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 This paper focused on developing a methodology based on coupling the Genetic 
Algorithm (GA) and the Boundary Element Method (BEM) for predicting the 
mechanical properties of a soil if a previous displacement x frequency curve is 
known. The NSGA-II (Elitist Non-Dominated Sorting Genetic Algorithm) was 
chosen for optimizing a dynamic poroelastic problem. The revisited problem 
introduced by Cheng is the benchmark used to verify the numerical routine and 
to apply the proposed optimization procedure. The present methodology was 
shown to be able to predict the mechanical properties of the underground soil if 
a displacement x frequency curve is previously known.  
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1. Introduction 

During the last decade, countless efforts have been made to increase the capacity to exploit 
underground resources. It is well known that in the deepest regions there is a large amount 
of water, oil and gas reservoirs. The characteristics of the soil will determine what kind of 
resources will be present within it. The great complexity of the problems and the 
increasing availability of computational resources open up opportunities for the use of 
more comprehensive analyses. This kind of analysis is related to the concepts of soil 
mechanics that was first introduced by for Terzaghi [1] in the theory of elasticity and the 
theory of limit analysis (plasticity). Subsequently, Biot and Willis [2] presented the theory 
of consolidation, which is the basis for studies regarding to the poroelasticity of the soil.  

The problems that arise in poroelasticity are related to the consolidation of layers of soil, 
excavations in saturated pores (such as tunnels), pumping (removal) of fluid (petroleum 
or water) by saturated porous medium, among others. The propagation of waves and 
consolidation of soil has long been a topic for study. Terzaghi [3] and Gassnann [4] 
provided wave propagation results in porous media at low frequency (0-100 Hz), 
considering the solid and fluid phases as unique.  After some years analyzing the wave’s 
propagation in poroelastic medium, Biot developed the theory of dynamic consolidation of 
soil. This study was divided in two parts, where the first one regards the elastic wave 
propagation in a saturated porous medium for low frequencies, and the second one for 
high frequencies. Through the previous studies introduced by Biot [5-6], two different 
types of wave propagation were observed, the primary and secondary. The primary is the 
compression or longitudinal waves and the secondary are the shear, distortion or 
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rotational waves. Plona [7] experimentally registered the existence of slow waves. In order 
to describe the porous medium two scales are needed. The first one is the macroscopic 
scale (related to the dimensions of a representative volume) and the second one is related 
to pore dimension which is microscopic in scale. These problems can be represented by 
using mathematical formulations, allowing the modelling through numerical methods. 
Introduced in this work is a numerical methodology for wave propagation based on Biot’s 
theory of poroelasticity [8] coupled with Therzagi’s theory of consolidation [1]. This 
numerical methodology applies the boundary element method (BEM) for solving the 
consolidation phenomena of poroelastic media problems. All differential equations were 
transformed into integral equations by using the reciprocity theorem. The behavior of 
poroelastic medium is still an object of study, and all the basic concepts solved by Biot can 
be applied. Schanz and Pryl [9] applied the poroelastic formulations in a dynamic analysis 
of compressible and incompressible media, i.e. solid and fluid. They observed that the 
behaviors of derivations of fundamental solutions confirmed the fact that the solid 
displacement and the pore pressure (fluid) are sufficient to describe the behavior of a 
poroelastic medium, affirming the theory of Biot. A simplified model of dynamic analysis 
on viscoelastic and poroelastic soils is presented by Millán and Domínguez [10], where 
dynamic coefficients of behavior were found through numerical formulations using the 
finite element method (FEM) and the BEM. Gensterblum [11] performed measurements of 
permeability in gases in the process of extraction of high quality bituminous coal, 
considering the dynamic and poroelastic aspects. The gases interaction and coupling of the 
gases were analyzed by using the Darcy's Equation. Hydraulic parameters were analyzed 
by Berg [12]. In this study the effects of pumping in aquifers resulted in pore pressure 
changes which were predicted by the traditional groundwater theory. Apostolakis and 
Dargush [13] used the analogy between thermoelastic and poroelastic theories first 
identified by Biot, and then developed a corresponding mixed variational principle for 
fluid-infiltrated porous bodies. They developed a poroelastic formulation in close 
mathematical analogy with the thermoelastic system particularized to the solid skeleton 
displacement, impulse of the effective stress, impulse of pore pressure and total average 
fluid displacement. According to this work, the physical analogy is not complete, as the 
contributions from the extended Fourier and Darcy laws are shown to be of a different 
character. In this sense, some efforts still need to be devoted to the development of new 
computational approaches in both problem domains (thermoelasticity and poroelasticity).  

Considering this, the main goal of this work relies on applying an optimization process in 
such a way to predict the mechanical properties of soil if a frequency-displacement curve 
is known. A numerical routine was written in order to couple the NSGA-II (elitist non-
dominated sorting genetic algorithm) and the BEM for evaluating a poroelastic dynamic 
problem. In this work, the Matlab GA toolbox was used while the BEM was completely 
written in open source code. The remainder of the paper is organized as follows. The 
poroelasticity theory and the basic equations for dynamic poroelasticity are the focus of 
Section 2. The development of the BEM for dynamic poroelasticity is presented in Section 
3. Section 4 presents the GA methodology using NSGA-II as well as the objective function 
and the design variables. The theories introduced in the previous sections are applied for 
solving a revisited problem proposed by Cheng [14]. Finally, conclusions about the 
optimization process are provided in Section 5.  

2. The Poroelasticity Theory  

The internal structures of a porous body can be compared to a homogeneous solid, despite 
the presence of some voids between the grains. The voids can be completely filled or not 
by a fluid like water, gas or oil. In the theory of poroelasticity, the porous medium is 
considered as linear elastic, and the pores are considered competely filled with fluid. A 
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porous medium has a defined volume, which can be divided into two: the volume of the 
matrix and the volume corresponding to the pores. Porosity is defined by the ratio of pore 
volume to total volume. The effective stress introduced by Terzaghi [1, 15] is defined as 
that part that governs the deformation of the soil or rock. The effective stress can be 
decomposed into the sum of the effective stresses and the pore pressure as 

ij ij ijp      (1) 

where σij is the total stress, σ’ij is the effective stress, p is the pore pressure (fluid pressure 
in the pores), δij is the Kronecker delta and α is the Biot coefficient. For an isotropic media 
the stress can be written according to Eq. (2).       

p     (2) 

2.1. Basic Equations for Dynamic Poroelasticity 

According to Biot’s theory (5), the equilibrium equations for linear poroelasticity are 
expressed as Eq. (3) and Eq. (4). 

   
2

, 11 122ij j i i i i i
X u U k u U

t t
  

 
    

 
 (3) 

   
2

, 12 222j i i i i i
X u U k u U

t t
  

 
    

 
 (4) 

where τij is the solid stress, τ is the fluid stress due to the fluid pressure p introduced by 
Eq. (5). 

p    (5) 

where β is the porosity, ui and Ui are the solid and fluid displacements, respectively. The 
variables ρ11, ρ12 and ρ22 are the mass densities and Xi and X’i concern the body force acting 
on the solid and fluid, respectively. The relations between the linear equilibrium equations 
and the mechanical variables are introduced by Eq. (6) and represents the partial solid 
stress and Eq. (7) the partial fluid stress. 

2

2ij ij ij ije e
R


    
 

    
 

 (6) 

e R     (7) 

where δij is the Kronecker delta, eij = 0.5 (ui,j + uj,i) is the solid strain tensor, ε = Ui,i and e = 
ui,i are the fluid and solid dilation, respectively. Finally, there are the elastic constants λ, μ, 
α and R. 

3. The Boundary Element Method for Dynamic Poroelasticity  

The boundary integral formulation arises from the reciprocal relation between the terms 
of the displacements of the solid, boundary conditions of traction, stress in the fluid, 
boundary conditions of normal displacements in the fluid and body force in both phases. 
The integral representation for these equations can be written for 2D domain in the 
absence of body force according to Eq. (8) and (9), where J is defined as Eq. (10) according 
to Cheng [14]. 



Anunciação et al. / Research on Engineering Structures & Materials 4(3) (2018) 219-230 

 

222 

 

n n
c u t u d U d u t d U d
          

 
   

   

            (8) 

 3 3 3 3 33n n
t u d U d u t d U J X n d J c
     

  
    

   

             (9) 

2

12

1
J

i b  



 (10

)  

The fundamental solutions for the solid and for the fluid are introduced by Eq. (11) and Eq. 
(12), respectively. 

3
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Where Z = J(iωb + ω² ρ12). The integrals are written as, 

i i
c u p u d u p d

 

 

      (13) 

Where u and p are vector fields from variables in Eq. (14) for solid displacement and fluid 
stress, respectively. The variables p* and u* are the fundamental solutions, as presented in 
Eq. (15). 
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Where Û*n3 = U*n3 – J X’*α nα = (J τ*3,α + Zu*α3)nα and ci is introduced by Eq. (16). 

1 0 0
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i
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                (16) 

Considering the domain discretized in constant boundary elements Eq. (13) can be 
rewritten as, 

1 1
j j
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Eq. (17) can be also replaced according to Eq. (18) or Eq. (19). 

1 1

ˆ
N N

i i ij j ij j

j j

c u H u G p
 

    (18) 

1 1

N N
ij j ij j

j j

H u G p
 

   (19) 

One can also introduce Eq. (20) in order to take into account the coincidence between the 
source point and field point. 

ˆ when

ˆ when

ij îj

ij îj i

H H i i

H H c i i

 

  
 (20) 

Equation (19) can be written as matrix, 

H u G p  (21) 

where H and G are the influence coefficients matrices. For each node u1 or t1, u2 or t2 and τ 
or Un are known variables and consequently 3N variables are unknown. Thus, the linear 
system as introduced in Eq. (20) can be rearranged, passing all unknown variables to the 
left side. This system can now be written as, 

A X F  (22) 

where X is the unknown vector of displacement, traction, pore pressure and flux. F is a 
known vector and A is the coefficient matrix. 

3. Genetic Algorithm  

The genetic algorithm (GA) was originally proposed by John Holland [16] and it is based 
on the Darwinian principle of natural selection. The simplest genetic algorithm that still 
leads to good results in many practical problems is composed of four operators: selection, 
crossover, mutation and replacement. The selection operator is an artificial version of 
natural selection based on Darwinian survival of the fittest among string creatures. The 
crossover operator is performed after reproduction, creating two new populations from 
two existing ones by genetically recombining randomly chosen parts formed by a 
randomly chosen crossover point. The mutation is the operator that increases the 
possibility of finding the global optimum. This operator changes a percentage of 
individuals by altering the value of the existing string.  The last operator is the replacement 
that is used to decide which individuals remain or are replaced in a population. There are 
many improvements on GA theory in order to make the optimization process more 
efficient and powerful. In this sense, many methodologies based on GA architecture have 
been developed. Based on some successful applications of optimization problems found in 
the literature, the NSGA-II was chosen as the GA algorithm. It is important to highlight that 
this algorithm uses a methodology where the concepts of dominance and diversity are 
applied simultaneously, which makes the NSGA-II an efficient tool in the search process 
and optimization of an objective function [15]. (Fig. 1) depicts a scheme of the NSGA-II 
structure used in this work. 

The RMSE (root mean square error) was chosen as the objective function as introduced by 
Eq. (23). Minimizing the objective function, an approximation of the design variables 
results.   
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 
2

YY Y
RMSE

YY


  (23) 

where YY stands for the displacement obtained by numerical solution [12] and Y for the 
displacements obtained through an analytical solution. 

The design variables that represent the poroelastic medium are stored in a vector {E, G, ν, 
νu, B, α, R, k, ɸ} = {Young’s modulus, shear modulus, Poisson’s coefficient, undrained 
Poisson’s ratio, Skempton’s pore pressure, Biot’s coefficient, poroelastic constitutive 
coefficient, intrinsic permeability, porosity}, which will be maximized or minimized during 
the optimization process. Based on the specific sample of soils, the search space was 
defined according to Table 1. 

 

 

Fig. 1 GA scheme 
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Table 1 Search space 

 Minimum Maximum 

G 1.5 x 1010 6 x 109 

Ν 0.15 0.25 

νu 0.31 0.34 

B 0.50 0.85 

K 4 x 10-4 8 x 102 

ɸ 0.01 0.26 

 

4. The Revisited Problem: Stress Excitation on Top of Column  

A problem investigated by Cheng [14] is revisited in order to test the proposed 
methodology in this work. (Fig. 2) introduces a one-dimensional saturated soil or rock 
column with three possible excitation modes: a stress and pressure excitation at the top, 
and a displacement excitation at the bottom. Cheng [14] separately examined these 
excitations. Despite its importance, only the displacement excitation will be taken into 
account. 

 

Fig. 2 One-Dimensional Saturated Soil Column under Dynamic Loading 

It was considered that the top of the column was subject to a harmonic normal stress of –
P0e-iwt with the surface drained. The bottom and sides are confined by rigid, frictionless 
and impermeable walls. The imposed boundary conditions for this problem are introduced 
as, 

0
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Cheng [14] and Dominguez [19] present the exact solution for the unidimensional 
poroelastic in terms of displacement, which can be obtained by using a mathematical 
symbolic computation program. They are presented as, 
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Where Es is the drained elastic property, ω is the frequency of excitation, ρ is the density of 
the soil (ρs stands for the solid density, ρf for the fluid density and ρa is the additional 
density) and λ1 is the wave number and characterizes a high-velocity dilatational wave and 
λ3 a low-velocity dilatational and dissipative wave [6]. For the routine calculations A0, B0 
and C0, it is necessary to calculate Biot´s effective coefficient α, the constitutive coefficient 
poroelastic R and the force field β obtained through frequency depending on whether or 
not the material exhibits viscoelastic behavior [5]. The equation of the force field can be 
seen in Eq. (30). 

 
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f

a f

k

i k

 

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

 
 (30) 

For this analysis, six material constants were used corresponding to the mechanical 
properties of Berea sandstone: G = 6.0 x 109 N/m², ν = 0.2; νu = 0.33; k = 1.9 x 10-10 m4/N.s; 
B = 0.62; ɸ = 0.19; ρs = 2800 kg/m³; ρf = 1000 kg/m³; ρa = 150 kg/m³ and a column length 
of L = 1 [16]. Dominguez [19] introduced a BEM formulation for dynamic poroelastic 
problems. The efforts were initially devoted to the analysis of the Biot coefficients and the 
development of the boundary integral equations in terms of solid displacement and fluid 
stress. Selvadurai [20] also introduced an analysis about waves for poroelastic media, 
applying the statements proposed by Cheng [14] and Dominguez [19]. In order to validate 
the methodology introduced by Domingues [19] and apply the proposed formulation by 
Biot [8], the vertical displacements obtained by the excitation at the top of a column were 
calculated. The numerical solutions were analyzed and compared with the analytical 
solution introduced by Cheng [14], using the same constant materials previously defined 
by Rice and Cleary [18]. This same analysis was performed using the principles of the Biot 
theory by Selvadurai [20] using the BEM for studying wave propagation in a saturated 
poroelastic media. In this study, peaks of resonance for low frequencies ωn = (2n-1)ω1, were 
found,  with n = 1,2,3, … . (Fig. 2) depicting the numerical solution versus the analytical 
solution. The results were plotted in absolute values of normalized displacement at the top 
of the column ũy(L)Eu/P0L versus the dimensionless frequency ω* = ω/ω1. The first 
frequency of resonance ω1 can also be determined by Eq. (40) and Eu is the undrained 
elastic module as introduced by Eq. (41). According to Selvadurai [20], for frequencies 
below the first natural frequency, the dimensionless displacement approximates the 
values of the poroelastic displacements for the elastic behavior. 
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The problem initially introduced by Selvadurai [20] followed by Dominguez [19] was 
discretized into 24 constant elements, numerically integrated with four Gauss points and 
considers a discrete set of 44 frequencies. (Fig. 3) depicts the perfect overlapping until ω = 
2.5 ω1 where after this point, it is possible to see a small offset between both curves. 

 

Fig. 3 Displacement at the top of the column (stress excitation) 

 

5. The Numerical Results Using GA And BEM  

In order to define the mechanical properties of the soil, a numerical routine was written to 
couple both, the GA and the BEM. The domain was discretized into 32 constant boundary 
elements and integrated numerically with six Gauss points. A set of 327 frequencies was 
defined in order to ensure a good definition of the curves and the resonance peaks. The 
objective function as aforementioned, was the RMSE and the design variables to be 
optimized were: G, ν, νu, B, k, and ɸ. Table 2 summarizes the maximum and minimum values 
for the search space, the values of the material constant imposed for the analytical solution 
and those obtained after the optimization process. According to the resulting mechanical 
properties after the optimization process, it is suggested that the soil is Berea sandstone.  

The numerical results are related to the permeability of the soil in consequence of the fluid 
trapped in the pores and the volumetric reaction of the process with fluid and solid. The 
deformations present elastic behavior and are linked as variables of the optimization 
process. The numerical results are related to the frequencies (ω) of the loads. 

After searching fields in approximately 10 thousand iterations in the GA, the three 
variables that most influenced the process were: permeability (k) because it is related to a 
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quantity of pores (ɸ) and the interconnection between them affecting soil poropressure 
behavior; the shear coefficient (G) that can approach a maximum stress, allowing a 
quantity of material (ideal); and the Poisson coefficient drained (νu) being the most 
differentiated coefficient. Since there is load dynamics in the structure, it was made with 
this parameter to undergo great influence without calculation. 

Table 2 Design variables, search range, analytical and optimized variables. 

Design 
variables 

Search space 
max 

Search space 
min 

Analytical Optimized 

G 6 x 109 6 x 1019 6 x 109 5.95 x 109 

Ν 0.20 0.18 0.20 0.20 

νu 0.33 0.28 0.33 0.31 

B 0.62 0.50 0.62 0.61428 

K 1.9 x 102 5.6 x 100 1.9 x 102 9.54 x 10-1 

ɸ 0.19 0.19 0.19 0.195 

 

The stop criterion was set to approximate the values of the variables through the 
optimization process with a minimum possible value; therefore, it was used as the 
reference in Eq. (23) in RMSE ≤ 0.025 and was achieved for a value of 0.02509069.  

A comparison between the analytical curve and the optimized one, can be seen as (Fig. 3) 
(load transmitted by dynamic pressure) with the effects of the distribution of the AG 
coupled to the BEM overlapping the analytic curve adopted by Cheng [14].  

It is possible to observe a proximity between the solutions, and as in Selvadurai [20] there 
was no total overlap of the curves. Full overlap requires a thorough investigation of the 
problem. 

 

 

Fig. 3 Displacement at the top of the column (stress excitation) 
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5. Conclusions 

The main goal of this work was to develop a numerical procedure using BEM and GA-NSGA-
II in order to determine the design variables G, B, k, ν, νu, and ɸ as mechanical properties 
of soil. The presented methodology was shown to be efficient for predicting the kind of 
underground soil if a displacement x frequency curve is previously known. Despite using 
an analytical curve for the displacement x frequency behavior, the present methodology 
can also be used with a curve obtained experimentally. Regarding the design variables, it 
is important to highlight that the permeability (k) was the variable that was most 
influenced during the optimization process. The main reason is due to the fact that this 
variable takes into account the amount of pores, the connection between them and finally 
the strong influence in the fluid percolation. All advantages from the BEM features 
provided a low computational cost and resulted in a good prediction for the 
characterization of the soil.  
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