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Abstract
Objective: Passive CLARITY is a whole-tissue clearing protocol, based on sodium dodecyl sulfate (SDS) clearing, for imaging 
intact tissue containing transgenic or immunolabeled fluorescent proteins. In this study, we present an improved passive 
CLARITY protocol with efficient immunolabeling without the need for electrophoresis or complex instrumentation. 
Materials and Methods: In this experimental study, after perfusion of C57BL/6N mice with phosphate-buffered saline (PBS) 
and then with acrylamide-paraformaldehyde (PFA), the quadriceps femoris muscle was removed. The muscle samples 
were post-fixed and degassed to initiate polymerization. After removing the excess hydrogel around the muscle, lipids were 
washed out with the passive CLARITY technique. The transparent whole intact muscles were labeled for vessel and neuron 
markers, and then imaged by confocal microscopy. Three-dimensional images were reconstructed to present the muscle 
tissue architecture.       
Results: We established a simple clearing protocol using wild type mouse muscle and labeling of vasculatures and 
neurons. Imaging the fluorescent signal was achieved by protein fixation, adjusting the pH of the SDS solution and 
using an optimum temperature (37˚C) for tissue clearing, all of which contributed to the superiority of our protocol.                   
Conclusion: We conclude that this passive CLARITY protocol can be successfully applied to three-dimensional 
cellular and whole muscle imaging in mice, and will facilitate structural analyses and connectomics of large assemblies 
of muscle cells, vessels and neurons in the context of three-dimensional systems.          
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Introduction
Understanding the complex interactions between muscle 

cells and other cell types found in vessels and neurons 
is essential for delineating their roles in muscle function 
and disease. Since most muscular diseases affect different 
muscle groups, the conventional method of skeletal muscle 
evaluation, which employs two-dimensional sectioning 
and imaging, does not provide a comprehensive picture of 
cellular interactions between neighboring or distant cells in 
the three-dimensional architecture of the muscle. Therefore, 
protocols need to be developed to simultaneously evaluate 
large populations of cells in muscles, such as blood, vascular 
and neuronal cells in three dimensions (1). 

Hitherto, several methods have been developed for the 
large-scale imaging of transparent and intact tissues with 
an emphasis on the central nervous system, including 
BABB (2), Scale (3), 3DISCO (4), ClearT (5), SeeDB (6), 
CLARITY (7), passive CLARITY (8), PACT (9), CUBIC 

(10, 11), FASTClear (12), SWITCH (13) and FACT (14). 
Among these approaches, hydrogel-based clearing protocols 
(including CLARITY, passive CLARITY and PACT) provide 
conditions for antibody labeling of tissue markers in animal 
models (7, 9). 

CLARITY uses electrophoretic tissue clearing to extract 
lipids from large samples faster than passive CLARITY and 
PACT, however, this results in the destruction of fine cellular 
structures (15) and initial attempts to use it in muscle tissue 
clearing did not provide satisfactory results (16). The PACT 
(9) and passive CLARITY (8) methods preserve the fine 
tissue structure by avoiding electrophoretic tissue clearing, 
and using phosphate-buffered saline (PBS) (pH=7.5) and 
boric acid (pH=8.5) respectively as the solvent for sodium 
dodecyl sulfate (SDS). Although the passive CLARITY 
protocol has been used for clearing different tissues (Table 1), 
the clearing of muscle tissue with this method did not show 
antibody labeling (16, 17).
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Table 1: Successful applications of the passive CLARITY protocol for tissue clearing and three-dimensional imaging

Tissue/organ Species Hydrogel perfusion/
embedding

Clearing solution Clearing time RI* 
homogenization

References

Skeletal muscle (whole) Mouse +/+ 4% SDS in boric acid 
(pH=8.5)

42 days (adult) 80% glycerol Current study

Brain (whole) Mouse +/+ 4% SDS in boric acid 
(pH=8.5)

21 days (adult) FocusClear / 85-
87% glycerol

(8)

Brain (section) Mouse +/+ 4% SDS in boric acid 
(pH=8.5)

7 days (adult) PBST (18)

Brain (whole) / lung 
(whole) / testis (whole) 
/ kidney (whole) / 
intestine (whole) / 
spleen (whole)

Mouse +/+ 4% SDS in boric acid 
(pH=8.5)

30 days (adult) FocusClear / 80% 
glycerol

(19)

Brain (whole) / spinal 
cord (whole)

Mouse +/+ 4% SDS in boric acid 
(pH=8.5)

28-42 days (adult 
brain) / 14-28 
days (adult spinal 
cord)

TDE (20)

Brain (whole) / spinal 
cord (whole)

Mouse +/+ 4% SDS in boric acid 
(pH=7.5)

36 days (adult 
brain) / 21 days 
(adult spinal 
cord)

FocusClear (21)

Brain (section) /spinal 
cord (section)

Mouse 
/ rat

+/+ 8% SDS in boric acid 
(pH=7.5)

4 days (adult 
mouse) / 6 days 
(adult rat)

80% Glycerol / 
65% TDE

(22)

Brain (whole) Rat +/+ 4% SDS in boric acid 
(pH=8.5)

28-56 days 
(adult)

RapiClear (23)

Brain (section) Rat +/+ 4% SDS in boric acid 
(pH=8.5)

6 days (age P0) 
to 20 days (age 
P24)

TDE (24)

Brain (section) Human −/+ 4% SDS in boric acid 
(pH=8.5)

14 days (adult) ScaleA2 solution (25)

Brain (whole) Mouse 
/ rat / 
human 
(section)

+/+ 4% SDS in boric acid 
(pH=8.5)

21 days (adult 
mouse) / 60 
days (adult rat) / 
5-10 days (adult 
human)

87% glycerol / 
ScaleA2 solution

(26)

Cerebellum (whole) Mouse / 
Human 
(section)

−/+ 4% SDS in boric acid 
(pH=8.5)

7 days (adult 
mouse) / >28 
days (human 
adult)

RIMS + PBS + 
Tween-20

(27)

Spinal cord (whole) Mouse +/+ 4% SDS in boric acid 
(pH=7.5)

14 days (adult) CUBIC clearing 
solution

(28)

Whole body Zebrafish -/+ 8% SDS in boric acid 
(pH=8.5)

5-7 days (adult) RIMS (29)

Fetus (whole) / brain 
(whole) / lung (whole) 
/ heart (whole) / kidney 
(whole) / muscle† 
(whole)

Mouse +/+ 4% SDS in boric acid 
(pH=8.5)

3–10 days (fetus) 
/ 10 days (other 
tissues)

RIMS (17)

Liver (section) Mouse +/+ 4% SDS in boric acid 
(pH=8.5)

30 days (adult) RIMS (30)

Lung (whole) Mouse −/+ 8% SDS in boric acid 
(pH=8.5)

ND RIMS (29)

Intestine (section) Mouse / 
human

+/+ 4% SDS in boric acid 
(pH=8.5)

12–14 days 
(adult)

80% glycerol (31)

Ovary (whole) Mouse +/+ 4% SDS in boric acid 
(pH=8.5)

35 days (adult) FocusClear (32, 33)

Testis (whole) Zebrafish −/+ 8% SDS in boric acid 
(pH=8.5)

13 days (adult) RIMS (34)

Stem-cell-derived 
cortical cultures

Mouse ND ND ND ND (35)

*; ND; No data, PBS; Phosphate-buffered saline, PBST; Phosphate-buffered saline+Triton X-100, RI; Refractive index, RIMS; Refractive index matching 
solution, SDS; Sodium dodecyl sulfate, TDE; 2,20-thiodiethanol, and †; The passive CLARITY protocol was implemented on muscle tissue until the clearing 
stage (without immunolabeling and imaging).
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Thus, it was necessary to develop a simple and 
improved method to clear thick muscle tissue by 
adjusting pH and temperature so as to preserve the 
cellular structure of muscle tissues. We modified the 
passive CLARITY method to achieve this goal. The 
hydrogel perfusion and embedding steps improved 
the preservation of proteins, and at 37˚C and pH=8.5, 
protein loss was decreased and the proper conformation 
of the target proteins was maintained. The present study 
is thus the first to describe a simple improved passive 
CLARITY approach that provides optimal conditions 
for visualizing vessels and neurons in skeletal muscle.

Materials and Methods
Passive CLARITY of muscle 

In this experimental study, handling of animals and 
all experimental methods were conducted according 
to the Animal Research Ethic Guidelines of Fudan 
University, which conform to international guidelines. 
All procedures were approved by the Research 
Committee of Fudan University (Shanghai, China). 
Following a previously described protocol (32), 
C57BL/6N mice (Laboratory Animal LLC, China) 
were perfused transcardially while being alive with 
40 ml ice-cold PBS solution (1 M, pH=7.6), followed 
by 20 ml of a mixture of 4% (w/v) paraformaldehyde 
(PFA), PBS (1 M, pH=7.6), 4% (w/v) acrylamide, 
0.05% bis-acrylamide, 0.05% saponin (w/v) and 0.25% 
(w/v) VA-044 initiator in Millipore double-distilled 
water. The quadriceps femoris muscle was dissected 
and then post-fixed in the same perfusion solution at 
4˚C for three days. 

The samples were then degassed by filling the tubes 
with fresh hydrogel monomer solution and incubated 
at 37˚C (with shaking) to initiate polymerization of 
acrylamide. The excess hydrogel around the muscle 
was removed with tissue paper and lipids were washed 
out by passive clearing in a solution of 200 mM sodium 
borate buffer containing 4% (w/v) SDS (pH=8.5) at 
37˚C with gentle rotational shaking (15). The passive 
CLARITY solution was refreshed daily for three days 
and then changed weekly until complete transparency 
was reached. Before adding the fresh solution, its 
pH was checked and maintained at pH=8.5. The 
transparency of the tissue was checked on a daily basis 
using a graded paper (Fig.1).

Antibody staining and confocal imaging

After clearing, the residual SDS was removed from 
the muscles by slow shaking in PBS with 0.1% Triton 
X-100 (PBST) for 24 hours. The samples were then 
incubated for three days with primary antibodies (Table 
2) diluted in PBST. The samples were subsequently 
washed in PBST buffer for one day followed by 
incubation with secondary antibodies (Table 2) diluted 

in PBST for three days. To label cell nuclei, DAPI 
was added to the secondary antibody mixture for 
the final 12 hours of incubation. Before mounting 
and imaging, samples were washed in PBST for at 
least one day. All procedures were implemented with 
shaking at 37˚C.

The samples were embedded in a chamber formed by 
a flattened horse shoe-like piece of putty acting as a 
wall on a glass slide. The chamber was filled with 80% 
glycerol, and the upper part of the chamber was gently 
sealed using a Wellco dish [Pelco (Ted Pella), cat. no. 
14032E120] with the glass surface facing down. This 
step prevented the formation of smalnl bubbles on the 
surface of the muscle. We used a Nikon A1R+ upright 
confocal microscope to obtain all confocal images 
presented here. 

Fig.1: Transparency of mouse skeletal muscle before and after clearing 
with passive CLARITY.
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Table 2: Details of antibodies used

Antibodies Species Dilution Company Cat. no Markers for 

Primary antibodies
Tyrosine hydroxylase Chicken 1:50 Abcam ab76442 Neuron, muscle
CD31 Rabbit 1:10 Abcam ab28364 Blood vessel
NeuN Mouse 1:50 Abcam ab104224 Neuron

Secondary antibodies
Alexa Flour 488 Goat anti chicken 1:100 Life Technologies A11039
Alexa Flour 594 Goat anti rabbit 1:100 Life Technologies A11012
Alexa Flour 647 Goat anti mouse 1:100 Life Technologies A-21235
DAPI (4’,6-diamidino-2-phenylindole) 1:100 Life Technologies D1306 Cell nucleus

Fig.2: Immunostained mouse muscle cleared with the passive CLARITY protocol. Blood vessels (CD31), neurons (tyrosine hydroxylase, after removing 
background with the “background subtraction option” of Imaris), muscle bundles (tyrosine hydroxylase) and cell nuclei (DAPI) have been labeled. The 
tissue was scanned with the large image scan option using confocal microscopy at ×25 magnification. The passive CLARITY method also immunostained 
vessels, neurons and their nuclei in the tendon of the quadriceps femoris (the central black part of the image).

Fig.3: High-resolution imaging of mouse muscle cleared with the passive CLARITY protocol. Blood vessels (CD31) and neurons (tyrosine hydroxylase and 
NeuN) are labeled. Confocal microscopy was used at ×25 magnification with an area of 1024×1024 μm2 and Z of 250 μm.
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After fixing the embedded apparatus on the microscope 
stage, we used a water immersion ×25 objective lens to 
focus the laser onto the specimen (1.1-NA, 2 mm-WD, 
Nikon, USA), and the muscle tissue was scanned using 
the large-image scan option of the microscope. Prior to 
Z-scanning, the laser power, light gain and offset of the 
upper and lower visible surfaces of the scanning slice 
were defined for maximum acquisition of excitation and 
emission of different secondary antibody signals using 
the intensity correction option of the Nikon NIS software. 
After selecting the appropriate field on the scanned large 
image, the objective lens was placed on the upper layer of 
the muscle, and three fields (XY=1024×1024 μm2) with 
whole tissue depth (Z=maximum visible signals down to 
250 μm) were scanned (speed=0.5, step distance=1 μm). 
After obtaining the images, TIFF image sequences were 
transferred to Bitplane Imaris software (version 7.4.2) 
for Z-stack image acquisition and three-dimensional 
reconstruction.

Three dimensional reconstruction
The three dimensional (3D) reconstruction and tracing 

of vessel and neuron morphology was undertaken using 
Imaris and its tools, including Surface and Filament, and 
automatic or semiautomatic signal detection. Because of 
the large amount of data, a workstation server was used 
for data analysis with the specifications of Dell server 
board T7910, two Intel E5-2687WV4 CPUs, four ~32 GB 
DDR4 ECC RAM, a ~4 TB hard disk (Dell SAS 7.2K), 
and an NVidia Quadro 5000 graphics card. Finally, for the 
second round of labeling with new antibodies, the muscle 
tissue was incubated in the clearing solution for 24 hours 
at 37˚C on the shaker. After washing with PBST, the same 
protocol of immunostaining was then undertaken with 
new antibodies.

Results
Using this improved passive CLARITY method for 

skeletal muscle, we were able to specifically stain vessels, 
neurons and nuclei (Figs.2, 3) and non-specifically stain 
muscle bundles by tyrosine hydroxylase (Fig.2). In 
addition, as shown in this figure the passive CLARITY 
method also immunostained vessels, neurons and their 
nuclei in the tendon of the quadriceps femoris. This 
finding demonstrates that passive CLARITY can be used 
not only for clearing but also three-dimensional imaging 
of tendons despite the structural rigidity and mostly 
fibrous composition of the tendon in comparison with 
muscle composition.

Discussion
In this study, we have made a number of modifications 

to the passive CLARITY method on brain tissue (8) 
to successfully image mouse muscle. Milgroom and 
Ralston (16) reported that CLARITY clears hind limb 
skeletal muscles in mice but does not allow labeling of 
target molecules with fluorescent markers, however, 
this improved method is a simple technique that enables 

muscle tissue imaging. The mice in this study were not 
perfused with hydrogel before post-fixing the muscles in 
the hydrogel solution. The recently described fast free-
of-acrylamide clearing tissue (FACT) protocol showed 
that hydrogel can be removed from the fixative solution 
in brain tissue samples during SDS whole tissue clearing 
(14), however, exposing the tissue to electrophoresis at 
high temperature (50˚C), as reported by Milgroom and 
Ralston (16), may increase protein loss. In our modified 
protocol, we used cold hydrogel perfusion and a passive 
method of clearing at 37˚C, resulting in reduced protein 
loss in the muscle samples.

In addition to optimizing the temperature, controlling 
pH during the clearing process is a key factor for 
increasing the efficiency of passive CLARITY of 
muscle tissue. In our protocol, maintaining the pH at 8.5 
resulted in appropriate labeling. While not addressed in 
the previous, unsuccessful study (16), pH fluctuation of 
the clearing solution during electrophoresis may have 
caused increased protein structure deformity (31), given 
that changes in pH occur faster during electrophoresis 
than in passive CLARITY (36). In addition, controlling 
the clearing time and assessing the transparency of the 
sample during clearing will reduce protein loss. Although 
the clearing time of the analyzed muscles (soleus, extensor 
digitorum longus and flexor digitorum brevis) was not 
provided in Milgroom and Ralston’s study (16), it should 
be shorter than our protocol considering the volume of the 
muscle and the clearing protocol. In passive CLARITY, 
the clearing duration was 40 days for whole mouse 
quadriceps femoris. In addition, in our protocol, matching 
the refractive index (37) of muscle tissue after clearing 
increased the depth of access to fluorescent signals to 250 
μm, which is 2.5-fold deeper than the reported depth (97 
μm) by Milgroom and Ralston (16).

Conclusion
Successful labeling of vessels, neurons and nuclei in 

skeletal muscle, after clearing by the improved passive 
CLARITY approach, resulted in 3D imaging of their 
architecture in skeletal muscle for the first time. Although 
in the previous, unsuccessful method details of the 
antibodies or method of staining were not mentioned and 
the authors only reported that actin and α-bungarotoxin 
labeling was unsuccessful, it seems that the three main 
reasons for their lack of success may be related to i. The 
characteristics of the antibodies (in the passive CLARITY 
technique, C-terminal primary antibodies are better for 
staining than N-terminal antibodies), ii. The method of 
staining, and iii. The amount of protein loss in samples 
of which the latter could be determined by measuring 
the amount of protein in the clearing solution. Finally, 
the passive CLARITY protocol developed here permits 
multiple rounds of staining of the muscle with different 
antibodies.
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