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Abstract: The two main challenges of Software Defect Prediction are high dimensionality and class imbalance. The 

first challenge is high dimensionality where the number of features extracted from software modules becomes larger 

due to growth in size and complexity of modern software systems. The extracted features may be redundant or 

irrelevant. The problem of high dimensionality can be solved by an important pre-processing procedure that is 

feature selection. The second challenge is class-imbalanced data, where the major defects in a software system are 

found in few modules. The earlier methods failed to provide good solution for class imbalance and high 

dimensionality. Also, the prediction accuracy of the existing methods is low. To overcome these major drawbacks an 

optimal Group Search Optimization –Genetic Algorithm (GSO-GA) based fault prediction in software testing with 

kernel based SVM classification is used for improving the software quality. To evaluate the performance of the 

proposed approach that is hybrid Group Search Optimization-Genetic Algorithm (GSO-GA) based fault prediction is 

compared with existing Group Search Optimization (GSO). The GSO-GA based models have produced better results 

and accuracy in terms of existing software metrics like Average Percentage of Faults Detected (APFD), Problem 

Tracking Reports (PTR), and time and memory usage. From the experimental results, we observe that the average 

percentage of faults detected in our proposed approach is higher than the existing method. 

Keywords: Software fault prediction, Prediction, Group search optimization, Genetic algorithm. 

 

 

1. Introduction 

Software development organizations are under 

more pressure than any time in recent times. 

Development costs keep on rising. Minimizing 

defects is an efficient approach to hold development 

costs down, which is a main concern for any 

association [1]. A huge amount of research in 

Software Engineering has been devoted to improve 

the efficiency of testing. Among these, considerable 

efforts have been aimed towards the definition of 

techniques able to predict the components of a 

software system that more likely will contain faults 

[2]. Regression testing provides many benefits such 

as enabling refactoring of code with high confidence 

to catching product faults or functional regressions 

prior to product release [3]. In software engineering, 

defect prediction can precisely estimate the most 

defect-prone software components and help software 

engineers allocate limited resources to those bits of 

the systems that are most likely to contain defects in 

testing and maintenance phases [4]. Software fault 

prediction approaches use previous software metrics 

and fault data to predict fault-prone modules for the 

next release of software [5]. 

Researchers have identified a bunch of problems 

in this area of software defect prediction and have 

tried to offer the answers as well [6]. As recent 

software system has grown in size and complexity, 

quality assurance such as testing and inspection 

have become increasingly important not only for 

software developers but also for software purchases 

who are responsible for acceptance testing and/or 

software services deployment [7]. Software quality 

models generally predict, for a program module, 

either the number of defects it is likely to have or 
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the quality-based risk category it belongs to, e.g., 

faultprone (fp) or not-fault-prone (nfp) [8]. 

The number of features to be extracted increases 

as the size of the software increases and many of 

these features may be redundant or irrelevant [9]. 
To overcome the major drawbacks of high 

dimensionality and class imbalance, to reduce the 

error rate we have used software fault prediction 

based on GSO-GA optimization with kernel based 

SVM classification in this paper. The contribution of 

this paper is to explore the capabilities of (GSO-GA) 

for software fault prediction. We build our fault 

prediction model using (GSO-GA) and kernel based 

SVM in JAVA platform. The performance of the 

constructed model is evaluated in terms of software 

metrics like APFD, PTR, execution time and 

memory usage.  

The rest of the paper is organized as follows. 

Section 2 contains related work. Section 3 explains 

the proposed methodology- (GSO-GA) based fault 

prediction model. Section 4 gives the experimental 

results with comparative analysis. Finally, the paper 

is concluded in Section 5. 

2. Related work 

Software reliability prediction plays an 

important role in the analysis of software quality and 

balance of software cost. Recently Support Vector 

Regression (SVR) has been widely applied to solve 

nonlinear predicting problems and has obtained 

good performance in many situations, but it is 

difficult to optimize SVR’s parameters.  

C. Jin et al. [10] have proposed Estimation of 

Distribution Algorithms (EDA) to maintain diversity 

of population and hybrid Improved Estimation 

Distribution Algorithms (IEDA) and SVR model, 

called IEDA-SVR to optimize parameters of SVR 

and predict software reliability. 

R. W. Li, et al. [11] has proposed a three-way 

decisions framework for cost-sensitive software 

defect prediction. Experimental results on NASA 

data sets show that the two-stage classification 

method which integrates three-way decisions and 

ensemble learning can obtain higher accuracy and a 

lower decision cost in comparison to the traditional 

two-way decision method. 

X. Yang et al. [12] have introduced a learning-

to-rank approach software defect prediction model 

by optimizing the ranking performance. 

L. Yu, et al. [13] have proposed a novel 

evolutionary programming (EP) based asymmetric 

weighted least squares support vector machine 

(LSSVM) ensemble learning methodology. 

H. Mahalingap, et al. [14], has proposed a paper, 

a new classification and prediction methodology is 

put forth to progress the accuracy of defect forecast 

based on Cost Random Forest algorithm (CRF) 

which reduces the effects of faults in irrelevant 

software modules. The proposed algorithm predicts 

the quantity of faults present in the modules of 

software in less time and classify based on measures 

of similarity obtained from Robust Similarity 

clustering technique. 

Prediction of fault proneness of modules in 

software is one of the ways to ensure the 

achievement of software quality and reliability. N. S. 

Agrawa et al. [15], has proposed few models for 

detecting software fault prone modules, the intend of 

our work is to increase the reliability of the software 

by using an approach named Rough Fuzzy c-means 

(RFCM) clustering algorithm to analyze the fault 

proneness of the software modules under test.  

3. Proposed methodology 

 

 

Figure.1 Proposed kernel SVM based software defect 

prediction 

 

Find the best test case 

 

 

 

 

 

Input test case  
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  Loop coverage  

                   

 

 

 

Feature extraction 

Classification by kernel SVM 
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Feature optimization by GSO-GA 
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The proposed optimal Group Search 

Optimization – Genetic Algorithm (GSO-GA) fault 

prediction model is divided into 4 phases as shown 

in the Fig. 1.  

The 4 phases are feature extraction, feature 

optimization, finds the best test case, classification 

by kernel SVM. Initially the test cases are taken as 

input for our study. The input test cases are given to 

the feature extraction phases. In this phase, we are 

extracting the features like failure, time, line 

coverage and loop coverage. Then the extracted test 

cases are optimized with the aid of GSO-GA 

algorithm. In this phase, we are mainly focused on 

feature optimization. These optimized features are 

used to find the best test cases. These best test cases 

are classified with the aid of kernel based SVM to 

predict the defects. Finally, performance analysis is 

performed. The proposed work is implemented in 

JAVA platform. The proposed work is compared 

with the existing methods and algorithms to prove 

that the proposed work is the best one.  

3.1 Feature extraction 

Initially the test cases are taken as input for our 

study. Input test cases are given to the feature 

extraction phase. In this phase we are extracting the 

features like failure, time, line coverage, and loop 

coverage. These features are taken from the test 

cases. 

3.1.1. Line coverage 

Line coverage is as well recognized as the 

statement coverage or segment coverage. Only 

correct circumstances are enfolded using line 

coverage. It as well events the excellence of the 

code and makes sure the flow of dissimilar path in 

that code. 

 

𝐿𝑖𝑛𝑒 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑜.𝑜𝑓 𝐿𝑖𝑛𝑒 𝑒𝑥𝑐𝑒𝑟𝑐𝑖𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.𝑜𝑓 𝐿𝑖𝑛𝑒𝑠
      (1) 

3.1.2. Loop coverage 

These coverage metrics hear says whether each 

loop body is applied zero times, exactly once and 

more than once. This metrics reports whether loop 

body is applied exactly once and more than once for 

do-while loops. And also, while-loops and for-loops 

achieve more than once. This information is not 

accounted using other coverage metrics. Similarly, 

all the test cases are produced. Next resulting test 

case generation is optimized in to the GSO-GA 

algorithm. Since we will produce test cases in each 

time it encloses some resemblance on each time.  

3.2 Feature optimization 

 The extracted test cases are optimized with the 

aid of GSO-GA algorithm. In this phase we are 

mainly focused on feature optimization. We also 

considered the problems of existing methods and 

addressed such limitations with the aid of our 

proposed optimal GSO-GA algorithm 

3.2.1. Group Search Optimization-Genetic Algorithm 

(GSO-GA) 

In this algorithm, the population is termed as a 

group and the individuals residing within the group 

are known as members. The members within a 

group are of three kinds, namely, the producers, the 

scroungers and the rangers. The activity of the 

producers as well as the scroungers relies on the PS 

model. The rangers move in an arbitrary manner.  

Producers: These members go in search of 

resources. 

Scroungers: These members link the resources, 

which the producer discovers.  

Rangers: These are the members that make 

movements in an arbitrary manner and perform 

searching in an organized way, so that efficient 

finding of resources could be achieved. 

 

Φmax = maximum 

search angle 
dmax = maximum 

search distance 
Fi = Fitness 

computation 
τmax = maximum 

turning angle 
dUi = upper limit dLi = lower limit 

n  = dimension of 

search space 
Ψ = head angle 

Zi = producer ε = uniform random 

sequence 
Li = members direction

   
Initialize the search solution as well as the head angle: 

The solution that is obtained after searching 

takes the thickness, period, the wall size and the 

temperature applied into account. Zi represents 

producer. 

 

𝑍𝑖 =
𝑍11 𝑍12 ….   𝑍1𝑚

𝑍21 𝑍22 ….   𝑍2𝑚

𝑍𝑛1 𝑍𝑛2 ….   𝑍𝑛𝑚

 (2) 

 

For every individual, the head angle can be 

stated as in Eq. (3). 

 

𝛹𝑖
𝑠 = (𝛹𝑖1……..

𝑠 𝛹𝑖(𝑛−1)
𝑠 )  (3) 
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The member’s direction of search relies on the 

head angle and it is given as in Eq. (4).  

 

𝐿𝑖
𝑠(𝛹𝑖

𝑠) = (𝑙𝑖1……..
𝑠 𝑙𝑖(𝑛)

𝑠 )  (4) 

 

Polar and Cartesian coordinate transformation is 

employed to assess the direction of search in 

accordance with the head angle. 

 

𝐿𝑖1
𝑠 = 𝛱𝑝=1

𝑛−1 cos(𝛹𝑖𝑝
𝑠 )  (5) 

 

𝐿𝑖𝑗
𝑠 = sin(𝛹𝑖(𝑗−1)

𝑠 𝛱𝑝=𝑗
𝑛−1 cos(𝛹𝑖𝑝

𝑠 )) (6) 

 

Where (𝑗 = 2 … 𝑛 − 1) 

𝐿𝑖𝑛
𝑠 = sin(𝛹𝑖(𝑛−1)

𝑠 )  (7) 

 
Fitness function 

Optimization in the mathematical modeling can 

be accomplished using the sigmoid function, when it 

is included in the process involving artificial neural 

network. The optimized mathematical model can be 

yielded with the optimization of αij and βij in the 

function. The value of error in the mathematical 

model can be computed as the difference between 

the original value and the obtained value.  

 

𝑓𝑖 = ∑ 𝛼𝑗
ℎ
𝑗=1 × [

1

1+𝑒𝑥𝑝(− ∑ 𝑍𝑖𝛽𝑖𝑗
𝑁
𝑖=1 )

] (8) 

 
𝐹𝑖 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝑂𝑏𝑡𝑎𝑖𝑛𝑒𝑑  (9) 

 

Find the producer Zp of the group: 

The member with the best fitness of Zi is called 

as the producer and it is specified as Zp.  
 

Producer performance 

During the execution of the GSO algorithm, the 

activity of the producer Zp at ‘s’ iteration can be 

elucidated as follows: 

 (i) The producer performs the scanning 

operation at zero degree 

 

𝑍𝑧 = 𝑍𝑝
𝑠 + 𝜀1𝑑𝑚𝑎𝑥𝐿𝑝

𝑠 (𝛹𝑠)  (10) 

 

(ii) The producer performs the scanning 

operation at the right hand side hypercube 

 

𝑍𝑟 = 𝑍𝑝
𝑠 + 𝜀1𝑑𝑚𝑎𝑥𝐿𝑝

𝑠 (𝛹𝑠 + 𝜀2
Φ𝑚𝑎𝑥

2⁄ )    (11) 

 

(iii) The producer performs the scanning 

operation at the left hand side hypercube 

 

𝑍𝑙 = 𝑍𝑝
𝑠 + 𝜀1𝑑𝑚𝑎𝑥𝐿𝑝

𝑠 (𝛹𝑠 − 𝜀2
Φ𝑚𝑎𝑥

2⁄ )   (12) 

 

Where, ε1 points to a normally distributed 

random number with zero mean and unity standard 

deviation; ε2 stands for a uniformly distributed 

random sequence that takes value between zero and 

one. The maximum search angle Φmax can be 

expressed as 

 

Φ𝑚𝑎𝑥 =
𝜋

𝑐2   (13) 

 

Here, the constant c can be stated as:  
 

𝐶 = 𝑟𝑜𝑢𝑛𝑑(√𝑛 + 1)  (14) 

 

Where, n denotes the dimension of the search 

space. 

 

∴ Φ𝑚𝑎𝑥 =
𝜋

𝑛+1
  (15) 

 

The computation of maximum search distance 

dmax involves the following equations. 
 

d𝑚𝑎𝑥 = ‖𝑑𝑈−𝑑𝐿‖ = √∑ (𝑑𝑈𝑖 − 𝑑𝐿𝑖)2𝑛
𝑖=1     (16) 

 

Where, dUi and dLi indicates the upper limit and 

the lower limit of ith dimension, respectively. The 

best location containing the most useful resource 

can be obtained with the help of Eqs. (16), (17), and 

(18). The present best location would take a new 

best location, if its resource is found as not better 

than that in the new location. Else, the producer will 

maintain its location and turn its head according to 

the head angle direction that is arbitrarily generated 

using Eq. (19). 

 
 

𝛹𝑠+1 = 𝛹𝑠 + 𝜀2 𝜏𝑚𝑎𝑥  (17) 

 

Where, τmax indicates the maximum turning 

angle that is computed using the following equation. 
 

τ𝑚𝑎𝑥 =
Φ𝑚𝑎𝑥

2
  (18) 

 

When the producer is unable to identify a better 

position even after the completion of m iterations, its 

head would then assume its initial position as given 

in Eq. (22). 

 

𝛹𝑠+𝑐 = 𝛹𝑠   (19) 
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Scrounger performance 

In all iterations, several members that exclude 

the producer are also chosen and they are called as 

scroungers. The scrounging action of GSO usually 

involves the area copying activity. During the sth 

iteration, the activity of area copying that the ith 

scrounger performs can be modeled as a motion to 

reach the producer in a closer way and it is 

expressed as: 

 

𝑍𝑠+1 = 𝑍𝑖
𝑠 + 𝜀3 𝑂(𝑍𝑝

𝑠 −  𝑍𝑖
𝑠) (20) 

 

Where, O specifies the Hadamard product that 

computes the product of the two vectors in an entry-

wise manner and ε3 denotes a uniform random 

sequence lying in the interval of (0, 1). The ith 

scrounger continues its searching activity to make a 

choice of the better occasion for linking. The 

designing of the scrounging action involves the 

turning of the head in the ith scrounger to a novel and 

arbitrarily generated angle.     

 
Ranger performance 

The rangers are the remaining members of the 

group, which have been displaced from their present 

location. The rangers can also find the resources 

effectively through random walks or an organized 

searching procedure. 

 

𝑑𝑖 = 𝑐. 𝜀1. 𝑑𝑚𝑎𝑥  (21) 

 

The random walk to a novel point can be 

expressed as: 

 

𝑍𝑠+1 = 𝑍𝑖
𝑠 + 𝑑𝑖𝐿𝑖

𝑠(Ψ𝑠+1) (22) 

 

Once the entire process gets completed, the 

fitness of the updated solution is evaluated. The best 

solution will be gained, if the process is repeated for 

‘s’ number of iterations. The Group Search 

Optimization algorithm (GSO) and the related 

mathematical modeling allow the temperature of the 

wall to be envisaged effectively. Here, we include  

genetic algorithm for GSO weight updation it will 

be clearly explained on below section. 

3.2.2. Genetic algorithm (GA) 

The novel adaptive genetic algorithm is used to 

optimize the weights. In case A possesses fitness 

superior to that of B, then A is chosen, ignoring B. 

Nevertheless, they reproduce to create one or 

multiple offspring. 

 

 

Generation of chromosomes 

The initial solutions are generated randomly and 

each solution is termed as the gene. The individual 

genes are incorporated as chromosomes and it is 

called the solution set. The numbers of genes are 

included with the chromosomes and the solution set 

for the population is created. The population of the 

genetic algorithm encompasses the chromosomes 

and the population size is activated as permanent. 

The numbers of solutions are activated in 

accordance with the typical genetic technique. In 

this case, the initial solutions are called the weight. 

 
Cross over 

In the cross over, the two parent chromosomes 

are chosen with the intention of exchanging their 

genes between them. The following example 

illustrates the parent chromosomes parent 1 and 

parent 2. 

 
Shape of Parent 1 & 2 

 

1 2 3 1 2 3 1 2 

Parent 1 

 

3 2 1 3 2 1 3 1 

Parent 2 

 

In parent 1 & 2 chromosomes, the bold lettered 

remain without any modification in their locations 

and the remaining gene of the chromosomes is 

exchanged between the parent chromosomes. 

Subsequent to the crossover, the chromosome takes 

the following shape.   
 

Shape of new chromosome 1 & 2 

 

1 2 3 1 2 1 3 2 

New chromosome 1 

 

3 2 3 1 2 1 3 1 

New chromosome 2 

 

Mutation 

Subsequent to the crossover, the new 

chromosome is transformed for augmenting the 

effectiveness of the solution and the bold depicts the 

transformed gene of the chromosome. In the novel 

mutation process, the matching order is selected 

within the offspring and it is exchanged from its 

position to other place for achieving the most 

brilliant optimal solution. The shift varying mutation 

approach is used in the mutation function and the 

orders of each chromosome are moved to leave one 

step and replaced by the new order. After the shift 
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the modifications within the off-spring are exhibited 

below. 

 
Mutation 

1 2 3 1 2 1 3 2 

 
 

 

Mutation process 

From the above the gene of the off spring is 

moved one step left and the adapted new solution is 

achieved by the mutation procedure. The optimal 

solution is attained after completion of the mutation 

function and it illustrates the ultimate output of the 

outcome with their minimal optimized time, 

yielding the least make span duration. 

 
Optimal solution 

When the mutation function is completed, the 

new chromosomes are generated for the new 

solution sets. Later on, the fitness value is evaluated 

for the new solutions. The solution, which offers the 

best value, is shortlisted and is considered as the 

optimal solution. Otherwise, the processes 

mentioned above are repeated for the new solution 

sets. 

In long run, we arrive at the optimal path from 

the hybrid GSO with AGA algorithm. Now each 

optimal path is home to a number of optimal nodes. 

If a new task emerges for the allocation of the 

resource, the innovative technique employs the 

optimal path in which the best nodes are shortlisted 

for the new task. With an eye on selecting the best 

nodes, the performed techniques deploy the resource 

cost, time and memory capacity. 

3.3 Find the best test cases 

These optimized features are used to find the 

best test cases these test cases are classified with the 

aid of kernel based SVM to predict the defects 

3.4 Classification using hybrid kernel based 

support vector machine 

Once the feature reduction is formed, the 

classification will be done based on the Hybrid 

kernel based Improved SVM (ISVM) classifier. In 

this classification, the optimal kernel is identified 

using Grey Wolf Optimization (GWO). 

3.4.1. Kernel based support vector machine 

In software defect prediction research optimized 

test cases are classified with the aid of kernel SVM. 

There are two very important phases in the SVM 

procedure such as the preparation phase and the 

effortless stage. 

 

Training phase: Currently, the output of 

attribute choice is provided as the input of the 

preparation stage. The input utility supplies the 

group of values which cannot be alienated.  

Approximately each one of the probable isolation of 

the position places are comprehend by a hectic plane. 

In the Lagrange pattern, it is probable to put the 

partition of the hectic plane standard vector during 

the divergent kernel task. In this association, a 

kernel symbolizes a few tasks, which communicate 

to a dot product for definite kind of attribute 

recording. Yet, recording a position into a better 

quality dimensional gap is probable to direct to 

unnecessary assessment period and enormous 

storage requirements.  By the outcome, in concrete 

perform, an original kernel task is initiated which is 

competent of openly estimating the dot product in 

the better-quality dimensional gap. The frequent 

edition of the kernel task is provided as follows. 

 

𝐾(𝑈, 𝑉) = 𝜑(𝑈)𝑇𝜑(𝑉)  (23) 

 

In this view, the majority broadly engaged 

kernel tasks contain the linear kernel, Polynomial 

kernel, Quadratic kernel, Sigmoid and the Radial 

Basis task. Specified beneath are the terms for the 

different kernel task. For Linear Kernel: 

 

𝑙𝑖𝑛𝑒𝑎𝑟𝑘(𝑈, 𝑉) = 𝑢𝑇𝑣 + 𝑐  (24) 

 

Where, u,v represents the inner products in 

linear kernel   and c is a constant. For Quadratic 

Kernel: 

 

𝑞𝑢𝑎𝑑𝑘(𝑈, 𝑉) = 1 −
‖𝑢−𝑣‖2

‖𝑢−𝑣‖2+𝑐
 (25) 

 

Where, u,v - are the vectors of the polynomial 

kernel function in the input space. For Polynomial 

Kernel: 

 

𝑝𝑜𝑙𝑦𝑘(𝑈, 𝑉) = (𝜆𝑢𝑇𝑣 + 𝑐)𝑒 , 𝜆 > 0         (26) 

 

For Sigmoid Kernel: 

 

𝑠𝑖𝑔𝑘(𝑈, 𝑉) = tanh(𝜆𝑢𝑇𝑣 + 𝑐), 𝜆 > 0     (27) 

 

The effectiveness of the SVM consistently 

oriented on the variety of the kernel. In the original 

procedure, an original KSVM is predicted, dedicated 

for the noteworthy development in the 

categorization system. The mutual kernel task is 
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successfully engaged in the KSVM and the standard 

of the kernel task, avgk(U,V) is delivered beneath. 

 

𝑎𝑣𝑔𝑘(𝑈, 𝑉) =
1

2
(𝑙𝑖𝑛𝑘(𝑈, 𝑉) + 𝑞𝑢𝑎𝑑𝑘(𝑈, 𝑉))   (28) 

 

𝑎𝑣𝑔𝑘(𝑈, 𝑉) =
1

2
((𝑢𝑇𝑣 + 𝑐) + (1 −

‖𝑢−𝑣‖2

‖𝑢−𝑣‖2+𝑐
))(29) 

 

By merging of two outcomes, the standard of the 

outcome is accomplished and developed to 

classification. 

 

Testing phase: In the testing phases productivity 

from the classification choice is provided as to the 

experiment stage and the productivity specifies the 

subsistence or else the absence. In our proposed 

research we introduce an optimal GSO-GA based 

fault prediction in software testing to assess the cost 

effectiveness of test effort. Software testing plays a 

vital role in software development. 

4. Experimental results with comparative 

analysis 

The experimental result of GSO-GA algorithm is 

discussed below. The proposed system is 

implemented in Java (jdk 1.7) that has system 

configuration as core2duo processor with clock 

speed of 2.3GHZ and RAM as 2GB and that runs 

Windows 7 OS. 

4.1 Performance evaluation 

Performance evaluation is an adaptable tool used 

to: Measure actual performance against expected 

performance.  

From table 1, the results of the fitness value 

using GSO-GA search measures are graphically 

represented in Fig. 2. In iteration 5, the fitness value 

is 40.46, in iteration 10 the fitness value is 17.21, in 

iteration 15 the fitness value is 6.96, in iteration 20 

the fitness value is 3.337then in 25 iteration the 

fitness values is 0.0061. 

 
Table 1. Fitness value depending on iteration 

No of Iterations 
Fitness value using  

GSO-GA 

5 40.46 

10 17.21 

15 6.96 

20 3.337 

25 0.0061 

 

 

 
Figure.2 Graphical representation for fitness value using 

GSO-GA 

 
Table 2. Time measures taken based on iteration 

No of Iterations 
Time 

(in ms) 

5 557 

10 592 

15 620 

20 629 

25 667 

 

 
Figure.3 Graphical representation for Time 

 
Table 3. Memory measures taken based on iteration 

No of Iterations 
Memory 

(in byte) 

5 3540118 

10 3516608 

15 3583469 

20 3595145 

25 3563611 

 

 
Figure.4 Graphical representation for memory 
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From Table 2, the results of the time are 

graphically represented in Fig. 3. The time taken in 

iteration 5 is 557, then in iteration 10 the time taken 

for that is 592 then in iteration 15 the time taken for 

that is 620, then in iteration 20 the time taken for 

that is 629, then in iteration 25 the time taken for 

that is 667. 

From Table 3, the results of the memory are 

graphically represented in Fig. 4. The memory taken 

in iteration 5 is 3540118, then in iteration 10 the 

memory taken for that is 3516608, then in iteration 

15 the memory taken for that is 3583469, then in 

iteration 20 the memory taken for that is 3595145 

and in iteration 25 the memory taken for that is 

3563611. 

4.1.1. Average percentage of faults detected (APFD) 

metric 

The APFD is computed by taking the weighted 

average of the percentage of faults detected during 

the implementation of the test suite. APFD values 

range from 0 to 100; higher values imply faster 

(better) fault detection rates. APFD can be computed 

as follows: 

 

𝐴𝑃𝐹𝐷 = 1 − {
(𝑇𝑓1+𝑇𝑓2+⋯𝑇𝑓𝑚)

𝑚𝑛
} + (1

2𝑛⁄ )   (30) 

 

Where n be the no of test cases and m be the no 

of faults. (Tf1,….,Tfm ) are the position of first test T 

that exposes the fault. 

 
Table 4. APFD results to be taken based on iteration 

No of Iterations APFD 

5 65% 

10 70% 

15 67% 

20 74% 

25 83% 

 

 
Figure.5 Graphical representation of APFD Evaluation 

Measures 

 

Table 5. PTR results to be taken based on Iteration 

No of Iterations PTR 

5 75% 

10 78% 

15 69% 

20 76% 

25 87% 

 

 
Figure.6 Graphical representation of PTR Evaluation 

Measures 

 

From Table 4, the results of APFD are 

graphically represented in Fig. 5. In first iteration 5 

the percentage of APFD is 65%, in second iteration 

10 the percentage of APFD is 70%, in the third 

iteration 15 the percentage of APFD is 67%, then in 

fourth iteration 20 the percentage of APFD is 74% 

then the fifth iteration is 25 the percentage of APFD 

is 83%. 

4.1.2. Problem tracking reports (PTR) metric 

𝑃𝑇𝑅(𝑡, 𝑝) = 𝑛𝑑
𝑛⁄   (31) 

 

Let t - be the test suite under assessment,  

n - The total number of test cases in the total 

number of test cases required to identify all faults in 

the program under test p. 

4.2 Comparative analysis 

The existing review works are compared in this 

section with the proposed work to show that our 

proposed work is better than the state-of-art works. 

We can establish that our proposed work helps to 

attain very good accuracy for the estimation of 

database using Improved Group search 

optimization-Genetic algorithm (GSO-GA). The 

Comparison outcomes are presented in the following 

Table 6. 

The improved good outcomes of our proposed 

GSO-GA work are compared to existing GSO. The 

time measures of the existing method and proposed 

method to be measured is based on iteration. When 

we compare our result to the existing results our 
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proposed GSO-GA has given better result by taking 

minimum time to perform a process. 
 

Table 6. Comparison for proposed and existing time 

measures 

No of 

Iteration 

Proposed 

GSO-GA 

(in ms) 

Existing 

GSO 

(in ms) 

5 557 628 

10 592 658 

15 620 698 

20 629 765 

25 667 678 

 

 

 
Figure.7 Graphical representation of proposed and 

existing time comparison measures 

 

 

Table 7. Comparison for proposed and existing memory 

measures 

No of 

Iteration 

Proposed 

GSO-GA 

(in Byte) 

Existing 

GSO 

(in Byte) 

Existing 

GA (in 

byte) 

5 3540118 3679564 3789567 

10 3516608 3656585 3689548 

15 3583469 3658952 3789562 

20 3595145 3629574 3657894 

25 3563611 3589745 3689524 

 

 

 
Figure.8 Graphical representation for proposed and 

existing memory comparison measures 

 

Table 8. Comparison for proposed and existing accuracy 

measures 

No of 

Iteration 

Proposed 

KSVM 

Existing 

SVM 

Existing 

GA-NN 

5 95 71 92 

10 96 72 93 

15 92 63 97 

20 93 74 82 

25 98 63 80 

 

 
Figure.9 Graphical representation for proposed and 

existing accuracy measures 

 

The memory measures of the existing method 

and proposed method is based on iteration.  When 

we compare our result to the existing results our 

proposed GSO-GA has given a better result.  It has 

taken a minimum byte of memory to perform an 

operation. 

4.2.1. Classification accuracy comparison 

The classification accuracy measures of the 

existing method and proposed method is based on 

iteration. 

When we compare our result to the existing 

results, our proposed GSO-GA has given better 

classification accuracy. The existing work used the 

algorithm GA-NN to get 88% accuracy and SVM 

algorithm to get 68% accuracy. When we compare 

these two results to our proposed Kernel SVM we 

get 94% accuracy. 

5. Conclusion 

An Improved hybrid classification technique 

based fault prediction and classification with four 

phases, like feature extraction, feature optimization 

by using GSO-GA, find the best test cases and  

classification by using kernel based SVM, was 

proposed in this paper. The test cases are produced 

from the application program. The features are 

extracted from the test cases and then by utilizing 

the GSO-GA algorithm the features are optimized. 

These optimized features are used to find the best 
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test cases. These best test cases are classified with 

the aid of kernel based SVM to predict the defects.. 

From the outcomes, we have showed that the kernel 

SVM classification algorithm utilized in our 

proposed work outperforms the classification with 

very good accuracy. Thus, we can observe that our 

proposed work is better than other existing works 

for the software fault prediction. In this paper, we 

have proposed kernel based SVM for classification 

GSO-GA for feature extraction as a proposed 

technique is compared against GSO. Results of 

proposed technique are in terms of APFD, PTR, 

Time, and Memory. We cannot promptly apply 

these results to other software systems different 

from the ones we employed. To address this issue, 

in the future we intend to replicate the performed 

analysis using other datasets. This is the only way to 

get better confidence on the generalizability of the 

results. 
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