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Abstract: Transformers are considered as significant equipments in electrical power systems, once failure ,the eco-
nomic operation will be lost. To overcome this difficulty and to maintain economic operation of facilities, diverse
diagnosis methods are developed to implement fault forecasting. According to intelligent complementary ideas, a
fault diagnosis is proposed when there is a missing failure symptom of transformer. The core of the proposed ap-
proach is a soft hybrid induction system called the Generalized Distribution Table and Rough Set System (GDT-RS)
to discover classification rules. The system is based on a combination of Generalized Distribution Table (GDT) and the
Rough Set methodologies. The proposed approach is applied into transformer fault diagnosis and the results indicate
that it is very effective and accurate.
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1. Introduction

High-safety and high-capacity to deliver electric po-
wer energy are considered the basic requirements for
modern power system. To achieve this objective, the
scale of the electric power systems becomes bigger
and bigger, the construction of the power delivery net-
work becomes more and more complicated, which ,to
a certain degree ,enlarges the scope of breakdown.
Transformer is an important apparatus and its oper-
ating condition directly affects the operation of the
whole electrical system .In order to avoid immense
economic loss caused by the breakdown of transform-
er and to define the failure type, location and its na-
ture,it is significant for the electrical system to diag-
nose the potential failure of transformer as early as
possible.Exa-mining operating condition and failure
diagnosis of transfor-mer is a very complicated prob-
lem. Many factors such as transformer capacity, volt-
age grade, performance, working surrounding condi-
tions, loading records and its manufacturer data, di-

rectly affect the results of diagnosises. Frequently
there are also random indistinctness and indefinite-
ness about the cause, phenomenon and mechanism
of transformer faults. The complexity of transformer
failure diagnosis problem inspires the application of
artificial intelligence and mathematical techniques. M-
ore complexities arise from efficient and accurate di-
agnose especially the problem of correct diagnose wh-
en there is a loss of failure information or missing fail-
ure symptoms of transformer. Many artificial intelli-
gence techniques such as neural network [1], wavelet
analysis [2], gray clustering [3], decision tree [4], Petri
network [5], information fusion [6] have been applied
to transformer diagnosis and have produced some use-
ful results. However, transformers are complex sys-
tems with uncertain factors and information, and these
methods have different shortages. For example, Petri
network puts domain knowledge into a series of pro-
ducing rules,which can solve fault diagnosis problems.
But when new fault or new information is coming, it
will lead to matching collision and combination blast
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because of the slow speed of Petri network resulted
from vast rules.

Classical rough set theory developed by Professor
Z. Pawlak in 1982 has made a great success in knowl-
edge acquisition in recent years [7]. In Rough set the-
ory, knowledge is represented in the form of informa-
tion systems. An information system is a data set rep-
resented in a table called decision table [8]. Each row
in the table represents an object for a case or an event.
Each column in the table represents an attribute, for
instance a variable, an observation or a property. To
each object ,there are some attribute values assigned.

The main drawback of rough set theory is its depen-
dence on complete information systems that the deci-
sion table to be processed must be complete and all
object values must be known [9]. However, this is not
the case in real-life applications. Due to many fac-
tors such as measurement errors, miscomprehension,
access limitation and misoperation in register infor-
mation, systems with missing values often occur in
knowledge acquisition. In which conditions, where
the decision tables are incompletely specified, they are
called incomplete information systems [10].

This paper aims to introduce a rough set approach to
discover diagnosis rules of transformer failure when
there is a missing failure symptom of transformer. The
decision table is built by using the observed or sur-
veyed symptoms of the transformer failure as condi-
tional attributes of failure classification and takes the
actually existing failure (circle short circuit) as deci-
sion attribute as shown in Table 1. The core of the
approach is a soft hybrid induction system called the
Generalized Distribution Table and Rough Set System
(GDT-RS) for discovering classification rules. The
system is based on a combination of Generalized Dis-
tribution Table (GDT) and the Rough Set methodolo-
gies.

2. Rough Set and missing Attribute Values

Missing attribute values are commonly existing in
real world data set due to the data collecting process,
redundant diagnosis tests, unknown data and so on.
Since the main concern about learning from exam-
ples, and an example with a missing decision value
is useless [11], it will be assumed that only attribute
values may be missing. Discarding all data contain-
ing the missing attribute values cannot fully preserve
the characteristics of the original system. Therefore,
in data analysis two main strategies are used to deal
with missing attribute values in decision tables.

The former strategy is based on conversion of in-

complete data sets into complete data sets and then
acquiring knowledge. The process is carried-out via
a technique called completeness of data set. Multi-
ple approaches of filling-in the missing attribute val-
ues are introduced [12,13], such as selecting the “most
common attribute value”, the “concept most common
attribute value”, “assigning all possible values of the
attribute restricted to the given concept”, “ignoring
examples with unknown attribute values”, “treating
missing attribute values as special values”, “event cov-
ering method” and so on. In this strategy conversion
of incomplete data sets into complete data sets is a
preprocessing to the main process of data mining.

In the later strategy, knowledge is acquired from
incomplete data sets taking into account that some at-
tribute values are missing. The original data sets are
not converted into complete data sets. The later strat-
egy is exemplified by the C4.5 approach to missing
attribute values [14] or by a modified LEM2 algo-
rithm [15,16]. In both algorithms original data sets
with missing attribute values are not preprocessed.

This paper will concentrate on the later strategy used
for rule induction. It will be assumed that the rule sets
are induced from the original data sets. The next basic
assumption is that there are three approaches to miss-
ing attribute values [17]:

The first approach is that an attribute value, for a
specific case, is lost. For example, originally the at-
tribute value was known; however, due to a variety of
reasons, currently the value is not available. Maybe it
had been recorded but later it would be erased.

The second approach is that an attribute value was
not relevant, the case was decided to be a member of
some concepts, i.e., was classified, or diagnosed, in
spite of the fact that some attribute values were not
known. Since such missing attribute values do not
matter for the final outcome, we will call them ”do
not care” conditions.

The third approach is a partial “do not care” con-
dition; we assume that the missing attribute value be-
longs to the set of typical attribute values for all cases
from the same concept. Such a missing attribute value
will be called an attribute-concept value. Calling it
concept “do not care” condition would perhaps be bet-
ter, but this name is too long in the sequel that it is as-
sumed that all decision values are specified. Also, all
missing attribute values are denoted either by “?” or
by “*”, or by “-”, lost values will be denoted by “?”,
“do not care” conditions will be denoted by “*”, and
attribute-concept value will be denoted by “-”. Addi-
tionally, it is assumed that for each case at least one
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Table 1 An incompletely specified decision table

Attributes Decision
Transformer O E U D

1 a1 b1 c1 yes
2 - b0 c0 yes
3 a1 b0 c1 no
4 a1 b0 * yes
5 a0 b0 c0 no
6 a0 ? - no
7 a1 ? c1 yes
8 a1 b1 c0 yes

attribute value is specified.
An example of an incompletely specified table is

presented in Table 1. Obviously, in rough set theory
any decision table defines a function ρ that maps the
set of ordered pairs (case, attribute) into the set of all
v alues [18]. For example, in Table1, ρ(1,O) = a1.

Where:
a1 = b1 = c1 =Symptom failure, a0 = b0 = c0 =not

appearing
O: Over current protection.
E: Exceeding of winding insulation resistance.
U: Unbalance of three-phase winding direct cur-

rent resistance.
D: Circle short circuit.

Rough set theory [19] is based on the idea of an
indiscernibility relation. The indiscernibility relation
IND (B) is an equivalence relation. Equivalence class-
es of IND (B) are called elementary sets of B and
are denoted by [x]B. The indiscernibility relation IND
(B) may be computed by using the idea of blocks of
attribute-value pairs. Let a be an attribute and let v be
a value of a for some cases. For complete decision ta-
bles if t = (a,v) is an attribute-value pair then a block
of t, denoted [t], is a set of all cases from U that for
attribute a has value v.

For incomplete decision tables, the definition of a
block of an attribute-value pair must be modified as
follows:

• If for an attribute a there exists a case x such
that ρ(x,a) =?, then the case x should not be
included in any blocks [(a,v)] for all values v of
attribute a.

• If for an attribute a there exists a case x such
that ρ(x,a) = ∗, then the corresponding case x
should be included in blocks [(a,v)] for all spec-
ified values v of attribute a.

• If for an attribute a there exists a case x such
that ρ(x,a) =−, then the corresponding case x
should be included in blocks [(a,v)] for all spec-
ified values v of attribute a that are members of
the set V (x,a), where

V (x,a) = {ρ(y,a)|y ∈U,ρ(y,d) = ρ(x,d)}
and d is the decision.

Thus for table 1,

[(O,a1)] = {1,2,3,4,7,8},
[(O,a0)] = {5,6},
[(E,b1)] = {1,8},
[(E,b0)] = {2,3,4,5},
[(U,c1)] = {1,3,4,6,7},
[(U,c0)] = {2,4,5,6}.

These modifications of the definition of the block of
attribute-value pair are consistent with the interpreta-
tion of missing attribute values [17] lost, “do not care”
conditions, and attribute-concept values. Also, note
that the attribute-concept value is the most universal,
since if V (x,a) = φ , the definition of the attribute-
concept value is reduced to the lost value, and if V (x,a)
is the set of all values of an attribute a, the attribute-
concept value becomes a “do not care” condition.

3. Generalized Distribution Table

Generalized Distribution Table (GDT) is a table in
which the probabilistic relationships between concep-
ts and instances over discrete domains are represented
[20], [21]. Any GDT consists of three components:
possible instances, possible generalizations of instan-
ces, and probabilistic relationships between possible
instances and possible generalizations.

The possible instances, which are represented at the
top row of GDT, are defined by all possible combina-
tions of attribute values from a database, and the num-
ber of the possible instances is

m

∏
i=1

ni (1)

where m is the number of attributes, n is the number
of different data values in each attribute.

The possible generalizations for instances, which
are represented by the left column of a GDT, are all
possible cases of generalization for all possible in-
stances, and the number of the possible generaliza-
tions is

(
∏m

i=1(ni +1)
)− (

∏m
i=1 ni

)
+1 (2)
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A wild card ‘ * ’ denotes the generalization for in-
stances, for simplicity, the wild card will sometimes
be omitted in the paper. For example, the general-
ization a0 ∗ c0 means that the attribute b is superflu-
ous (irrelevant) for the concept description. In other
words, if an attribute b takes values from {b0,b1} and
both a0b0c0 and a0b1c0 describe the same concept, the
attribute b is superfluous, i.e. the concept can be de-
scribed by a0c0. Therefore, the generalization a0 ∗ c0
is used to describe the set {a0b0c0,a0b1c0}

The probabilistic relationships between possible in-
stances and possible generalizations, represented by
entries Gi j of a given GDT, are defined by means of a
probabilistic distribution describing the strength of the
relationship between every possible instance and ev-
ery possible generalization. The prior distribution is
assumed to be uniform if the background knowledge
is not available. Thus, it is defined by

Gi, j = p(PI j\PGi)

=

{
1

NPGi
i f PGi is a Generalization o f PI j

0 otherwise

}
(3)

where
PI j is the jth possible instance,
PGi is the ith possible generalization,

and NPGi is the number of the possible instances
satisfying the ith possible generalization , that is ,

NPGi =
m

∏
j

n j (4)

where j = 1, . . . ,m, and j] the attribute that is con-
tained by the ith possible generalization (i.e., j just
contains the attributes expressed by the wild card ) .

Rule Strength
In this approach, the rules are expressed in the fol-

lowing form: X → Y with s That is, “if X then Y with
strength S”. Where X : denotes the conjunction of the
conditions that a concept must satisfy, Y : denotes a
concept that the rule describes, and S: is a “measure
of strength” of which the rule holds. The strength of a
given rule reflects the incompleteness and Uncertainty
in the process of rule induction influenced by both un-
seen instances and noises. It is defined by

s(X → Y ) = s(X) · [1− r(X → Y )] (5)

where s(X) : The strength of the generalization X and
r : noise rate function .

s( X ) : The strength of the generalization X
It represents explicitly the prediction for unseen in-

stances. It is given by Eq. ( 7 ).

s(PGi) = ∑
j

p(PI j \PGi) =
Nins−rel,i

NPGi

(6)

Figure 1 The relationship among generalizations

Where Nins−rel,i is the number of the observed instances
satisfying the ith generalization.

r : noise rate function
It shows the quality of classification measured by

the number of the instances satisfying the generaliza-
tion X which cannot be classified into class Y . The
user can specify an allowed noise level as a thresh-
old value. Thus, the rule candidates with a noise level
larger than the given threshold value will be deleted.
It is defined by,

r(X → Y ) =
Nins−rel(X)−Nins−class(X ,Y )

Nins−rel(X)
(7)

Where Nins−rel(x) is the number of the observed in-
stances satisfying the generalization X , Nins−class(X ,Y )
is the number of the instances belonging to the class
Y within the instances satisfying the generalization X .
From the GDT, we can see that a generalization is
100% true if and only if all of instances belonging
to this generalization appear. Let us use the exam-
ple shown in Table 1. Considering the generalization
{b0,c1}, if instances both {a0 b0 c1} and {a1 b0 c1}
appear, the strength s({b0,c1}) is 1; if only one of
{a0 b0 c1} and {a1 b0 c1} appears, the strength s({b0 c1})
is 0.5, as shown in Figure 1.

Obvious that one instance can be expressed by sev-
eral possible generalizations and several instances can
be also expressed by one possible generalization. For
the example shown in Table 1, the instance {a1 b0 c1}
can be expressed by {a1 b0}, {b0 c1}. . . . . . , or {c1}.

Every generalization in upper levels contains all gen-
eralizations related to it in lower levels. That is,

{a1} ⊃ {a1 b0},{a1 c1},
{a1 b0} ⊃ {a1 b0 c1}

In other words, if the rule {a1} → y is true, the rule
{a1 b0}→ y and {a1 c1}→ y are also true. Otherwise,
if {a1 b0}→ y or {a1 c1}→ y is false, the rule {a1}→
y is also false.

Figure 2 gives the relationship among generaliza-
tions.

A generalization that contains the instances with dif-
ferent classes is contradictory, and it cannot be used as
a rule. In contrast, a generalization that contains the
instances with the same class is consistent, so From
Table 1, we can see that the generalizations can be di-
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Figure 2 The relationship among generalizations

vided into three groups: contradictory, belonging to
class y, and belonging to class n.

4. Searching Algorithm for an Optimal Set
of Rules

We now outline the idea of a searching algorithm
for a set of rules based on the GDT-RS methodology.
a sample decision table shown in Table 1 is used to
illustrate the idea.

Algorithm
Step 1. Create the GDT.

Since:
O ∈ {ao, a1}⇒ n1 = 2,
E ∈ {bo, b1}⇒ n2 = 2,
U ∈ {c0, c1}⇒ n3 = 2.
Hence:
the number of attributes(m)=3,
from Eq.(1) number of the possible instance is 8,
from Eq.(2) number of the possible generalizations is
18.

Step 2. Simplify the GDT. By deleting all of the
instances and generalizations un-appeared in the ex-
ample database shown in Table 1. From Table 1, the
instan1ces appeared with respect to cases 1, 3, 5, 8
are {a1 b1 c1}, {a1 b0 c1}, a0, b0, c0, a1 b1 C0, re-
spectively.

From Eq.(1) and Table 1, the instance appeared with
respect to case 2 is {a1 b0 c1};

From Eq.(1) and Table 1 the instance appeared with
respect to case 4 may be one of {{a1 b0 c0},{a1 b0 c1}};

From Table 1, the instance appeared with respect to
case 6 may be one of {{a0 b0 c0},{a1 b0 c1},{a0 b1 c0},
{a0 b1 c1}};

Similarly, the instance appeared with respect to case
7 may be one of {{a1 b0 c1},{a1 b1 c1}} however
{a1 b0 c1} is not consistent with Table 2(see Appendix).
So the appeared instance is {a1 b1 c1}. So the simpli-
fied GDT is shown in Table 3 (see Appendix).

Step 3. Group the generalizations
Generalizations can be divided into three groups co-

ntradictory, belonging to class yes, and belonging to

Table 4 The generalizations belonging to class yes

a1 b0 c0 a0 b1 c0 a1 b1 c1
a1 ∗ c0 1/2 1/2
a1 b1∗ 1/2

Table 5 The generalizations belonging to class no

a0 b0 c0 a0 b0 c1 a0 b1 c0 a0 b1 c1
a0 ∗ c0 1/2 1/2
a0 ∗ c1 1/2 1/2
a0 b0∗ 1/2 1/2
a0 b1∗ 1/2 1/2
a0 ∗∗ 1/4 1/4 1/4 1/4

class no. The contradictory generalizations, contain-
ing the instances belonging to different decision class-
es, cannot be used as the rules. Hence they are ig-
nored. In other words, we are just interested in the
generalizations belonging to class yes or no, which
will be selected as the rules.

Step 4. Rule Selection
There are several possible ways for rule selection.

For example:

• Selecting the rules that contain as many instances
as possible.

• Selecting the rules in the levels of generaliza-
tion as high as possible according to the number
of “* ”in a generalization.

• Selecting the rules with larger strengths.

Since the purpose is to simplify the decision table
and simpler results of generalization (i.e., more gen-
eral rules) are preferred, the first priority to the rules
will be what contains more instances, then to the rules
corresponding to an upper level of generalization and
the third priority to the rules with larger strengths .
Thus, from Table 4 and Table 5 the final rule set is
a1 c0 → yes,with S = 1
a1 b1 → yes,with S = 2
a0 → no,withS = 1

Results
The induced Rules can be written as:

• If (over-current protection, symptom of failure
) and ( unbalance of three-phase winding direct
current resistance, not appearing) then (circle
short circuit, yes)
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Table 2 the GDT for the decision table shown in Table 1

a0 b0 c0 a0 b0 c1 a0 b1 c0 a0 b1 c1 a1 b0 c0 a1 b0 c1 a1 b1 c0 a1 b1 c1
∗b0 c0 1/2 L L L 1/2
∗b0 c1 1/2 1/2
∗b1 c0 1/2 1/2
∗b1 c1 1/2 1/2
a0 ∗ c0 1/2 1/2
a0 ∗ c1 1/2 1/2
a1 ∗ c0 1/2 1/2
a1 ∗ c1 1/2 1/2
a0 b0∗ 1/2 1/2
a0 b1∗ 1/2 1/2
a1 b0∗ 1/2 1/2
a1 b1∗ 1/2 1/2
∗∗ c0 1/4 1/4 1/4 1/4
∗∗ c1 1/4 1/4 1/4 1/4
a0 ∗∗ 1/4 1/4 1/4 1/4
a1 ∗∗ 1/4 1/4 1/4 1/4
∗b0∗ 1/4 1/4 1/4 1/4
∗b1∗ 1/4 1/4 1/4 1/4

Table 3 The simplified GDT for the decision table shown in Table

a0 b0 c0 a0 b0 c1 a0 b1 c0 a0 b1 c1 a1 b0 c0 a1 b0 c1 a1 b1 c0 a1 b1 c1
∗b0 c0 1/2(n) 1/2(yy)
∗b0 c1 1/2(n) 1/2(ny)
∗b1 c0 1/2(n) 1/2(y)
∗b1 c1 1/2(n) 1/2(yy)
a0 ∗ c0 1/2(n) 1/2(n)
a0 ∗ c1 1/2(n) 1/2(n)
a1 ∗ c0 1/2(yy) 1/2(y)
a1 ∗ c1 1/2(ny) 1/2(yy)
a0 b0∗ 1/2(n) 1/2(n)
a0 b1∗ 1/2(n) 1/2(n)
a1 b0∗ 1/2(yy) 1/2(ny)
a1 b1∗ 1/2(y) 1/2(yy)
∗∗ c0 1/4(n) 1/4(n) 1/4(yy) 1/4(y)
∗∗ c1 1/4(n) 1/4(n) 1/4(ny) 1/4(yy)
a0 ∗∗ 1/4(n) 1/4(n) 1/4(n) 1/4(n)
a1 ∗∗ 1/4(yy) 1/4(ny) 1/4(y) 1/4(yy)
∗b0∗ 1/4(n) 1/4(n) 1/4(yy) 1/4(ny)
∗b1∗ 1/4(n) 1/4(n) 1/4(y) 1/4(yy)
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• If (over-current protection, symptom of failure
) and ( Exceeding of winding insulation resis-
tance, symptom of failure) then (circle short
circuit, yes) ”

• If (over-current protection, not appearing ) then
(circle short circuit, no)

5. Power Transformer Fault Diagnosis

In the normal operation of the transformer, the re-
leased gases are methane (CH4), ethane (C2H6), Hy-
drogen (H2), ethylene (C2H4), and acetylene (C2H2)
and so on. When there is an abnormal situation such
as occurring a fault, some specific gases are produced
more than in the normal operation and the amount of
them in the transformer oil increases. The increase in
the amount of gases results in saturation of the trans-
former oil and no more gas can be dissolved in oil.
From the point of rough set theory, the fault diagno-
sis table of power transformer is also a decision table.
In this section, an example is given to show how the
proposed algorithm can be used to generate diagnos-
tic rules for the power transformer. According to the
historical fault data of the power transformer, the fault
decision table is shown in Table1. Here, the condition
attributes are concentrations (ppm by volume) of dis-
solved gases in the insulation oil, such as H2, CH4,
C2H6, C2H4, and C2H2. The decision attribute (D)
is the fault class of the transformer, where “0” rep-
resents the fault of local discharge, “1” represents the
fault of low-energy discharge, “2” represents the fault
of high-energy discharge, “3” represents the fault of
low-temperature superheat, “4” represents the fault of
medium-temperature superheat and “5” represents the
fault of high-temperature superheat.

According to rough set theory and generalized dis-
tribution table algorithm, the fault diagnosis rules are:

• If H2 = M, CH4 = H, C2H6 = H, C2H4 = H and
C2H2 = L, then D=3.

• If H2 = M, CH4 = L, C2H6 = L, C2H4 = M and
C2H2 = M, then D=1.

• If H2 = H, CH4 = L, C2H6 = L, C2H4 = L and
C2H2 = M, then D=2.

• If H2 = M, CH4 = L, C2H6 = L, C2H4 = L and
C2H2 = L, then D=0.

Table 6 The decision table for the transformer fault

Object H2 CH4 C2H6 C2H4 C2H2 D
X1 H L L L M 2
X2 M L * M M 1
X3 * M H M L 5
X4 M H H H - 3
X5 L L L L L 0
X6 L M M - L 5
X7 H H ? H L 3
X8 M * M M L 4
X9 M * L M H 1
X10 L M H M L 5
X11 M L L M M 1
X12 - L L L L 0
X13 H L L L * 2
X14 H H H H L 3
X15 - M H M L 3

• If H2 = M, CH4 = M, C2H6 = M, C2H4 = M
and C2H2 = L, then D=4.

• If H2 = L, CH4 = M, C2H6 = M, C2H4 = M and
C2H2 = L, then D=5.

• If H2 = L, CH4 = M, C2H6 = H, C2H4 = M and
C2H2 = L, then D=5.

6. Conclusions

This paper has presented an effective and efficient
approach to extract diagnosis rules from incomplete
and redundant data set of power transformers by using
rough set theory and generalized distribution table.
The extracted diagnosis rules can effectively reduce
space of input attributes and simplify knowledge rep-
resentation for fault diagnosis. The fault diagnosis de-
cision table is first built through discretized attributes.
Next, the generalized distribution table is created. Fi-
nally, the rule simplification process is adapted to achi-
eving the decision rules derived from incomplete and
redundant information. Main features of that method-
ology can be summarized as follows:

(1) It can discover If-Then rules from very large,
complex databases.

(2) It represents explicitly the uncertainty of a rule
including the prediction of possible instances in the
strength of the rule.

(3) Lost values are considered during the process of
rule induction.

(4) It can flexibly select biases for search control.
(5) It can effectively handle noisy data, missing data.
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