
Received: November 18, 2017 161

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

Popularity (Hit Rate) Based Replica Creation for Enhancing the Availability

in Cloud Storage

S. Annal Ezhil Selvi1* R. Anbuselvi1

1Department of Computer Science, Bishop Heber College,

Trichy, Tamilnadu, 620017, India
* Corresponding author’s Email: ezhilabel.bhc@gamil.com

Abstract: In cloud computing, the replication management system has been well adopted in cloud storage

applications. To provide the availability and reliability, the replication system replicates the files and can be stored in

different server. The system led some complicated issues such as high memory consumption, incurred high storage

cost and to access the file is more complicated issues in recent cloud storage applications. In the existing technique,

File Accessing Frequency based Ranking (FAFR) Algorithm and Dynamically Reduced Replica for Rarely Accessed

files (DRRRA) algorithm work jointly and identify the rarely accessed files and retain the replica in two server other

replicated files are deleted. To provide access to more request with 2 or 3-replica is a complicated issue. Thus, this

paper proposes a Dynamic replica Creation for Availability enhanced Storage (DRCAES) algorithm which jointly

work with FAFR algorithm to predict most frequently accessed files and automatically replicated to other server

based on server memory. The aim of this proposed approach is to enhance the availability, thereby reducing the

request-response delay time. Thus the proposed approach optimizes the number of replicas, occupied space, and cost.

Keywords: Cloud storage, Replication, Reduce replica, Dynamic replica, File popularity, File accessing frequency.

1. Introduction

Microsoft Azure, Amazon, Google Cloud

Storage (GCS) and as leading Cloud service

Providers offer different types of storage (i.e.,

sequences of files, etc.) with different prices for data

storage services. The data storage services and

accessing files are very difficult issues on

Redundancy Storage. Each cloud service provider

also provides and monitors the commands to

retrieve, store and delete data through network

services, which impose in- and out-network delay

and cost on an application [1]. In leading Cloud

service provider in network cost is free, while out-

network cost (network cost for accessing) is charged

and may be different for usage of cloud providers. In

cloud server Data transferring or data replication

among from one server to other server, this shows

significant price differences among them. The

existing problem on this diversification plays an

essential role in the optimization of data

management request response and delay in cloud

environments [2]. This proposed techniques at

optimizing this request response and delay that

consists of residential cost (i.e., storage) and

potential migration cost (i.e., network server cost).

Cloud service provider many applications are

moving towards a distributed interconnected

network environments. In this distributed

environment, the data storage and all computational

cloud resources are distributed during different and

widespread locations based on ranking.

 A cloud server store the data, the data can have

a huge number of users that require having access to

huge data volumes. For example, consider a set of

documents or images or videos that needs to be read

and accessed by a number of user spread worldwide,

in a distributed way. The access to vast data

volumes by huge number of users can be access

very time consuming. As the size of the system is

increased, the tasks of providing such data service

Received: November 18, 2017 162

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

becomes more difficult since its users suffer from

long delays in data access.

Replica cloud storage is a new research field; the

dynamic replication policy is still rarely seen. In this

paper, the focal point is on early distributed storage

file system replica creation approach, combine with

the quality of cloud storage, this paper design a

dynamic replication strategy based on high

prediction. It create a replica according to the file

access history quality, so with the purpose of users

can access the nearby which bring the cloud system

to one of the most excellent status with ranking,

specifically the replica number of minimum, access

to the highest efficiency, network lifetime is

increased.

A fixed number of replicas for every file is

insufficient to give quick file read for hot files while

waste resources for storing replicas of cold files.

Random selection of replica destination require

observance all Data Centers active to ensure data

availability, which though waste power consumption.

As the random selection of replica destination does

not think purpose of bandwidth and request handling

capacity, network congestions could occur due to

capacity restriction of some links and server may

turn into overloaded by data requests.

In this environment, data replication is essential

so that the users can retrieve the most request data

from storage residing in nearby server. The

replication is based on server memory [3]. The

performance of the distributed networks is crucially

affected by the replication strategy used. The huge

majority of the known replication strategy

determines the replicas by computing an easy

ranking based on the number of requests for each

file on individual cloud server. The “most accessing”

files, the ones with the highest ranking value, are

selected for replication due to the memory based

other server replicated.

This ranking technique that it is quite possible

that, the accessing files with high recent demand

will be requested on cloud server, with even higher

hit rates. Since the computation is quite simple, the

strategy mainly focuses on the problem of select the

most suitable files for storing the replicas based on

memory [4].

The two main drawbacks of the strategies

proposed are related to the following techniques

implemented in this work. First one is optimization

process and second one is high prediction ranking

algorithm. The scheme presented in the literature

does not take into account the change that might

suggest itself in the interest of users for certain files.

Instead, they are mostly involved in one or more

factors that decide the importance of the file

themselves, like the file size, the number of requests

for an entity file or the contents of a file. The user

request response time and files are analysed

optimization process [5].

The Second process user request analysed and

which files are most hitting on individual server.

The existing replication decision algorithm satisfies

the better request response time but the replication

of hitting is complicated [5]. The hitting ratio is

calculated or monitor on high prediction ranking

algorithm. This algorithm identifies the most hitting

files and replicated to other server based on server

memory. The replication process implemented on

this server automatically reduced the delay and

request response time on server. At the end of this

approach the cloud storage system will act as a

Role-Based intelligent System (RBIS). So that, the

user can an efficient data storage on cloud

computing environment.

Some of the roles of the DRCAES approach is

listed below,

 Dynamically predict rarely accessed files and

most frequently accesses the file using FAFR

model.

 Through DRRRA dynamically reduce the

number of replicas of that rarely accessed files,

so that, the cost and occupied space will be

minimized. For reduction of the replica, it finds

minimum available Space of DC among DC’

where that file exists (Removal).

 In DRCAES, dynamically create and place the

new replica for the most accessed file if the

frequency of each replica is equally accessed

otherwise it won’t replicate. The new replica

placed in the data center that has more available

space and that file does not exist.

 Balanced storage retained during removal and

new replica placement. Because, it analyses all

aspects of Storage system like available Space,

SLA, Accessing frequency of all existing replica.

The existing work are discussed in Section 2,

overall back ground process are described in section

3, In section 4 the proposed work which is improve

the overall request time and reduced delay using

high prediction ranking algorithm are described. The

section 5 discusses the results details. And section 6

is conclusion.

2. Related works

Data replication issue effectively requires taking

a closer look at the arrangement of most common

services and applications deployed on storage clouds

to provide services to other parties. Such

applications are usually implement as multi-tier

Received: November 18, 2017 163

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

applications running on distributed software system.

The multi-tier application user giving the request the

overall response time is very high. The storage

strategies so far consider the number of requests as

the main hitting files for computing the popularity of

each file [6].

The hitting files identify the limitation of the

current research of data replication in cloud server:

they are whichever hypothetical investigation

without realistic consideration, or heuristics-based

execution without a provable performance guarantee.

The most directly related work to this replication

work is complicated process on clouds server. The

data replication and request response on cloud

server as a static optimization problem on user

access [7]. They show that this problem is NP-hard

and request delay, which means that present, is no

polynomial algorithm that provides an accurate

solution. They only reflect on static data replication

for the intention of proper analysis. The limitation of

the static approach is that the replication cannot

regulate to the dynamically shifting user access

prototype. Additionally, their centralized process of

integer programming technique cannot be simply

implementing in a distributed cloud server.

The request response and resource sharing use

an auction protocol to make the replication choice

and to trigger long-term optimization by with file

access patterns. In this propose utility-based

replication strategies on clouds server. In this

process address the data replication for availability

in the face of unreliable works, this is different from

this optimization work [8, 9].

The random collection of replica destination

neglects server heterogeneity (i.e., different Data

Centers vary in data request handling capacities and

network capacities). The write due to creating

replicas in production clusters at searching engine

application for almost half of all cross-rack traffic.

While the network within clusters is frequently

underutilized, there exist some traffic jam links

resulting from the network usage imbalance [10].

To assume the multi-facility cloud resource

allocation problem, they are mainly involved in

solutions that are agreeable to parallel

implementations. There is quite a lot of reason. First,

for a cloud resource allocation, problem (1) is

inherently an important convex resource

optimization problem, with millions of variables or

still more. A centralized process of cloud server

resource allocation solver is extremely inefficient in

solving such large-scale cloud storage problems [11].

3. Background process

Cloud services, such as search engines,

education portal, parallel application, social

networking, etc., are often deploy on a

geographically spread the infrastructure, i.e. data

centers placed in different regions and better and

reliability. A usual query is then how to direct the

workload from users along with the set of geo

distributed data centers in organize to achieve a

desired transaction between performance and delay,

since the power price exhibit an important degree of

geographical diversity [12]. This query has involved

much attention recently and is usually referred to as

geographical cloud server load balancing.

The resource scheduling based data replication

problem and focus on scheduling pathetically

parallel resource usage which are collected of a set

of independent responsibilities with very minimal or

no data synchronization. A huge number of

applications fit in to this type of resource sharing on

cloud storage. Examples consist of distributed

relational database query, search engine query,

BLAST searches, data processing, and image

processing applications such as shaft tracing. To

effect apathetically parallel resource allocation, each

of its tasks is placed on a physical server and

executed in an external server added for that task.

The completion time of this resource request is the

completion time of the last finished request and

overall request response, i.e., the make criticize of

that set of request are completed [13].

The conventional data caching/replication

problem have been considered extensively in the

framework of the Web distributed cloud databases

and multimedia systems. What be different from

Web caching is that disk memory and I/O bandwidth

are the main concerns in multimedia storage systems.

A number of algorithms are proposed to attain high

acceptance rate and resource utilization by balancing

the use of different request response resources.

Unlike Web search engine and multimedia data,

database contents are access by both read and write

operations based in optimization process and

ranking [14].

It is assumed that the frequent accessed files in

the past will be accessed more than the others in the

future. This is called as high prediction ranking on

temporal locality. With the property of sequential

locality, a most accepted data file is resolute by

analysing the number of access to the data files from

users. After discovery the best popular file, we trace

to the client that produce the most requests for the

popular data file and a new replica is placed in it.

Therefore, in this application have to collect history

Received: November 18, 2017 164

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

of records regarding the end-to-end data transfers to

decide which file should be replicated [15].

4. Proposed framework and algorithm

Dynamic replication of data is another

significant issue since access frequencies to

individual data items are likely to modify in most

cloud server environments. The aim is to make the

replication strategy rapidly and accurately adapt to

changes and achieve optimal ranking process on

long-term performance.

In [12], they establish that, to take advantage of

cached data, it is sometimes essential to procedure

individual queries using “suboptimal” plans in

arrange to reach high system performance. In data

replication is triggered as a result of changes of

request rates in cloud server.

4.1 Dynamic replica creation availability

enhanced storage framework

The proposed contribution is used an

optimization based high prediction ranking

algorithm. The Ranking algorithm (FAFR) is giving

better performance on request response time and

delay. The ‘N’ number of user agreed request and

access the files on cloud server. To find the files and

request user identification process and queuing

process all are calculated the cloud server. Fig. 1 is

architecture of optimization based ranking with

conclude of input request response. The user

requests the input and cloud analyse the user which

files are request. The server files viewed by ranking

(based on most popularity). Example the java.doc

files mostly requested and download the files from

user means, the java.doc is replicated to other server

based on server memory.

Design data sharing-aware optimization

algorithms for solving the resource request problem.

Before relating the algorithms establish few static

definition and assumption concerning the cloud

servers. The Data Centers manage by the cloud

service provider are in one of the following two

states: active (available) and replicate.

An active cloud server is a server that is

powered on and is currently considered for all

resource allocation by the algorithms. A replication

is a server that is most frequent files are request in

cloud server considered for replicated data on other

server based on memory allocation by the

algorithms. So it can denote by Fi, Si the set of most

frequent access file and number of Data Centers.

When the entire cloud Data Centers hosted by files,

and accessing most frequent files are replicated files

on ranking based techniques in clouds server.

Figure.1 Proposed architecture

Data Centers are configured and located in

different geo-locations. Files are stored in that

configured Data Centers. The previous work of this

research proposed an algorithm (Dynamically

Reduced Replica for Rarely Accessed file (DRRRA)

Algorithm [15]) reduce the replica based on file

popularity (Least accessed files) which is the result

of Ranking Algorithm (File Accessing Frequency

based Ranking) [14]. The ranking algorithm predicts

the files based on their popularity. But, this paper

focuses the most frequently accessed file which is

the most popular file. If the user need is increased

for a file that files replicated dynamically.

4.2 Mathematical model for replica creation and

placement

The following notation and equations are used in

the prediction process of frequently accessed files

and replica increasing process.

 m: Number of uploaded files.

 n: Number of Data Center (DC).

 𝐷𝐶𝑖 : i
th DC, i 1,…,n.

 𝐹𝑗 : j
th file, j 1,…,m.

 𝑖,𝑗: Replica Accessing Frequency (RAF)

(Hit Rate) of ith file in jth DC. It is shown in

the following matrix (m X n) representation.

 𝐷𝐶1 𝐷𝐶2 … 𝐷𝐶𝑛

𝐹1

𝐹2

⋮
𝐹𝑚 [

1,1 1,2 … 𝑖,𝑛

2,1

⋮
2,2

⋮

…
…

2,𝑛

⋮
𝑚,1 𝑚,2 … 𝑚,𝑛]

 FAF: File Accessing Frequency computed

using eq. (1) as,

 FAF𝒋 = ∑ (𝒊,𝒋)
𝒎
𝒊=𝟏 , i 1,…, n

 j 1,…,m. (1)

Received: November 18, 2017 165

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

 TFL𝑖,𝑗 : Total File list(TFL) in ith file in jth

DC, where i 1,…,n j 1,…,m.

 AFL𝑖,𝑗 : L where is Allocated File List

(AFL) of ith file in jth DC, if 𝑖,𝑗 > 0,

TFL𝑖,𝑗

 NAFL𝑖,𝑗: Non Allocated File List of ith file

in jth DC, if 𝑖,𝑗 = 0, TFL𝑖,𝑗

 TFLDC𝑖,𝑗 :K where is Total File List of

each Data Center‘ of ith DC in jth File,

where i 1,…,n j 1,…,m.

 AFLDC𝑖,𝑗 : D where is Allotted File List of

each Data Center, of ith DC in jth File, if

𝑖,𝑗 0 K.

 DCC𝑗 : Data Center' Capacity (DCC) of jth

DC, where j 1,…, n .

 FS𝑗: File’s Sizes of jth DC, where j 1,…,

m .

 OS𝑗: Occupied Space of jth DC is calculated

using the following equation

OS𝑗= ∑ 𝐹𝑆𝑗
𝑛
𝑗=1 D, j 1,…,n. (2)

 AS𝑗 : Available Space of jth DC calculated

using eq. (3) as,

AS𝑗 = DCC𝑗- OS𝑗 j 1,…,n. (3)

 FA_Th: Frequently Accessed files

Threshold Value.

 Th_LL: Low Limit of threshold value.

 Th_UL: Upper Limit of threshold value

In prediction process, there are two levels of

prediction done to find the files which are really

needed to increase the number of replicas for

meeting the availability enhancement requirements.

In first level prediction, the most frequently

accessed files are predicted using Eq. (4) based on

the FAF of the FAFR model.

The second level prediction able to done based

on the result of the first level prediction. By first

level prediction, some of the most frequently

accessed file is in resulting set. From that files, the

second level prediction finds the files which are

really required to provide seamless availability that

is done using Eq. (5) based on RAF of the FAFR

model.

𝐹𝑖 = 𝐹𝐴𝐹 FA_Th (4)

𝑖,𝑗 =

{
𝑀𝑎𝑥 ((AS𝑗) ∈ NAFL𝑖,𝑗) = 1

if th_LL 𝜃𝑖,𝑗 th_UL,

 𝜃𝑖,𝑗 ∈ 𝐹𝑖

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5)

To be exact, Check the frequency of each replica

(if it is equally accessed it will be replicated

otherwise it won’t be replicate). Then the Replica

Placement will be done based on available space of

the data center. That is, the dynamically created

replica will be placed in Datacenter that has more

available space and that file does not exist.

4.3 File accessing frequency based ranking

(FAFR) algorithm

FAFR is a ranking algorithm which proposed in

[14] itself. But in this paper, the new name is given

with some refined work. is the Replica Accessing

Frequency (RAF) (hit rate). Initially, value is 0

when the file is uploaded then the value became 1.

And whenever the file is accessed the value will

be incremented. Finally, the summative value is

calculated and considered as a File Accessing

Frequency.

Input: DCi, Fi, M(Fi), k=0, =0,q

Output: Rank { q’s result set}

1. Done file in Data center’s when user

interface triggered

2. If file upload

3. =1

4. If file access

5. = +1;

6. for each Fi do

7. for each DCi do

8. K=k+

9. End

10. Rank. insert (all Values)

11. If Rank =q

12. Return Rank

Figure.2 Working principle of DRRRA

Received: November 18, 2017 166

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

In Fig. 2 is shown the working principle of

Dynamically Reduced Replica for Rarely Accessed

files (DRRRA) is described in [15]. FAFR and

DRRRA are jointly worked and predict Rarely

Accessed files then reduce their replica to 2-replica

strategy. Here the minimum replica is 2 for assuring

Reliability and maximum is 3-replica strategy.

4.4 Dynamic replica creation for availability

enhanced storage (DRCAES) algorithm

The following DRCAES algorithm dynamically

finds the most frequently accessed file using FAFR

[14]. Then, based on FAFR result DRCAES

dynamically replicate the replica and place it on DC

that have maximum Available Space (AS) and that

DC does not have that file’s replica on it.

Input : Fi, DCi , NALk, i,j , FA_Th, Th_LL ,

Th_UL., DC, Replica

Output: Dynamically Increased Replica.

1. Set values to FA_Th, Th_LL and Th_UL.

2. If user access

3. FAF getFAF()

4. If FAF>= FA_Th then

5. Fi getHighRankFiles()

6. DCi getHighRankFilesDC()

7. NALk get_allNonAllocatedList()

8. For each Fi do

9. For each DCj do

10. i,j getRAF(F i , D j)

11. If(i, j >= Th_LL and i,j < Th_UL) then

12. Replica=copyof(Fi)

13. DC=getDCid(max(ASi

getAvailableSpace(NALk)))

14. REPLICATE(DC, Replica)

15. End

16. End

In DRCAES algorithm Step (3) is used to get

most frequently accessed files. For every user access

monitored and when FAF reach the FA_Th valued

that time it performs the second level prediction

which is done in RAF. That is, the every RAF

should satisfy the range which mentions in step 10.

End of this checking, if the result set has files that

files are required to increase their number of

replications, that will be done based on SLA

specification and Available Space of DC which is

defined in Step (12).

Step (11) is used to verify if the file need to

replicate or not. That is, Th_LL is lower limit of

threshold value range and Th_UL is a upper limit of

threshold value range which determine the ranges of

threshold values are decide to replicate or not.Then,

Step(12-14) are work when step (11)’s decision.

Example:

The worked out examples of DRCAES

algorithm is presented in tables 1 to 6, which will be

discussed below one by one. After this discussion,

the reader can easily understand the concept of our

approach clearly.

The Prediction of Frequently Accessed Files

based on FAF process is represented in table 1. The

FA_Th value for validation is 15. When the FAF

reach 15 that file comes under the consideration. For

an example, using Eq. (4) the files 1, 3, and 5 are in

consideration.

In Table 1 shows seven Data Centers are

configured with 5GB Memory and they are located

in different geo-locations. And five different files

are stored on among the 7 DC.

Next, these files are verified by second level

prediction process that is Prediction of highly

needed files based on RAF which is explained in

table 2. In second level prediction done using Eq.

(5) which checks the individual replica frequency, if

it all equally accessed that file will be replicated in

one more data center.

In Eq. (5), there are two threshold values

involved. First one is Th_LL, its value for validation

is 10. The second one is Th_UL, its value for

validation is 20. The file 3’s replicas residing in

DC2, DC4, and DC5, as well as their RAF, is 3 is

8,10,6 respectively. So this files not in the range of

Th_UL and Th_UL. Thus, this file need not be

replicated, but other two files 1 and 5 need to be

replicated because it satisfies the range values.

In table 3 depicted the process of replica

placement which is described in Eq. (7). The file

1’s replicas are residing in DC2, DC4 and DC7

along with their RAF are 14, 20 and 15 respectively.

The replica placement has done based on

Available Space (AS) of the data center which

doesn’t have the replica of the file. Here, the DC1,

DC3, DC5, and DC6 doesn’t have the replica of

file1 as well as their AS is 4.5, 4.9, 4.7 and 4.8

respectively.

The DC3 has the maximum of AS among the

DCs which as mentioned in the previous point. So,

the replica will be placed in DC3, the reflected

changes in metadata are shown in table 4.

Received: November 18, 2017 167

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

Table 1. Prediction of frequently accessed files based on FAF

S

.

N

o

File Name File

Type

N

R

File

Size

in

MB

RAF (Replica Accessing Frequency) () F

A

F

DC 1

5GB

DC 2

5GB

DC 3

5GB

DC 4

5GB

DC 5

5GB

DC 6

5GB

DC 7

5GB

1 Array_Java docx 3 0.07 0 14 0 20 0 0 15 49

2 Tree_ds pdf 2 0.11 0 0 1 0 0 1 0 2

3 Img_001 jpeg 3 0.31 0 8 0 10 6 0 0 24

4 CS_C mp3 2 0.55 3 0 0 2 0 0 0 5

5 HelloEnglish mp4 2 1 0 13 0 0 0 0 19 32

OS (Occupied Space In GB) 0.5 1.4 0.1 0.9 0.3 0.1 1.0

AS (Available Space in GB) 4.5 3.6 4.9 4.1 4.7 4.9 4.0

Table 2. Prediction of highly needed files based on RAF

S.No File Name File

Type

NR File

Size

in

MB

RAF (Replica Accessing Frequency) () FAF

DC

1

5GB

DC

2

5GB

DC

3

5GB

DC

4

5GB

DC

5

5GB

DC

6

5GB

DC

7

5GB

1 Array_Java docx 3 0.07 0 14 0 20 0 0 15 49

2 Tree_ds pdf 2 0.11 0 0 1 0 0 1 0 2

3 Img_001 jpeg 3 0.31 0 8 0 10 6 0 0 24

4 CS_C mp3 2 0.55 3 0 0 2 0 0 0 5

5 HelloEnglish mp4 2 1 0 13 0 0 0 0 19 32

OS (Occupied Space In GB) 0.5 1.4 0.1 0.9 0.3 0.1 1.0

AS (Available Space in GB) 4.5 3.6 4.9 4.1 4.7 4.9 4.0

Table 3. Ex. 1: RAF based replica creation (Before placement)

S.No File Name File

Type

NR File

Size

in

MB

RAF (Replica Accessing Frequency) () FAF

DC

1

5GB

DC

2

5GB

DC

3

5GB

DC

4

5GB

DC

5

5GB

DC

6

5GB

DC

7

5GB

1 Array_Java docx 3 0.07 0 14 0 20 0 0 15 49

2 Tree_ds pdf 2 0.11 0 0 1 0 0 1 0 2

3 Img_001 jpeg 3 0.31 0 8 0 10 6 0 0 24

4 CS_C mp3 2 0.55 3 0 0 2 0 0 0 5

5 HelloEnglish mp4 2 1 0 13 0 0 0 0 19 32

OS (Occupied Space In GB) 0.5 1.4 0.1 0.9 0.3 0.1 1.0

AS (Available Space in GB) 4.5 3.6 4.9 4.1 4.7 4.8 4.0

Received: November 18, 2017 168

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

Table 4. Ex. 1: RAF based replica creation (After placement)

S.No File Name File

Type
NR File

Size

in

MB

RAF (Replica Accessing Frequency) () FAF
DC

1

5GB

DC

2

5GB

DC

3

5GB

DC

4

5GB

DC

5
5GB

DC

6

5GB

DC

7

5GB
1 Array_Java docx 4 0.07 0 14 1 21 0 0 15 49

+1
2 Tree_ds pdf 2 0.11 0 0 1 0 0 1 0 2
3 Img_001 jpeg 3 0.31 0 8 0 10 6 0 0 24
4 CS_C mp3 2 0.55 3 0 0 2 0 0 0 5
5 HelloEnglish mp4 2 1 0 13 0 0 0 0 19 32

OS (Occupied Space In GB) 0.5 1.4 0.4 0.9 0.3 0.1 1.0
AS (Available Space in GB) 4.5 3.6 4.6 4.1 4.7 4.9 4.0

Table 5. Ex. 2: RAF based replica creation (Before placement)

S

.

N

o

File Name File

Type

NR File

Size

in

MB

RAF (Replica Accessing Frequency) () FAF

DC 1

5GB

DC 2

5GB

DC 3

5GB

DC 4

5GB

DC 5

5GB

DC 6

5GB

DC 7

5GB

1 Array_Java docx 4 0.07 0 14 1 20 0 0 15 49 +1

2 Tree_ds pdf 2 0.11 0 0 1 0 0 1 0 2

3 Img_001 jpeg 3 0.31 0 8 0 10 6 0 0 24

4 CS_C mp3 2 0.55 3 0 0 2 0 0 0 5

5 HelloEnglish mp4 2 1 0 13 0 0 0 0 19 32

OS (Occupied Space In GB) 0.5 1.4 0.4 0.9 0.3 0.1 1.0

AS (Available Space in GB) 4.5 3.6 4.6 4.1 4.7 4.9 4.0

Table 6. Ex. 2: RAF based replica creation (After placement)

S.

N

o

File Name File

Type

NR File

Size

in

MB

RAF (Replica Accessing Frequency) () FAF

DC 1

5GB

DC 2

5GB

DC 3

5GB

DC 4

5GB

DC 5

5GB

DC 6

5GB

DC 7

5GB

1 Array_Java docx 4 0.07 0 14 1 20 0 0 15 49 +1

2 Tree_ds pdf 2 0.11 0 0 1 0 0 1 0 2

3 Img_001 jpeg 3 0.31 0 8 0 10 6 0 0 24

4 CS_C mp3 2 0.55 3 0 0 2 0 0 0 5

5 HelloEnglish mp4 2 1 0 13 0 0 0 0 19 32

OS (Occupied Space In GB) 0.5 1.4 0.4 0.9 0.3 0.1 1.0

AS (Available Space in GB) 4.5 3.6 4.6 4.1 4.7 4.9 4.0

Received: November 18, 2017 169

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

Table 7: Comparison of Existing PRC [3], Proposed DRRRA [15] and DRCAES

S.no FAF Existing

(PRC)

conventional 3 Replica

Strategy (Minimum Replica 1

Maximum Replica 3)

Proposed DRRRA

Algorithm

(Dynamically Reduced

Replica of Rarely Accessed

files (2-Replica)

Proposed DRCAES

Algorithm

(Dynamically create the

Replica based on User need)

NR

OS=

FS *

NR

Cost= OS *

0.00067 RR_TD NR

OS=

FS *

NR

Cost= OS *

0.00067 RR_TD NR

OS=

FS *

NR

Cost= OS *

0.00067 RR_TD

1 >10 3 2.31 0.0015477 3 2 1.54 0.0010318 3 2 1.54 0.0010318 3

2 15-40 3 2.31 0.0015477 3.5 3 2.31 0.0015477 3.5 3 2.31 0.0015477 3.5

3 41-60 3 2.31 0.0015477 4.2 3 2.31 0.0015477 4.2 4 3.08 0.0020636 3.7

4 61-80 3 2.31 0.0015477 7 3 2.31 0.0015477 7 5 3.85 0.0025795 3.9

In table 5 is shown the replica placement process

of file 5. The file 5’s replicas are residing in DC2

and DC7 along with their RAF is 13, and 19

respectively. Here, the highlight point regarding this

file is, the replica of this file is reduced by DRRRA

approach (2-replica strategy) which is discussed in

chapter 6. But, the need for this file is increased. So,

it is going to be replicated.

Here, the DC1, DC3, DC4, DC5, and DC6

doesn’t have the replica of file 5 as well as their AS

is 4.5, 4.6, 4.1, 4.7 and 4.9 respectively. The DC6

has the maximum of AS. So, the replication will be

stored in DC6 which is shown in table 6. It is shown

in Table (5) is after ranking the process replicated to

that files based on server memory.

5. Result and discussion

The reflections in the parameter which involved

in research due to DRCAES approach is presented

in table 7. There are 4 parameters and their value

calculation shown in this table such as NR (number

of Replicas), OS (occupied Space), Cost and

RR_TD (Request-Response Time Delay).

Finally, when the research comparing the

proposed algorithms with the existing algorithm the

DRCAES give better performance in all aspects

such as the number of replicas, Occupied Space

(OS), Cost and Request-Response Time Delay

(RR_TD) based on File Accessing Frequency

Finally, when the research comparing the proposed

algorithms with the existing algorithm the DRCAES

give better performance in all aspects such as the

number of replicas, Occupied Space (OS), Cost and

Request-Response Time Delay (RR_TD) based on

File Accessing Frequency (FAF) for file of File Size

0.77 GB. It is shown in the table 7.

The change in NR value will be reflected to OS,

Cost, and RR_TD parameter values. In the existing

system, the NR value decided based on disk failure

rate benchmark of NR is 3 which is the convention

strategy.

For an example, the above table represents the

file with File Size (FS) 0.77 in GB is uploaded and

accessed in different scenarios.

• In the proposed system, the NR is decided

based on DRRRA and DRCAES approaches.

• The Occupied Space (OS) is calculated using

following way,

 Occupied Space (OS) = File Size (FS) *

Number of Replicas (NR)

• The cost is calculated in the following way,

 Cost = Occupied Space (OS) * 0.00067

 (0.00067 is the amount incurred for 1 GB per

day which is adopts based on Google Drive

Cost plan. This is only for testing purpose)

• The RR_TD values are obtained by the use

of MATLAB tool.

These values are calculated based on different

File Accessing Frequency (FAF). The table values

are presented in graphical representations.

Fig. 3 shown the comparison of changes in

Number of Replicas parameter in different File

Accessing Frequency (FAF). From the graph, we

can clearly understand the NR is standard in existing

PRC, either 2 or 3 in DRRRA approach, and it is

vary based on FAF in DRCAES approach.

Fig. 4 presents the comparison of Occupied

Space (OS) and different File Accessing Frequency

(FAF) range. The graph is boons for the clear

understanding the reflections done due to the NR.

The OS is also standard in existing PRC because of

Standard NR, minimized for rarely accessed files in

Received: November 18, 2017 170

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

Figure.3 FAF vs. No. of replica

Figure.4 FAF vs. Occupied space

Figure.5 FAF vs. Cost

DRRRA approach, but optimized based on FAF in

DRCAES approach.

Fig. 5, the comparison of Cost in dollars ($) and

different File Accessing Frequency (FAF) range is

presented. The graph is determines the changes in

cost due to the Occupied Space (OS) modification.

The cost is also a regular in existing PRC because of

Standard OS, minimized for rarely accessed files in

Figure.6 FAF vs. Request-response rime delay.

DRRRA approach, but in DRCAES approach, it is

optimized based on FAF.

Fig. 6 shows the Request-Response Time Delay

(RR_TD) in the sec. and different File Accessing

Frequency (FAF) range. The graph values

represented based on MATLAB tool result and the

reflection of the RR_TD values is determined by the

value of NR. The RR_TD is worst in existing PRC

and DRRRA approach for high FAF range because

of Standard NR, but it is reduced in DRCAES

approach, because of optimized NR based on FAF.

Similarly, the table 7 presents the comparison of

parameters such as Number of Replicas (NR),

Occupied Space (OS), Cost, Request-Response

Time Delay (RR_TD) along with reliability and

availability concern of the proposed DRCAES with

DRRRA and exiting PRC algorithm. The optimized

cost obtained without affecting the existing

reliability assured percentage.

From the table, we can understand the DRCAES

provides an efficient data storage on cloud

computing environment with reliability, availability

concerns in a cost-effective manner.

The benefits of DRCAES approach is listed

below which stated in section 1. That all are proved,

 Dynamically predict rarely accessed files and

most frequently accesses the file using FAFR

model.

 Through DRRRA dynamically reduce the

number of replicas of that rarely accessed

files, so that, the cost and occupied space is

minimized. For reduction of the replica, it

finds minimum available Space of DC

among DC’ where that file exists (Removal).

 In DRCAES, dynamically create and place

the new replica for the most accessed file if

the frequency of each replica is equally

accessed otherwise it won’t replicate. The

new replica placed in the data center that has

Received: November 18, 2017 171

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

Table 8. Comparison of parameters for existing and proposed algorithms

 Number

Replica

Occupied

Space

Cost Reliability Availability Request-

Response

Time Delay

Existing

PRC
[3]

1 or 2 or 3

Decide

Based on

Disk Failure

Rate

Minimized

Based on

Replica

Minimized

Based on

Replica

1-Replica No

reliability

2-replica95%

Assured

3-replica99%

Not

Considered

Increased for

more request

Proposed

DRRRA

2 or 3

decide

Based on

FAF

Minimized

for Rarely

Accessed

File.

Minimized

for Rarely

Accessed

File.

2-replica 95%

Assured

[3]

Not

Considered

Increased

for more

request

Proposed

DRCAES

2-Replica is

Minimum

and

maximum is

decided

Based on

SLA

optimized optimized 2-replica95%

Assured [3]

Enhanced Decreased

 more available space and that file does not

exist.

 Balanced storage retained during removal

and new replica placement. Because, it

analyses all aspects of Storage system like

available Space, SLA, Accessing frequency

of all existing replica.

6. Conclusion

To minimize the request response time and delay

of data placement for time-varying workload

applications, user necessity optimally makes use of

the time difference between storage and network

services across multiple cloud service provider. The

previous work of this research dynamically predicts

rarely accessed files with a help of FAFR algorithm

and reduces the number of replicas for that file, if it

satisfies the time limit using DRRRA algorithm.

Similarly, the proposed DRCAES algorithm

dynamically predicts most frequently accessed files

with the help of the FAFR algorithm. Then, it

creates a new replica for that file and finds the data

center that has more available space and doesn’t

have that file. However, this work achieves the

optimizing occupied space, cost, server performance,

increased server’s service delivery speed and

decreased request-response time delay. Thus,

ultimately the proposed DRCAES provide an

efficient data storage with an optimized cost without

affecting reliability, availability concerns for the

cloud also by optimizing the number of replicas

based on the user need and SLA. The proposed

algorithm achieves better result when compared to

the existing algorithms. In future replica

management during the disaster could be considered

without affecting the reliability and availability

concerns with minimum replica.

References

[1] R. Han, M.M. Ghanem, L. Guo, Y. Guo, and M.

Osmond, “Enabling cost-aware and adaptive

elasticity of multi-tier cloud applications”,

Elsevier, Future generation power systems in

Science Direct, Vol.32, No.1, pp. 82-98, 2014.

[2] M. Du and F. Li, "ATOM: Efficient Tracking,

Monitoring, and Orchestration of Cloud

Resources", IEEE Transactions on Parallel &

Distributed Systems, Vol. 28, No.8 , pp. 2172-

2189, 2017.

[3] W. Li, Y. Yang, and D. Yuan, “Ensuring Cloud

Data Reliability with Minimum Replication by

Proactive Replica Checking”, IEEE Transactions

on Computers, Vol. 65, No. 5, pp. 1494-1506,

2016.

[4] S. Souravlas, and A. Sifaleras, "Binary-Tree

Based Estimation of File Requests for Efficient

Data Replication", IEEE Transactions on

Parallel & Distributed Systems, Vol. 28, No. 7,

pp. 1839-1852, 2017.

[5] R. Han, S. Huang, Z. Wang, and J. Zhan, "CLAP:

Component-Level Approximate Processing for

Low Tail Latency and High Result Accuracy in

Cloud Online Services", IEEE Transactions on

Received: November 18, 2017 172

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.18

Parallel & Distributed Systems, Vol. 28, No.8 ,

pp. 2190-2203, 2017.

[6] U. Tos, R. Mokadem, A. Hameurlain, T. Ayav,

and S. Bora “A Performance and Profit Oriented

Data Replication Strategy for Cloud Systems”,

In: Proc. of IEEE Conferences on Ubiquitous

Intelligence & Computing, Toulouse, France,

pp. 780-787, 2016.

[7] D.T. Nukarapu, B. Tang, L. Wang, and S. Lu,

“Data Replication in Data Intensive Scientific

Applications with Performance Guarantee”,

IEEE Transactions on Parallel and Distributed

Systems, Vol. 22, No. 8, pp.1299-1306, 2011.

[8] A. Kumar, R. Tandon, and T.C. Clancy, “On the

Latency and Energy Efficiency of Distributed

Storage Systems”, IEEE Transactions on Cloud

Computing, Vol. 5, No 2, pp. 221- 233, 2017.

[9] M. Hadji, “Scalable and Cost-Efficient

Algorithms for Reliable and Distributed Cloud

Storage”, Springer International Publishing

Switzerland, Vol.581, No.1, pp. 3-12, 2016.

[10] S.Q. Long, Y.L. Zhao, and W. Chen, “MORM:

A Multi-objective Optimized Replication

Management strategy for cloud storage cluster”,

Journal of Systems Architecture, Vol. 60, No.1,

pp. 234-244, 2014.

[11] S. Rampersaud and D. Grosu, "Sharing-Aware

Online Virtual Machine Packing in

Heterogeneous Resource Clouds", IEEE

Transactions on Parallel & Distributed Systems,

Vol. 28, No. 7, pp. 2046-2059, 2017.

[12] Y. Lin and H. Shen, “EAFR: An Energy-

Efficient Adaptive File Replication System in

Data-Intensive Clusters”, IEEE Transactions on

Parallel and Distributed Systems , Vol. 28, N,

pp. 1017-1030, 2017.

[13] L. Shi, Z. Zhang, and T. Robertazzi, "Energy-

Aware Scheduling of Embarrassingly Parallel

Jobs and Resource Allocation in Cloud", IEEE

Transactions on Parallel & Distributed Systems,

Vol. 28, No. 8, pp. 1607-1620, 2017.

[14] S.A.E. Selvi and R. Anbuselvi, “Ranking

Algorithm Based on File’s Accessing

Frequency for Cloud Storage System”,

International Journal of Advanced Research

Trends in Engineering and Technology, Vol. 4,

No. 9, pp. 29-33,2017.

[15] S.A.E. Selvi and R. Anbuselvi, “Optimizing the

Storage Space and Cost with Reliability

Assurance by Replica Reduction on Cloud

Storage System”, International Journal of

Advanced Research in Computer Science, Vol.

8, No.8, pp.327-332, 2017.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=71
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7875386

