders of each chromosome are moved to leave one

step and replaced by the new order. After the shift

Received: April 5, 2018 157

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.14

the modifications within the off-spring are exhibited

below.

Mutation

1 2 3 1 2 1 3 2

Mutation process

From the above the gene of the off spring is

moved one step left and the adapted new solution is

achieved by the mutation procedure. The optimal

solution is attained after completion of the mutation

function and it illustrates the ultimate output of the

outcome with their minimal optimized time,

yielding the least make span duration.

Optimal solution

When the mutation function is completed, the

new chromosomes are generated for the new

solution sets. Later on, the fitness value is evaluated

for the new solutions. The solution, which offers the

best value, is shortlisted and is considered as the

optimal solution. Otherwise, the processes

mentioned above are repeated for the new solution

sets.

In long run, we arrive at the optimal path from

the hybrid GSO with AGA algorithm. Now each

optimal path is home to a number of optimal nodes.

If a new task emerges for the allocation of the

resource, the innovative technique employs the

optimal path in which the best nodes are shortlisted

for the new task. With an eye on selecting the best

nodes, the performed techniques deploy the resource

cost, time and memory capacity.

3.3 Find the best test cases

These optimized features are used to find the

best test cases these test cases are classified with the

aid of kernel based SVM to predict the defects

3.4 Classification using hybrid kernel based

support vector machine

Once the feature reduction is formed, the

classification will be done based on the Hybrid

kernel based Improved SVM (ISVM) classifier. In

this classification, the optimal kernel is identified

using Grey Wolf Optimization (GWO).

3.4.1. Kernel based support vector machine

In software defect prediction research optimized

test cases are classified with the aid of kernel SVM.

There are two very important phases in the SVM

procedure such as the preparation phase and the

effortless stage.

Training phase: Currently, the output of

attribute choice is provided as the input of the

preparation stage. The input utility supplies the

group of values which cannot be alienated.

Approximately each one of the probable isolation of

the position places are comprehend by a hectic plane.

In the Lagrange pattern, it is probable to put the

partition of the hectic plane standard vector during

the divergent kernel task. In this association, a

kernel symbolizes a few tasks, which communicate

to a dot product for definite kind of attribute

recording. Yet, recording a position into a better

quality dimensional gap is probable to direct to

unnecessary assessment period and enormous

storage requirements. By the outcome, in concrete

perform, an original kernel task is initiated which is

competent of openly estimating the dot product in

the better-quality dimensional gap. The frequent

edition of the kernel task is provided as follows.

𝐾(𝑈, 𝑉) = 𝜑(𝑈)𝑇𝜑(𝑉) (23)

In this view, the majority broadly engaged

kernel tasks contain the linear kernel, Polynomial

kernel, Quadratic kernel, Sigmoid and the Radial

Basis task. Specified beneath are the terms for the

different kernel task. For Linear Kernel:

𝑙𝑖𝑛𝑒𝑎𝑟𝑘(𝑈, 𝑉) = 𝑢𝑇𝑣 + 𝑐 (24)

Where, u,v represents the inner products in

linear kernel and c is a constant. For Quadratic

Kernel:

𝑞𝑢𝑎𝑑𝑘(𝑈, 𝑉) = 1 −
‖𝑢−𝑣‖2

‖𝑢−𝑣‖2+𝑐
 (25)

Where, u,v - are the vectors of the polynomial

kernel function in the input space. For Polynomial

Kernel:

𝑝𝑜𝑙𝑦𝑘(𝑈, 𝑉) = (𝜆𝑢𝑇𝑣 + 𝑐)𝑒 , 𝜆 > 0 (26)

For Sigmoid Kernel:

𝑠𝑖𝑔𝑘(𝑈, 𝑉) = tanh(𝜆𝑢𝑇𝑣 + 𝑐), 𝜆 > 0 (27)

The effectiveness of the SVM consistently

oriented on the variety of the kernel. In the original

procedure, an original KSVM is predicted, dedicated

for the noteworthy development in the

categorization system. The mutual kernel task is

Received: April 5, 2018 158

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.14

successfully engaged in the KSVM and the standard

of the kernel task, avgk(U,V) is delivered beneath.

𝑎𝑣𝑔𝑘(𝑈, 𝑉) =
1

2
(𝑙𝑖𝑛𝑘(𝑈, 𝑉) + 𝑞𝑢𝑎𝑑𝑘(𝑈, 𝑉)) (28)

𝑎𝑣𝑔𝑘(𝑈, 𝑉) =
1

2
((𝑢𝑇𝑣 + 𝑐) + (1 −

‖𝑢−𝑣‖2

‖𝑢−𝑣‖2+𝑐
))(29)

By merging of two outcomes, the standard of the

outcome is accomplished and developed to

classification.

Testing phase: In the testing phases productivity

from the classification choice is provided as to the

experiment stage and the productivity specifies the

subsistence or else the absence. In our proposed

research we introduce an optimal GSO-GA based

fault prediction in software testing to assess the cost

effectiveness of test effort. Software testing plays a

vital role in software development.

4. Experimental results with comparative

analysis

The experimental result of GSO-GA algorithm is

discussed below. The proposed system is

implemented in Java (jdk 1.7) that has system

configuration as core2duo processor with clock

speed of 2.3GHZ and RAM as 2GB and that runs

Windows 7 OS.

4.1 Performance evaluation

Performance evaluation is an adaptable tool used

to: Measure actual performance against expected

performance.

From table 1, the results of the fitness value

using GSO-GA search measures are graphically

represented in Fig. 2. In iteration 5, the fitness value

is 40.46, in iteration 10 the fitness value is 17.21, in

iteration 15 the fitness value is 6.96, in iteration 20

the fitness value is 3.337then in 25 iteration the

fitness values is 0.0061.

Table 1. Fitness value depending on iteration

No of Iterations
Fitness value using

GSO-GA

5 40.46

10 17.21

15 6.96

20 3.337

25 0.0061

Figure.2 Graphical representation for fitness value using

GSO-GA

Table 2. Time measures taken based on iteration

No of Iterations
Time

(in ms)

5 557

10 592

15 620

20 629

25 667

Figure.3 Graphical representation for Time

Table 3. Memory measures taken based on iteration

No of Iterations
Memory

(in byte)

5 3540118

10 3516608

15 3583469

20 3595145

25 3563611

Figure.4 Graphical representation for memory

0

20

40

60

5 10 15 20 25

G
S

O
-G

A
 F

it
n

es
s

No of Iteration

Fitness value using

GSOGA

500

550

600

650

700

5 10 15 20 25

T
im

e

No of Iteration

Time

3460000

3480000

3500000

3520000

3540000

3560000

3580000

3600000

5 10 15 20 25

M
em

o
ry

No of Iteration

Memory

Received: April 5, 2018 159

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.14

From Table 2, the results of the time are

graphically represented in Fig. 3. The time taken in

iteration 5 is 557, then in iteration 10 the time taken

for that is 592 then in iteration 15 the time taken for

that is 620, then in iteration 20 the time taken for

that is 629, then in iteration 25 the time taken for

that is 667.

From Table 3, the results of the memory are

graphically represented in Fig. 4. The memory taken

in iteration 5 is 3540118, then in iteration 10 the

memory taken for that is 3516608, then in iteration

15 the memory taken for that is 3583469, then in

iteration 20 the memory taken for that is 3595145

and in iteration 25 the memory taken for that is

3563611.

4.1.1. Average percentage of faults detected (APFD)

metric

The APFD is computed by taking the weighted

average of the percentage of faults detected during

the implementation of the test suite. APFD values

range from 0 to 100; higher values imply faster

(better) fault detection rates. APFD can be computed

as follows:

𝐴𝑃𝐹𝐷 = 1 − {
(𝑇𝑓1+𝑇𝑓2+⋯𝑇𝑓𝑚)

𝑚𝑛
} + (1

2𝑛⁄) (30)

Where n be the no of test cases and m be the no

of faults. (Tf1,….,Tfm) are the position of first test T

that exposes the fault.

Table 4. APFD results to be taken based on iteration

No of Iterations APFD

5 65%

10 70%

15 67%

20 74%

25 83%

Figure.5 Graphical representation of APFD Evaluation

Measures

Table 5. PTR results to be taken based on Iteration

No of Iterations PTR

5 75%

10 78%

15 69%

20 76%

25 87%

Figure.6 Graphical representation of PTR Evaluation

Measures

From Table 4, the results of APFD are

graphically represented in Fig. 5. In first iteration 5

the percentage of APFD is 65%, in second iteration

10 the percentage of APFD is 70%, in the third

iteration 15 the percentage of APFD is 67%, then in

fourth iteration 20 the percentage of APFD is 74%

then the fifth iteration is 25 the percentage of APFD

is 83%.

4.1.2. Problem tracking reports (PTR) metric

𝑃𝑇𝑅(𝑡, 𝑝) = 𝑛𝑑
𝑛⁄ (31)

Let t - be the test suite under assessment,

n - The total number of test cases in the total

number of test cases required to identify all faults in

the program under test p.

4.2 Comparative analysis

The existing review works are compared in this

section with the proposed work to show that our

proposed work is better than the state-of-art works.

We can establish that our proposed work helps to

attain very good accuracy for the estimation of

database using Improved Group search

optimization-Genetic algorithm (GSO-GA). The

Comparison outcomes are presented in the following

Table 6.

The improved good outcomes of our proposed

GSO-GA work are compared to existing GSO. The

time measures of the existing method and proposed

method to be measured is based on iteration. When

we compare our result to the existing results our

0%

20%

40%

60%

80%

100%

5 10 15 20 25

A
P

F
D

No of Iteration

APFD

0%

20%

40%

60%

80%

100%

5 10 15 20 25

P
T

R

No of Iteration

PTR

Received: April 5, 2018 160

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.14

proposed GSO-GA has given better result by taking

minimum time to perform a process.

Table 6. Comparison for proposed and existing time

measures

No of

Iteration

Proposed

GSO-GA

(in ms)

Existing

GSO

(in ms)

5 557 628

10 592 658

15 620 698

20 629 765

25 667 678

Figure.7 Graphical representation of proposed and

existing time comparison measures

Table 7. Comparison for proposed and existing memory

measures

No of

Iteration

Proposed

GSO-GA

(in Byte)

Existing

GSO

(in Byte)

Existing

GA (in

byte)

5 3540118 3679564 3789567

10 3516608 3656585 3689548

15 3583469 3658952 3789562

20 3595145 3629574 3657894

25 3563611 3589745 3689524

Figure.8 Graphical representation for proposed and

existing memory comparison measures

Table 8. Comparison for proposed and existing accuracy

measures

No of

Iteration

Proposed

KSVM

Existing

SVM

Existing

GA-NN

5 95 71 92

10 96 72 93

15 92 63 97

20 93 74 82

25 98 63 80

Figure.9 Graphical representation for proposed and

existing accuracy measures

The memory measures of the existing method

and proposed method is based on iteration. When

we compare our result to the existing results our

proposed GSO-GA has given a better result. It has

taken a minimum byte of memory to perform an

operation.

4.2.1. Classification accuracy comparison

The classification accuracy measures of the

existing method and proposed method is based on

iteration.

When we compare our result to the existing

results, our proposed GSO-GA has given better

classification accuracy. The existing work used the

algorithm GA-NN to get 88% accuracy and SVM

algorithm to get 68% accuracy. When we compare

these two results to our proposed Kernel SVM we

get 94% accuracy.

5. Conclusion

An Improved hybrid classification technique

based fault prediction and classification with four

phases, like feature extraction, feature optimization

by using GSO-GA, find the best test cases and

classification by using kernel based SVM, was

proposed in this paper. The test cases are produced

from the application program. The features are

extracted from the test cases and then by utilizing

the GSO-GA algorithm the features are optimized.

These optimized features are used to find the best

0

200

400

600

800

5 10 15 20 25

T
im

e
M

ea
su

re
s

No of Iteration

Proposed GSO-GA
Existing GSO

3350000

3400000

3450000

3500000

3550000

3600000

3650000

3700000

3750000

3800000

5 10 15 20 25

M
em

o
ry

 M
ea

su
re

s

No. of Iteration

Proposed GSO-GA
Existing GSO
Existing GA

0

20

40

60

80

100

5 10 15 20 25
A

cc
u

ra
cy

 M
ea

su
re

s
No of Iteration

Proposed KSVM
Existing SVM
Existing GA-NN

Received: April 5, 2018 161

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.14

test cases. These best test cases are classified with

the aid of kernel based SVM to predict the defects..

From the outcomes, we have showed that the kernel

SVM classification algorithm utilized in our

proposed work outperforms the classification with

very good accuracy. Thus, we can observe that our

proposed work is better than other existing works

for the software fault prediction. In this paper, we

have proposed kernel based SVM for classification

GSO-GA for feature extraction as a proposed

technique is compared against GSO. Results of

proposed technique are in terms of APFD, PTR,

Time, and Memory. We cannot promptly apply

these results to other software systems different

from the ones we employed. To address this issue,

in the future we intend to replicate the performed

analysis using other datasets. This is the only way to

get better confidence on the generalizability of the

results.

References

[1] V. Jayaraj and N. S. Raman, “An Hybrid

Multilayer Perception Using GSO-GA For

Software Defect Prediction”, International

Journal of Recent Trends in Science and

Management, pp. 119-132, 2016.

[2] S. Lessmann, R. Stahlbock, and S. F. Crone,

“Genetic algorithms for support vector machine

model selection”, In: Proc. of International

Joint Conf. On Neural Networks, pp. 3063-3069,

2006.

[3] J. Anderson, H. Do, and S. Salem, “Experience

Report: Mining Test Results for Reasons Other

Than Functional Correctness”, In: Proc. of

International Conf. on Software Reliability

Engineering, pp. 405-415, 2015.

[4] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An

empirical study on software defect prediction

with a simplified metric set”, Information and

Software Technology, Vol. 59, pp. 170-190,

2015.

[5] C. Catal, “Software fault prediction: A literature

review and current trends”, Expert Systems with

Applications, Vol. 38, No. 4, pp. 4626-4636,

2011.

[6] I. Arora, V. Tetarwal, and A. Saha, “Open

Issues in Software Defect Prediction”, Procedia

Computer Science, pp. 906-912, Vol. 46, 2015.

[7] A. Monden, T. Hayashi, and S. Shinoda,

“Assessing the Cost Effectiveness of Fault

Prediction in Acceptance Testing”, IEEE

Transactions on Software Engineering, Vol. 39,

No. 10, pp. 1345-1357, 2013.

[8] Y. Liu, T. M. Khoshgoftaar, and N. Seliya,

“Evolutionary Optimization of Software Quality

Modeling with Multiple Repositories”, IEEE

Transaction on Software Engineering, Vol. 36,

No. 6, pp. 852-864, 2010.

[9] A. Joshua, “Improving Software Quality Using

Two Stage Cost Sensitive Learning”, In: Proc.

of International Conf. on Science and Research,

pp. 1726-1728, 2013.

[10] C. Jin and S. W. Jin, “Software Reliability

Prediction model based on support vector

regression with improved estimation of

distribution algorithms”, Applied Soft

Computing, Vol. 15, pp. 113-120, 2014.

[11] W. Li, Z. Huang, and Q. Li, “Three-way

decisions based software defect prediction",

Knowledge Based Systems, Vol. 91, pp. 263-274,

2016.

[12] X. Yang, K. Tang, and X. Yao, “A Learning-

to-Rank Approach to Software Defect

Prediction”, IEEE Transaction on Reliability,

Vol. 64, No. 1, pp. 234-246, 2015.

[13] L. Yu, “An evolutionary programming based

asymmetric weighted least squares support

vector machine ensemble learning methodology

for software repository mining”, Information

Sciences, Vol. 19, pp. 31-46, 2015.

[14] H. M. Premalatha and C. V. Srikrishna

“Software Fault Prediction and Classification

using Cost based Random Forest in Spiral Life

Cycle Model”, International Journal of

Intelligent Engineering and Systems, Vol. 11,

No. 2, pp. 10-17, 2018.

[15] N. Singh, A. Kalpesh, and S. J. Narayanan,

“Fault Prone Analysis of Software Systems

Using Rough Fuzzy C-means Clustering”,

International Journal of Intelligent Engineering

and Systems, Vol. 10, No. 6, pp. 1-8, 2017.

[16] V. Jayaraj, and N. S. Raman, “An Hybrid

Multilayer Perceptron Using GSO-GA for

Software Defect Prediction”, In: Proc. of 2nd

International Conf. on Recent Trends in

Engineering Science and Management, pp. 119-

132, 2016.

[17] S. D. Martino, F. Ferrucci, C. Gravino, and F.

Sarro, “A Genetic Algorithm to Configure

Support Vector Machines for Predicting Fault-

Prone Components”, In: Proc. of International

Conf. on Product Focused Software Process

Improvement, pp. 247-261, 2011.

