
 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P)
http://www.ijmp.jor.br  v. 6, n. 1, January - March 2015 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v6i1.244 

 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 169 

BOOTSTRAP FOR ORDER IDENTIFICATION IN ARMA(p,q) 
STRUCTURES 

 
Anselmo Chaves Neto 

Universidade Federal do Paraná, Brazil 
E-mail: anselmo@ufpr.br 

 
Thais Mariane Biembengut Faria 

Universidade Regional de Blumenau, Brazil 
E-mail: thaismarianeb@gmail.com 

 
Submission: 14/06/2014 

Revision: 25/06/2014 
Accept: 13/07/2014 

 

ABSTRACT 

The identification of the order p,q, of ARMA models is a critical 

step in time-series modelling. In the classic Box and Jenkins method of 

identification, the autocorrelation function (ACF) and the partial 

autocorrelation (PACF) function should be estimated, but the classical 

expressions used to measure the variability of the respective estimators 

are obtained on the basis of asymptotic results. In addition, when 

having sets of few observations, the traditional confidence intervals to 

test the null hypotheses display low performance. The bootstrap 

method may be an alternative for identifying the order of ARMA models, 

since it allows to obtain an approximation of the distribution of the 

statistics involved in this step. Therefore it is possible to obtain more 

accurate confidence intervals than those obtained by the classical 

method of identification. In this paper we propose a bootstrap 

procedure to identify the order of ARMA models. The algorithm was 

tested on simulated time series from models of structures AR(1), AR(2), 

AR(3), MA(1), MA(2), MA(3), ARMA(1,1) and ARMA (2,2). This way we 

determined the sampling distributions of ACF and PACF, free from the 

Gaussian assumption. The examples show that the bootstrap has good 

performance in samples of all sizes and that it is superior to the 

asymptotic method for small samples 
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1. INTRODUCTION 

 Let the following be a stationary stochastic process in which ߱௧ is the solution 

for the equation 

߱௧ ൌ ଵ߱௧ିଵߨ	 	ߨଶ߱௧ିଶ 	⋯	ܽ௧ ൌ  ߱௧ିߨ

ஶ

ୀଵ
 

 (1)

 The associated series πሺBሻ ൌ 1 െ ∑ π୨B୨
ஶ
୨ୀଵ  converges and is nonzero for 

∣ B ∣⩽ 1. It is assumed that the white noise a୲, is independent and identically 

distributed with a normal distribution having Eሾa୲ሿ ൌ 0 and Eሾa୲మሿ ൌ σଶ  0. It is 

considered the case in which the process (ω୲; t ∈ Z) can be described by an 

ARMA(p,q) model, e.g.: 

߶ሺܤሻ߱௧ ൌ ሻܽ௧,  (2)ܤሺߠ

 where ϕሺBሻ ൌ 1 െ ϕଵB െ ϕଶBଶെ. . . െϕ୮B୮, θሺBሻ ൌ 1 െ θଵB െ θଶBଶെ. . . െθ୯B୯ 

and B is the backshift operator  such that B୫ω୲ ൌ ω୲ି୫.  

 The ARMA(p,q) models are a class of ARIMA(p,d,q) that describe univariate, 

stationary and unseasonal time series. These models are used in hydrology, 

econometrics, and other fields. ARMA models can be used to predict behavior of a 

time series and are widely used for prediction of economic and industrial time series.  

 The popular ARIMA method was introduced by Box and Jenkins (1976), and 

the technique consists of an iterative cycle of three steps: identification, model fit and 

suitability tests.  

 The identification of the order p, q of the model is a sophisticated procedure 

that requires a lot of data, and reasonable experience from the analyst. In this step 

we compare the sample correlograms with the theoretical of various structures, 

looking for desirable properties which identify a possible model for the time series. 

This way, the estimated autocorrelation (ACF) and the partial autocorrelation (PACF) 

functions should be estimated, but the classical expressions used to measure the 

variability of the respective estimators are obtained on the basis of asymptotic 

results. In addition, when having sets of few observations, the traditional confidence 

intervals to test the null hypotheses display low performance. 
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 Another problem is the difficulty in recognizing patterns in the ACF and PACF 

using the Box and Jenkins method, so several alternative methods have been 

proposed in the literature over the past decades.  

 Choi (1992) evaluated and compared different procedures for the identification 

of models such as the Corner method, the methods of extended sample 

autocorrelation function (ESACF) and canonical correlation (SCAN). The main 

feature of these identification methods is to point out a set of candidate models for a 

posterior careful analysis. A major problem resides in the fact that the distribution of 

the statistics involved in the identification of the order of the model is rarely known, 

and in some procedures, the asymptotic variance is estimated by the Bartlett’s 

formula based on the Gaussian assumption. 

 Recent studies have employed neural networks and genetic algorithms as 

alternatives to identify models which are free of assumptions about the nature of the 

distribution of the involved statistics. Minerva (2001) and Ong (2005) have proposed 

genetic algorithms for the identification of ARMA models. Rolf et al. (1997) have used 

evolutionary algorithms to identify and estimate the parameters of the model. 

Machado et al. (2012) have compared an algorithm of neuro-fuzzy back propagation 

with automatic procedures for identifying Box and Jenkins models. 

 The bootstrap method may be an alternative for identifying the order of ARMA 

models, since it allows to obtain an approximation of the distribution of the statistics 

involved in this step. Therefore it is possible to obtain more accurate confidence 

intervals than those obtained by the classical method of identification. 

 In the last decades several studies have applied the bootstrap method in time 

series with the objective of assessing the variability in the statistics needed, to fit 

ARMA(p,q) models and also to build prediction intervals (SAAVEDRA; CAO, 1999; 

CAVALIERE; TAYLOR, 2008; SENSIER; DIJK, 2004; COSKUN; CEYHAN, 2013).  

 Although the bootstrap method is well known, few studies have applied the 

method to identify the order of ARMA(p,q) models. Paparoditis (1992) has studied the 

identification of models by considering the vector of autocorrelation, and by applying 

the bootstrap in the evaluation of the sampling distributions of the correspondent 

involved statistics. Chaves Neto (1991) has identified the parameter space of ARMA 

models with low order, where the classical method has poor performance, and has 
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proposed the bootstrap as an alternative to identify these models. 

 In this work a moving blocks bootstrap algorithm was applied to obtain 

information about the distribution of the statistics ACF and PACF involved in 

identification of ARMA models. Therefore, confidence intervals free of the Gaussian 

assumption were constructed, classically imposed to obtain the variability of the 

referenced statistics. 

 A simulation study evaluated the performance of the proposed algorithm to 

identify the structure, comparing it with the classical Box and Jenkins method. 

2. THE  IDENTIFICATION OF ARMA(p,q) MODELS 

 In the classic procedure for the identification of the order of ARMA(p,q) models 

proposed by Box and Jenkins (1994), the autocorrelation and partial autocorrelation 

functions based on the time series are estimated. 

 The autocorrelation function (ACF) for lag k is defined by ρ୩ ൌ
ஓౡ
ஓ

  where 

γ୩ ൌ Eሾω୲ െ Eሺω୲ሻሿሾω୲ା୩ െ Eሺω୲ሻሿ is the autocovariance for lag k. The estimator of the 

ACF is 

ොߩ ൌ
∑ ሺ߱௧ െ ߱̄ሻି
௧ୀଵ ሺ߱௧ା െ ߱̄ሻ

∑ ሺ߱௧ െ ߱̄ሻଶ
௧ୀଵ

, 
 (3) 

 where ω̄ ൌ ∑ ன౪

୬
୬
୲ୀଵ , is the sample mean of the time series. We denote by ϕ୩୩ 

the partial autocorrelation function (PACF) of lag k, which can be estimated by 

substituting estimates from (1) in Yule-Walker equations (BOX; JENKINS, 1994). 

 In the identification procedure, we compare the sample correlogram of ACF 

and PACF with theoretical correlograms of various structures, looking for desirable 

properties that identify a possible model for the series (MORETTIN, 2006). 

 In addition to the difficulty in recognizing patterns in the sample correlograms, 

another problem of this procedure is to verify, by means of a hypothesis test, whether 

the sample ACF or PACF is zero beyond a certain lag k.  Probability distributions of 

the statistics ρො୩ and φෝ୩ are approximated asymptotically, and therefore the 

confidence intervals used in hypothesis testing display low performance, especially in 

the identification of ARMA(p,q) structures having low values for the ACF and/or PACF 

or when there are series with less than 50 observations. 



 

 
[http://creativecommons.org/licenses/by/3.0/us/] 
Licensed under a Creative Commons Attribution 3.0 United States License 

 

INDEPENDENT JOURNAL OF MANAGEMENT & PRODUCTION (IJM&P) 
http://www.ijmp.jor.br            v. 6, n. 1, January - March 2015 
ISSN: 2236-269X 
DOI: 10.14807/ijmp.v6i1.244 

173 

 Under the assumption that the estimated parameter ρ୩ is zero and the size 

series n is moderate to large, the distribution is approximately Normal with zero 

mean, i.e., ρො୩ ∼ Nሾ0, Vሺρො୩ሻሿ (ANDERSON, 1942). 

 The asymptotic variance can be calculated by Bartlett's formula  

ܸሺߩොሻ ≅
1
݊
ቈ1  2 ߩ

ଶ


ୀଵ
 	݇   ,ݍ

 (4)

 for the case of zero theoretical correlations ρ୨ for lags k greater than a fixed lag 

q,    j>q, (BARTLETT, 1946). Considering an autoregressive process of order p, 

Quenouille (1949) has showed that the approximate variance of φෝ୩୩ is  

ܸሺ ො߮ሻ ≅
1
݊
		, 

  

(5)

and if the size of the series is large, it is assumed that the φෝ୩୩ is normally distributed,  

i.e.,φෝ୩୩ ∼ Nሾ0, ଵ
୬
ሿ.  To test the hypotheses: 

:భܪ ߩ ൌ 0  e  ܪమ: ߶ ൌ 0,  (6)

we employ confidence intervals at the level ሺ1 െ αሻ  

ܫ ൌ ሾെݖሺଵିఈଶሻ
ඥܸሺߩොሻ; ሺଵିఈଶሻݖ

ඥܸሺߩොሻሿ  (7)

ܫܫ ൌ െݖቀଵିഀ
మ
ቁ
ଵ

√
; ቀଵିഀݖ

మ
ቁ
ଵ

√
൨.  (8)

built based on the classical asymptotic results with the objective of verifying whether 

the ACF and PACF are zero from a certain lag k. 

3. THE BOOTSTRAP IN THE IDENTIFICATION OF THE ARMA (p,q) MODEL 

 The bootstrap method introduced in Efron’s work (1979) is based on the 

construction of sample distributions by resampling a single existing sample. As it is 

well known, the technique consists in replacing the unknown distribution of the data F 

of the original sample data for an F' estimator, in general the empirical distribution 

function F. Under the estimated distribution chosen to approximate the original, 

exhaustive samples can be extracted, and therefore, characteristics that could not be 

evaluated in the original structure of the problem can now be estimated in this 

pseudo-structure created by the process of reproduction (SILVA, 1995). 

 Suppose a random sample x ൌ ሺxଵ, xଶ, . . . , x୬ሻ, ሺX୧ ∼ i. i. dሻ from a population of 
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unknown distribution F.  B samples of the same size of the original sample are 

extracted from F, forming the set x∗୪ ൌ ሺxଵ
∗୪, xଶ

∗୪, . . . , x୬∗୪ሻ, l = 1, ..., B. We calculate the 

bootstrap statistics θ∗୪ ൌ tሺx∗୪, Fሻ for each of the B samples. The set ሺθ∗ଵ, θ∗ଶ, . . . , θ∗ሻ 

is an approximation of the true sample distribution of the statistics θ. This way, we 

have the bootstrap estimate θ, θ∗ ൌ
∑ ∗ౢా
సభ


, and its corresponding standard deviation 

ොߪ ൌ ඨ∑ ሺߠ∗ െ ∗ሻଶߠ
ୀଵ

ܤ െ 1
 

  

 (9)

 To apply the bootstrap in time series, it is necessary to have an algorithm that 

preserves the correlation structure of the series, such as moving blocks (EFRON, 

1979). With this technique the observations of the time series are grouped into blocks 

of length l. The bootstrap samples are obtained by resampling with replacement of 

these blocks, forming samples of the same size of the original series. The algorithm 

described below, based on moving blocks, has been tested here to get the sampling 

bootstrap distributions ρ୩ and ϕ୩୩ which are necessary to evaluate the variability of 

these statistics in order to identify the order of the ARMA(p,q) model. 

 In the historical data series ω ൌ ሼω୲; t ൌ 1,2,3, . . . , nሽ, the bootstrap samples are 

obtained by drawing with replacement of n - k pairs of the original sample pairs 

ሼሺω୲, ω୲ା୩ሻሽ; t ൌ ሼ1,2, . . . , n െ kሽ.  

 This way, we have the I-th bootstrap replication of the sample pairs 

ሺω୲
∗୪, ω୲ା୩

∗୪ሻ, in which the estimate of ρ୩, ρො୩
∗୪ in the usual manner is obtained (1). By 

repeating the process B times, there is bootstrap estimator of ρ୩,  

ොߩ
∗ ൌ

∑ ොߩ
∗

ୀଵ

ܤ
	. 

  

 (10)

 The estimates ρො୩
∗୪ are elements of the sampling distribution of the estimator 

which constitutes an approximation of the sampling distribution of the ρො୩, classical ρ୩ 

estimate, if B is a very large set.  

 The φෝ୩୩ bootstrap distribution can be obtained from the ρො୩, ሼρො୩
∗୪; 	l ൌ

1,2,3, . . . , Bሽ bootstrap distribution, by calculating the φෝ୩୩
∗୪ value in each replication as 

a function of the bootstrap autocorrelation lag k and of previous lags reached by 

usual means.  
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 The ρො୩ and φෝ୩୩  bootstrap standard errors are calculated respectively by 

ොሻߩሺݏ ൌ ඨ∑ ൫ߩො
∗ െ ොߩ

∗൯
ଶ

ୀଵ

ܤ
, 

  

 (11)

ሺ߶ሻݏ ൌ ඨ∑ ሺ ො߮
∗ െ ො߮

∗ሻଶ
ୀଵ

ܤ
. 

 
 (11)

 

  

 (12)

   

 By means of the ρො୩ and φෝ୩୩ distributions, we can obtain bootstrap confidence 

intervals without the assumption of normality, for instance, the percentile intervals of 

the confidence level 1 െ α,  

	ሾߩො; ሾ			ොೠሿߩ ො߮; ො߮ೠሿ.                                                  (13)

with lo ൌ 100. 
ଶ
%  e up ൌ 100. ቀ1 െ 

ଶ
ቁ%. Since these intervals can be asymmetric in 

relation to the ρො୩ and φෝ୩୩ estimates, respectively, Efron (1986) has proposed the bias 

corrected percentile interval (BC) 

	ሾିܨܦܥଵሺ߶ሺ2z െ ;ఈሻሻݖ ଵሺ߶ሺ2zିܨܦܥ  ,ఈሻሻሿݖ                      (14)

for ρ୩ or either φ୩୩. With z୭ ൌ ϕିଵሺCDFሺρො୩ሻሻou z୭ ൌ ϕିଵሺCDFሺφෝ୩୩ሻሻ, where ϕ 

corresponds to the distribution function of the standard-normal. 

4. RESULTS 

 In order to evaluate the performance of the bootstrap procedure, by comparing 

it with the asymptotic method, we simulated time series from ARMA models. The 

residues of synthetic series are Gaussian with variance σୟଶ ൌ 0,1, and their generating 

process is stationary with zero mean. 

 Series were simulated departing from each 15 model structures AR (1), MA 

(1), AR (2), MA (2),  AR (3), MA (3), ARMA(1,1) and ARMA (2,2), some with 

parameters chosen so that ∣ ρ୩ ∣൏ cଵ and ∣ ϕ୩୩ ∣൏ cଶ, where c1 and c2 are the limits 

of the confidence intervals (7) and (8). That is, models with low values of ACF and 

PACF were selected to evaluate the performance of the classical method in the 

identification of this type of structure. As the results are repeated in all of the 

experiments, we report a small portion of the simulation, which is sufficient to 

illustrate the results obtained. 
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 Consider the model of the structure MA(2), ω୲ ൌ െ0.2a୲ିଵ  0.1a୲ିଶ  a୲ and 

the model of the structure AR(3), ω୲ ൌ 0.7ω୲ିଵ െ 0.5ω୲ିଶ  0.5ω୲ିଷ  a୲ with a୲ ∼

Nሺ0,0.1ሻ. We estimated for each model the standard deviations of the autocorrelation 

and partial autocorrelation functions of the sample. In 100 Monte Carlo repetitions, 

length series n = 30, n = 50 and n = 100 are generated, and for each experiment 

exact standard deviations, asymptotic and bootstrap are obtained. The exact 

standard deviations were obtained from 10000 replications of the model. 

 The asymptotic estimates are calculated through the expressions of Bartlett 

and Quenoulli. The bootstrap algorithm was applied with B = 1000 for each Monte 

Carlo repetition. Tables 1 and 2 show the average values of the estimated  standard 

deviations for lags k = 1,2,3,4. 

Table 1: Estimates of the standard deviation of the ACF and PACF for the model  
߱௧ ൌ െ0.2ܽ௧ିଵ  0.1ܽ௧ିଶ  ܽ௧ 

 n = 30 n = 50 n = 100 

exact asymptotic bootstrap exact asymptotic bootstrap exact asymptotic bootstrap 

  0.129 0.182 0.168 0.094 0.141 0.138 0.072 0.100 0.098࣋

ࣘ 0.129 0.182 0.168 0.094 0.141 0.138 0.072 0.100 0.098 

  0.139 0.187 0.172 0.122 0.144 0.138 0.072 0.101 0.101࣋

ࣘ 0.139 0.182 0.178 0.114 0.141 0.141 0.069 0.100 0.103 

  0.193 0.210 0.157 0.144 0.163 0.126 0.118 0.116 0.096࣋

ࣘ 0.149 0.182 0.169 0.115 0.141 0.138 0.091 0.100 0.102 

  0.186 0.216 0.156 0.158 0.166 0.127 0.107 0.117 0.094࣋

ࣘ 0.159 0.182 0.170 0.129 0.141 0.133 0.093 0.100 0.103 

Table 2: Estimates of the standard deviation of the ACF and PACF for the model 
߱௧ ൌ 0.7߱௧ିଵ െ 0.5߱௧ିଶ  0.5߱௧ିଷ  ܽ௧ 

 n = 30 n = 50 n = 100 

exact asymptotic bootstrap exact asymptotic bootstrap exact asymptotic bootstrap 

 ଵ 0.164 0.183 0.174 0.137 0.141 0.142 0.103 0.100 0.105ߩ

߶ଵଵ 0.164 0.183 0.174 0.137 0.141 0.142 0.097 0.100 0.096 

 ଶ 0.173 0.208 0.155 0.148 0.166 0.127 0.107 0.120 0.096ߩ

߶ଶଶ 0.164 0.183 0.189 0.132 0.141 0.149 0.089 0.100 0.106 

 ଷ 0.183 0.221 0.155 0.159 0.173 0.129 0.123 0.122 0.099ߩ

߶ଷଷ 0.158 0.183 0.164 0.125 0.141 0.128 0.095 0.100 0.103 

 ସ 0.174 0.227 0.156 0.146 0.181 0.132 0.109 0.128 0.100ߩ

߶ସସ 0.154 0.183 0.160 0.129 0.141 0.126 0.096 0.100 0.107 

 In both experiments we observed that the bootstrap estimates display good 

behavior in comparison with the asymptotic estimates, especially in samples of size  
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n = 30 and n = 50. In this case, in so far the lag k increases, the asymptotic estimates 

become more biased than the bootstrap estimates. 

 Consider the estimation of percentiles of the distribution of the autocorrelation 

function. In Figure 1, the dotted line represents the percentiles 5% and 95% of the 

exact distribution of ρො୩ for k = 1,2, ..,6, which are obtained using 10000 repetitions of 

the model ARMA(1,1), ω୲ ൌ 0.4ω୲ିଵ െ 0.5a୲ିଵ  a୲. The average values 

corresponding to the analog percentiles of the ρො୩ bootstrap distribution over 200 

repetitions are represented by the hatched line. To apply the bootstrap, we used       

B = 1000 for each Monte Carlo repetition. The mean values corresponding to 

percentiles of the asymptotic normal distribution are represented by the solid line. 

The asymptotic variances are calculated for each of the 1000 repetitions of the model 

using the Bartlett’s formula. 

 We observe that the bootstrap estimates reflect more adequately the sampling 

distribution of the partial autocorrelation function of the asymptotic method. 

Particularly in cases where the distribution is not symmetric, the bootstrap provides 

more accurate estimates. 

 

Figure 1: 5% and 95% of the exact, bootstrap and asymptotic distributions of ߩ 

 The assumptions set out in (6) for each Monte Carlo repetition were also 

tested, and this way we could evaluate the coverage probability of the null parameter 
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by the asymptotic intervals (7) and (8). The percentile bootstrap confidence interval 

(13) and bias corrected percentile interval (14) were constructed to test the 

equivalent null hypotheses, H୭భ: ሾρො୩ౢ; ρො୩౫౦ሿ ⊃ 0	 and H୭మ: ሾϕ୩୩ౢ; ϕ୩୩౫౦ሿ ⊃ 0. That is, 

we tested the hypothesis of zero belonging to the intervals. In the classic intervals, 

the question relies on whether the estimate belongs to the interval for the null 

parameter. 

 The hypotheses were tested for the first 4 lags of the ACF and PACF for each 

of the referred structures. The confidence level of all intervals is 95%. Table (3) 

displays the probability of coverage of the confidence intervals, for the model AR(3) 

ω୲ ൌ 0.7ω୲ିଵ  0.5ω୲ିଶ  0.5ω୲ିଷ  a୲. 

Table 3: Probability coverage of zero by asymptotic (A) percentile (B) and bias 
corrected bootstrap (BC) intervals for the model ߱௧ ൌ 0.7߱௧ିଵ  0.5߱௧ିଶ  0.5߱௧ିଷ  ܽ௧ 

 n = 30 n = 50 n = 100 

C B BC C B BC C B BC

 ଵ 0.37 0.38 0.35 0.17 0.27 0.16 0.00 0.00 0.00ߩ

߶ଵଵ 0.37 0.38 0.35 0.17 0.27 0.16 0.00 0.00 0.00 

 ଶ 0.81 0.48 0.47 0.65 0.50 0.47 0.77 0.64 0.60ߩ

߶ଶଶ 0.56 0.42 0.39 0.38 0.27 0.19 0.22 0.25 0.30 

 ଷ 0.81 0.63 0.60 0.76 0.68 0.54 0.31 0.37 0.20ߩ

߶ଷଷ 0.47 0.50 0.32 0.15 0.40 0.17 0.00 0.14 0.03 

 ସ 0.84 0.46 0.42 0.50 0.39 0.25 0.08 0.06 0.05ߩ

߶ସସ 0.92 0.93 0.95 0.91 0.98 1.00 0.86 0.99 1.00 

 The results presented in Table 3 reveal that in samples of size n = 30 and       

n = 50 the bootstrap intervals, especially BC, have higher empirical power to reject 

the null hypothesis, i.e., they better estimate parameters that are not null.  

 When the series are simulated departing from AR(3) models, we expected ϕସସ 

to be statistically null. That is, we expected ϕସସ to belong to the classical intervals (7) 

and (8), or the zero to be contained in the intervals (13) and (14) constructed for this 

parameter. In the case of ϕସସ, the bootstrap intervals are more likely to cover zero, 

i.e., they are more accurate than the asymptotic interval in identifying the null 

parameter. 

 A major problem relies on the identification of the order of the model departing 

from the simulated series with parameters chosen so that ∣ ρ୩ ∣൏ cଵ and ∣ ϕ୩୩ ∣൏ cଶ. 

For these structures the set of values of the lags of the ACF and PACF is contained 
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in the asymptotic confidence interval of 95% level (7) and (8) respectively. We 

observed in simulation experiments that the probability coverage of the null 

parameter is very high, even in the samples of n = 100 where the asymptotic 

performance of the method is better.  

 This way, the classical technique considers the process as white noise, 

instead of identifying a model with low values for ACF and PACF. In these cases the 

bootstrap performance is also superior, especially in samples of size n = 30 n = 50 

because the probability coverage of zero is less in both the analyzed intervals. 

5. CONCLUSIONS 

 In this paper we propose a bootstrap procedure to identify the order of ARMA 

models. The algorithm was tested on simulated time series from models of structures 

AR(1), AR(2), AR(3), MA(1), MA(2), MA(3), ARMA(1,1) and ARMA (2,2). This way we 

determined the sampling distributions of the autocorrelation and partial 

autocorrelation functions, classically used in the identification of this type of structure, 

free from the Gaussian assumption. The examples show that the bootstrap has good 

performance in samples of all sizes and that it is superior to the asymptotic method 

for small samples. The bootstrap estimates are more accurate, i.e., they display less 

variability than the asymptotic estimates. 

 In the identification of models with low values for the ACF and PACF, the 

classic method is ineffective for samples of any size, by considering the process as 

white noise. The bootstrap can be an alternative to this type of structure, because the 

confidence intervals have a lower probability coverage of the null parameter, i.e., they 

have more power to reject the null hypotheses.  

 These results were repeated in the simulated series from all the models 

studied and the repetition of results may be justified by the bootstrap distribution of 

ACF and PACF. The comparison among the percentiles of the exact, asymptotic and 

bootstrap distribution shows that the bootstrap reproduces more satisfactorily the true 

distribution of the autocorrelation and partial autocorrelation functions. 

 As a suggestion for further research, it would be interesting to apply the 

technique presented here to real time series data with the objective of identifying 

ARMA(p, q) models, which after adjusted, could be employed, for instance, for 

predicting the behavior of economic or industrial series. 
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