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ABSTRACT

Alzheimer’'s disease (AD) is an age-related progressive
neurodegenerative disorder that leads to cognitive
impairment and memory loss. Emerging evidence
suggests that autophagy plays an important role in the
pathogenesis of AD through the regulation of amyloid-beta
(AB) and tau metabolism, and that autophagy dysfunction
exacerbates amyloidosis and tau pathology. Therefore,
targeting autophagy may be an effective approach for the
treatment of AD. Animal models are considered useful
tools for investigating the pathogenic mechanisms and
therapeutic strategies of diseases. This review aims to
summarize the pathological alterations in autophagy in
representative AD animal models and to present recent
studies on newly discovered autophagy-stimulating
interventions in animal AD models. Finally, the
opportunities, difficulties, and future directions of
autophagy targeting in AD therapy are discussed.
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INTRODUCTION

Alzheimer's disease (AD) is an age-related neurodegenerative
disorder characterized by progressive and irreversible
deterioration of the brain, leading to cognitive impairment and
memory function decline (Graff-Radford et al., 2021; Querfurth
& LaFerla, 2010). As the most common cause of dementia
worldwide, AD currently afflicts approximately 40 million
people globally, with its prevalence predicted to increase over
the coming decades (Lynch, 2020). Neuropathologically, the
disease is primarily defined by two hallmark lesions:
intracellular neurofibrillary tangles (NFTs) arising from
hyperphosphorylated tau protein and extracellular neurotic
plaques composed of amyloid-beta (AB) and various other
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protein aggregates (Graff-Radford et al., 2021). The etiology
of AD is complex, encompassing a combination of
environmental and genetic factors, with various genes
implicated in its pathogenesis (Zhang et al., 2019). Notably,
APP, PSEN1, and PSEN2 are considered the most commonly
mutated genes in early-onset AD, while APOEe4 is considered
the strongest risk gene associated with late-onset AD (Li et al.,
2017; Zare-Shahabadi et al., 2015). Given the absence of
curative treatment strategies for AD, it is critical to advance
research into the pathological mechanisms of the disease and
to develop therapeutic interventions aimed at mitigating
symptom progression (Knight et al., 2018).

Autophagy is a conserved catabolic process for intracellular
substrate delivery and degradation, which maintains cellular
homeostasis by constitutively degrading defective organelles
or non-essential proteins and recycling components for energy
and cellular remodeling. It can also be induced under
starvation, oxidative stress, and a variety of disease conditions
(Fleming et al., 2022; Klionsky et al., 2021; Levine & Kroemer,
2019; Wang etal., 2023). There are three main types of
autophagy: chaperone-mediated autophagy  (CMA),
microautophagy, and macroautophagy (Figure 1) (Zare-
Shahabadi etal., 2015; Zhang etal, 2021b). Of these,
macroautophagy is considered predominant, contributing to
the overall rate of autophagy and generally referred to
as  “autophagy”. In the autophagic-lysosomal system,
preautophagosomal structures (PAS) are formed to
encapsulate selected substrates in the cytoplasm and
subsequently develop into double-membrane
autophagosomes. Lysosomes fuse with autophagosomes to
form single-membrane autolysosomes, which eventually
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Figure 1 Schematic representation of three types of autophagy

In the macroautophagy pathway, preautophagosomal structures (PAS) are formed to engulf selected substrates in the cytoplasm and subsequently

develop into double-membrane autophagosomes (AP). Lysosomes fuse with autophagosomes to form single-membrane autolysosomes (AL), which

eventually evolve into lysosomes. In the chaperone-mediated autophagy (CMA) pathway, the Hsc70 chaperone protein complex recognizes target
proteins in the cytoplasm with a KFERQ motif and delivers cargo to lysosomes for digestion via interaction with the lysosomal membrane protein
LAMP2, which functions as a CMA receptor. Microautophagy is the simplest autophagic pathway, in which substrates are engulfed directly by

lysosomes, independent of vesicles or protein targeting complexes.

evolve into lysosomes. Upon fusion with autophagosomes,
lysosomal proteolytic enzymes carry out substrate
degradation, while vesicular or vacuolar-type ATPase (V-
ATPase) mediates acidification of the compartment
(Colacurcio & Nixon, 2016). In recent years, accumulating
studies have highlighted the critical role of the autophagy-
lysosomal pathway in modulating cellular aging, the sine qua
non for late-onset neurodegenerative diseases. Impaired
autophagy is likely to contribute to the pathogenesis of many
neurodegenerative diseases, including AD (Fleming etal,
2022; Litwiniuk et al., 2023; Miceli et al., 2023). Studies have
reported that immature autophagosomes accumulate in the
brains of AD patients and that the expression of certain
autophagy-related proteins is down-regulated (Heckmann
etal., 2020). Enlarged and dysfunctional autolysosomal
vesicles accumulate in axons to form spheroids and network
defects in AD progression (Yuan et al., 2022). Furthermore,
electron microscopy has shown that failure of autolysosomal
acidification precedes the formation of classic AD amyloid
plaques and NFTs (Lee etal.,, 2022). Thus, these findings
strongly suggest that targeting autophagy may be an effective
approach for the treatment of AD.

Animal models are valuable tools for elucidating the
pathological mechanisms of AD and for the development of
novel therapeutic strategies (Chen & Zhang, 2022; Drummond
& Wisniewski, 2017). At present, AD models are broadly
categorized into spontaneous, drug-based, and transgenic
models according to the methodology used to model the
disease pathology (Esquerda-Canals et al., 2017). They are
then evaluated using a comprehensive array of behavioral
tests to assess learning, memory, and cognitive function. This
review summarizes the pathological features of representative
animal models of AD, evaluates the autophagic changes that

contribute to the pathogenesis of these models, and discusses
current investigations into therapeutic interventions targeting
autophagy for the treatment of AD.

AUTOPHAGY
MODELS

IN PATHOGENESIS OF AD ANIMAL

Pathological features and mutated genes involved in AD
The formation of amyloid plaques and NFTs are two
diagnostic hallmarks of AD pathology. The aggregation of
extracellular AR peptides leads to the development of senile
plaques and amyloid deposits on the cerebrovascular walls
(Honjo et al., 2012; Trumbore, 2016). The AB-40 and AB-42
peptides, principal constituents of amyloid plaques, are
generated by amyloid precursor protein (APP), a glycosylated
receptor localized to the cell surface that undergoes
proteolytic cleavage by (- and y-secretases during
endocytosis to produce intracellular AB, which is then secreted
to the extracellular environment via exocytosis (Chen etal.,
2017; De Strooper, 2003). The presenilin, nicastrin, aph-1,
and pen-2 protein complex is responsible for y-secretase
activity, while B-site APP-cleaving enzyme 1 (BACE-1)
mediates B-secretase activity (Zhang etal, 2017a).
Autosomal dominant mutations in the genes encoding APP,
presenilin-1 (PS1), and presenilin-2 (PS2) are known to
promote the pathological accumulation of AR peptides at the
molecular level. Elevated levels of AB can induce neuronal
death due to amyloid toxicity, thereby accelerating the
progression of familial AD (FAD) and late-onset AD
(Armstrong, 2019). According to the amyloid hypothesis,
dysregulated APP metabolism and AR peptide aggregation
are posited as the initiating events in AD progression (Frisoni
et al., 2022; Hardy & Allsop, 1991).
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Insoluble NFTs, another representative microscopic brain
lesion in AD, are primarily composed of tau, a microtubule-
associated protein commonly found in axons. Neuronal tau
plays a critical role in regulating microtubule stability and
facilitates signal transduction-related protein trafficking
through the microtubular network (Venkatramani & Panda,
2019). According to the tau propagation hypothesis,
pathologic hyperphosphorylation of tau can lead to the
formation of non-helical fibrils and depolymerized
microtubules, resulting in the formation of intracellular NFTs
(Frost etal., 2009; Sonawane & Chinnathambi, 2018). NFT
pathology can disrupt cytoplasmic function and axonal
transport between neurons, ultimately leading to neuronal
dysfunction and degeneration in individuals with AD (Arnsten
et al.,, 2021; Sexton et al., 2022; Tavares et al., 2013; Yang &
Wang, 2018). Nevertheless, the molecular events underlying
tau lesion formation and the mechanistic relationship between
NFTs and amyloid pathology remain poorly understood.

Multiple AD-related genes are involved in autophagy
regulation (Deng etal., 2022). Apart from its role in AB
cleavage, PS1 is also an endoplasmic reticulum (ER)
chaperone for the V-ATPase subunit VOA1 which is
responsible for lysosomal acidification. Mutations in the PS1
gene can lead to V-ATPase dysfunction and defective
autolysosomal degradation in AD patient-derived cells (Lee
et al., 2010). Mutations in PS2, another critical AD gene, can
also impair autophagy by disturbing calcium (Ca®")
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Figure 2 Role of autophagy in AD pathogenesis
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homeostasis (Fedeli etal., 2019). Mutations in APOE4,
encoded by the €4 allele of the APOE gene and a primary risk
factor for sporadic AD, can up-regulate the expression of
endolysosomal protein RAB5 and endocytosis, resulting in an
overload of autophagic cargo and accumulation of
dysfunctional lysosomes (Shi etal., 2017). PICALM is a
clathrin adaptor protein reported to confer dysfunction in the
brains of AD patients. Variants in PICALM can disrupt VAMP
protein  endocytosis, thereby inducing impairment of
autophagosomal maturation and autophagosome-lysosome
fusion (Moreau et al., 2014).

Autophagy in AR metabolism and tau pathology

As autophagy transports cytoplasmic components to
lysosomes for degradation and recycling, functional autophagy
plays an important role in the production and clearance of AB
peptides and the assembly of tau proteins in the mammalian
brain (Figure 2 and 3). However, in the progression of AD,
dysregulation of autophagy exacerbates amyloidosis and tau
pathology (Zhang et al., 2021b).

Autophagy plays an essential role in the metabolism of AB,
modulating both its production and clearance. The induction of
ATG5-dependent autophagy facilitates the degradation of APP
and AP production via the autophagy-lysosomal pathway
(Cavieres etal.,, 2015), while inhibition of ATG7 impairs
autophagic flux, leading to decreased extracellular A plaque
formation and increased intraneuronal AB accumulation,
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Accumulation of aberrant AR peptides produced by APP and deposition of hyperphosphorylated tau leading to the formation of NFTs are

fundamental pathological markers of AD. Abnormal AR peptides form oligomers and insoluble senile plaques and promote hyperphosphorylation
and aggregation of tau (Zeng et al., 2019). Autophagy modulates AR metabolism and tau pathology by regulating their production, secretion, and
clearance. Dysregulation of autophagy accelerates amyloidosis and tau pathology.
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Autophagy initiation is modulated by nutrient deprivation or cellular stress signals. Growth factor-activated PI3K induces the phosphorylation of

downstream Akt, and p-Akt promotes the activation of mMTORC1, which negatively regulates autophagic processes. AMPK is activated by up-
regulated AMP/ATP and then phosphorylates the downstream ULK1 complex, which prevents the inhibitory effect of mMTORC1 while promoting
activation of Beclin-1, an essential autophagic initiator. Beclin-1/PI3KC3 complex regulates phagophore formation by recruiting autophagic proteins,
which can be blocked by the anti-apoptotic protein Bcl-2. TFEB translocation from the cytoplasm to nucleus activates the transcription of autophagy-
related genes. During phagophore formation, a series of autophagy-related proteins regulate the maturation of microtubule-associated protein
1A/1B light chain 3-11 (LC3-Il) on the phagophore membrane, which is necessary for membrane elongation (Di Meco et al., 2020). RAB7, UVRAG,
and LC3 promote autophagosome maturation and fusion with lysosomes to form autolysosomes (Deng et al., 2022). AD-associated proteins and A
aggregation impair autolysosomal acidification, and tau deposition suppresses autophagy flux by disrupting autophagosome-lysosome fusion,

which, in turn, exacerbates amyloidosis and tau pathology in AD.

suggesting that AB secretion is compromised under
dysfunctional autophagy (Nilsson et al., 2015). Studies have
shown that ATG5- and ATG7-dependent autophagy induced
by morphine selectively affects dopaminergic neurons in the
murine midbrain (Su etal, 2017). Autophagy potentially
modulates AR clearance at various stages. Inhibition of
mTOR-dependent pathways markedly increases autophagy
and reduces both intracellular AB and extracellular amyloid
deposition in the brain (Cai & Yan, 2013; Spilman et al., 2010).
Furthermore, inhibition of Beclin-1 results in elevated APP, AR,
and C-terminal fragment (CTF) expression, while its
overexpression leads to stimulation of basal autophagy flux
and significant remission of AP deposition and cognitive
deficits (Rocchi et al., 2017; Salminen et al., 2013). Genetic
ablation of cathepsin B, an essential lysosomal protease that
degrades autophagic substrates, has been shown to
exacerbate amyloid pathology in mouse models of AD
(Mueller-Steiner et al., 2006). Accumulation of mutant APP
and AB is also reported to induce mitochondrial, synaptic, and
autophagic abnormalities in hippocampal neurons under AD
pathology, leading to neuronal dysfunction (Reddy etal,
2018).

Tau pathology is also alleviated by autophagy induction.
Studies have shown that hyperphosphorylated tau colocalizes
with the autophagic marker LC3 and substrate p62/SQSTM1
in the brains of FAD patients and model mice (Piras etal.,
2016). Inhibition of mMTOR signaling using several identified
compounds can significantly reduce tau phosphorylation and
insoluble tau (Hamano et al., 2021). The autophagy receptor
NDP52 recognizes phosphorylated tau in AD mouse brains,

with its up-regulation found to enhance clearance of
phosphorylated tau via autophagic degradation (Chesser
et al., 2016). TFEB, a critical transcription factor for autophagy
induction, mediates tau clearance by modulating its lysosomal
exocytosis (Xu et al., 2021c). Defective CMA has also been
implicated in many neurodegenerative diseases (Liu etal.,
2015) and the degradation of pathogenic proteins, including
tau. Tau contains two motifs in its C-terminus that can be
recognized by CMA; however, mutant forms of tau exhibit
resistance to CMA-mediated degradation due to the blockade
of transport to the lysosomal lumen (Wang etal.,, 2009).
Studies have demonstrated that blocking CMA accelerates tau
aggregation and promotes disease progression, whereas
increasing CMA activity with small molecules significantly
suppresses tau pathology in several AD mouse models
(Bourdenx etal., 2021). These findings suggest that both
macroautophagy and CMA play critical roles in regulating AB
metabolism and tauopathies.

In addition, emerging evidence suggests that defective
mitophagy plays a critical role in AD occurrence and
progression (Zeng etal, 2022). Mitophagy is a highly
conserved process that recycles damaged mitochondria via
autophagy, thereby maintaining balanced energy metabolism.
Impairment in mitophagy can result from deficits in
autophagosome-lysosome fusion and mitochondrial transport.
Some AD patients with mild cognitive dysfunction exhibit
higher transcriptional levels of mitophagy-related genes, such
as p62, parkin, and beclin 1 (Sorrentino etal., 2017), while
other AD patients exhibit reduced levels of mitophagy
proteins, including PINK1 and Bcl-2-like protein 13 (Fang
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et al.,, 2019), which may reflect differences in disease stage.
Mitochondrial dysfunction occurs in the early stages of AD,
and A toxicity and tau pathology cooperatively aggravate the
accumulation of damaged mitochondria and mitophagy due to
increased oxidative stress and disruption of PINK1/parkin
localization, leading to a vicious cycle that induces neuronal
damage and death (Cummins et al., 2019; Rhein et al., 2009).

Alterations in autophagy in AD animal models

Animal models are essential tools for the exploration of
molecular mechanisms, behavioral functions, and therapeutic
strategies of diseases. Three types of pathophysiologically
based AD models exist: spontaneous, chemically induced,
and transgenic (Esquerda-Canals et al., 2017). While certain
mammals, such as tree shrews, macaques, and dogs
(Beckman et al., 2021; Goodarzi et al., 2019; Li et al., 2023),
exhibit natural development of AR deposition and tau
hyperphosphorylation, their restricted reproductive output and
relatively long lifespans limit their suitability in preclinical
testing. Furthermore, chemically induced models, which
employ the introduction of neurotoxic compounds into the
animal brain to induce AD-like symptoms, cannot accurately
replicate the pathogenesis of AD. Advancements in genetic
engineering have enabled the generation of numerous
transgenic AD models. Mice are extensively used as
transgenic AD models due to their short lifespans, cost-
effectiveness, and established manipulation procedures
(Nakai et al., 2021). Rats are also widely used due to their
larger brain size and superior performance in behavioral tests
compared to mice. Invertebrate models, such as Drosophila or
Caenorhabditis elegans, are noted for their short lifespans and
simple requirements, but exhibit considerable neurological and
physiological differences from mammals, constraining their
applicability (Lu & Vogel, 2009).

Many transgenic (Tg) mice overexpressing mutated AD-
related genes have been generated for disease research over
the past several decades, which have mirrored the plaque
formation, cognitive impairment, and defective adult
hippocampal neurogenesis (AHN) in AD patients (Kim et al.,
2022). Familial APP, PSEN1, and PSEN2 mutations have
been identified as major genetic risk factors for early-onset
AD, while APOE and TREMZ2 mutations have been implicated
in the progression of late-onset AD (Cuyvers & Sleegers,
2016). This review provides a list of AD-related genes and
details common transgenic mouse models employed in
preclinical AD research, including a summary of their principal
features (Tables 1, 2).

APP transgenesis: The APP locus resides on human
chromosome 21 and primarily encodes three isoforms,
ABPP695, ABPP751, and ABPP770. The Swedish double
mutation, APPSwe (K670N/M671L), is located at the -
cleavage site and favors (-secretase activity, contributing to
increased production of AB. APPSwe (Tg2576) mice, serving
as an early-onset Alzheimer's disease model, exhibit AR
deposition by around 11 months and memory deficits as early
as 10 months, attributed to the overexpression of the
ABPP695 isoform under the regulation of the hamster prion
protein (PrP) promoter (Lilja et al., 2013). APP23 mice exhibit
overexpression of the ABPP751 isoform bearing the Swedish
mutation under the control of the Thy1 promoter and show
similar neuropathological and behavioral phenotypes as
Tg2576, developing amyloid deposition at 6 months of age
and memory impairment at approximately 3 months, followed
by neuronal loss and synaptic degeneration with age (Bondolfi
etal.,, 2002; Webster etal., 2014). TgCRND8 mice, which
overexpress the Swedish and Indiana double mutations
(KM670/671NL and V717F) of APP under the control of the
PrP promoter, show AB deposition from 3 months of age and
selective neuronal loss from 5 months of age, indicative of an
earlier onset of pathology compared to single-mutation models
(Kanemoto et al., 2014).

Presenilin transgenesis: PSEN1 and PSEN2 form the
catalytic core of the y-secretase complex. Mutations in the
PSENT1 locus on human chromosome 14 are considered the
most common cause of FAD. Specific mutations, including
M146V, M146L, and L286V, can alter y-secretase activity and
induce the production of AB42, but not amyloid plaques
(Edbauer et al., 2003). Mouse models with APP and PSEN1
mutations show a more rapid onset of pathogenesis compared
to single mutation lines, both in terms of amyloid deposition
and behavioral dysfunction. PSAPP mice overexpress both
APP with the Swedish KM670/671NL mutation and PSEN1
with the M7146L mutation (Roltsch et al., 2010), while APP/PS1
mice overexpress APP with the Swedish KM670/671NL
mutation and PSEN1 with the L766P mutation, driven by the
Thy1 promoter, leading to elevated AB42 levels at 2—-3 months
of age, hyperphosphorylated tau at 8 months, and cognitive
impairment at 6-8 months of age (Lok etal., 2013). The
5xFAD transgenic mouse line carries the Swedish
(KM670/671NL), Florida (/716V), and London (V717])
mutations of APP and the M7146L and L286V mutations of
PSEN1 under the control of the Thy-1 promoter. These mice
represent a robust model for studying amyloidosis, with
abundant AB accumulation in the brain at 6 months and

Table 1 Summary of representative genes implicated in risk of early and late-onset Alzheimer’s disease (AD)

Gene Location  Biological function Involvement in AD pathology Reference
AB production, neuronal Swedfsh mutatlon.(KM670/671NL): glevated AB levels; London Hinz & Geschwind,
. mutation (V717/): increased AB42 with decreased AB40 levels; s
APP 21921.3  development, and synaptic . . e 2017; Lanoiselée
h Flemish mutation (A692G): AB deposition in blood vessels of
formation . ) etal., 2017
brain and senile plaques
A0 el usen, yeesmd e fEi PSEN1 mutation: increased AB42 with decreased AB40 levels, Hinz & Geschwind,
PSEN1 14924.3 p ¥ . . v compromised neuronal function, and suppressed GSK-3p activity 2017; Lanoiselée
and intracellular signaling L .
and kinesin-l-based motility etal., 2017
AB production, B-secretase activit PSENT mutation: enhanced B-secretase activity, increased AR Hinz & Geschwind,
PSEN2 1042.13 p e Y 42/40 ratio, neuritic plaque formation, NFT accumulation, and 2017; Lanoiselée
and synaptic plasticity
older age of onset etal., 2017
Lipid metabgllsm, synaptic functpn, APOE ¢4 carriers: increased AB deposition, impaired glucose Serrano-Pozo et al.,
s 19913.2 neurogenesis, as well as generation metabolism, cerebral amyloid angiopathy, and later onset of AD 2021
and trafficking of APP and AB ’ v glopathy.
TREM2  6q21.1 Phagocytosis and down-regulation Missense mutation R47H in TREMZ2: accelerated Zhou et al., 2019

of inflammation

hyperphosphorylation of tau protein and later onset of AD
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Table 2 Summary of representative mouse models of Alzheimer's disease (AD), introduced mutations, pathogenic features, and

alterations in autophagy

Mouse line Transgenlc Amyloid deposition Phosphorylated Behawor.al Alteration of autophagy Reference
mutation tau dysfunction
Spatial learning Deficient autolysosomal
) 5-fold increase in AB40 acidification and selective Ly
Tg2576 szat?:fd's“ and 14-fold increase in  Not detected s:da?:ﬁq”;sx 1 accumlation of AB/APP-BCTF ';f’:let;)'; 32022’ Lilja
AB42/43 at 11 months m:nths VIV within pa-AL before extracellular v

APP Swedish  7-fold overexpression of

APP23 utation ABPP at 6 months OIS
APP Swedish
TgCRNDS and Indiana Elevated levels of AB42 7-12 months

. at 3 months
mutations

APP Swedish  Elevated levels of AR42
PSAPP and PS1 M146L detected earlier than in  Not detected

AB42 deposits; ‘PANTHOS’
Early cognitive
impairment from Not reported
3 months

Bondolfi et al., 2002;
Webster et al., 2014

Deficient autolysosomal
Early cognitive  acidification and selective
impairment from accumulation of AB/APP-BCTF
3 months within pa-AL before extracellular

AB42 deposits; ‘PANTHOS’
Deficient autolysosomal

Ssjtsleﬁz:;mg acidification and selective Lee et al.. 2022-
impairments at BT EIER el (EIAE ST Roltsch et al., 2010

Kanemoto et al., 2014;
Lee et al., 2022

mutations Tg2576 12-15 months within pa-AL before extracellular
AB42 deposits; ‘PANTHOS’
APP Swedish Elevated levels of AB42 Z[])Ztrl:‘lalrizmlng Up-regulated levels of de la Cueva et al.,
APP/PS1 and PS1 L166P 8 months . . Y P62Increased autophagy and 2022; Lok et al., 2013;
mutations at 2-3 months impairments at mitophagy at early ages of mice  Xu et al., 2021a
6-8 months phagy yag ’
Deficient autolysosomal
acidification and selective Lachance et al., 2019;
APP Swedish, Coanitive accumulation of AB/APP-BCTF Lee et al., 2022;
5xFAD Florida, London, High levels of AB42 in Not detected im gairment at within pa-AL before extracellular Leyton et al., 2021;
PS1 M146V and the brain at 6 months P AB42 deposits; ‘PANTHOS’Altered Oakley et al., 2006;
) 4-6 months L )
L286V mutations transcription and expression levels Yelleswarapu et al.,
of ATGs: BECN1-PIK3C3, 2022
ULK1/2-FIP200, DEF8, and ATG5
. S Progressive
2?13 ’\S/I\;Vzg\lf he;n d g;?ﬁgrz;:zl_l:l:olillﬁsls cognitive and Bourdenx et al., 2021;
3xTg-AD ’ "’ 12 months memory Defective CMA Falangola et al., 2020;
Tau P301L and extracellular AR . . .
. . impairments with Webster et al., 2014
mutations deposits at 6 months age

cognitive impairment detected at 4—6 months (Oakley et al.,
2006; Yelleswarapu et al., 2022). Triple Tg (3xTg-AD) mice
overexpress APP with the Swedish K670N/M671L mutation,
PSEN1 with the M746V mutation, and protein tau with the
P301L mutation, establishing a robust model for studying tau
pathology and amyloidosis. These mice display intracellular
AB accumulation in the brain at 3 months, as well as
extracellular AR deposition with age and intracellular NFT
formation in the hippocampus at 12 months (Falangola et al.,
2020; Webster et al., 2014).

APOE transgenesis: APOE is a lipid metabolism-associated
gene located on chromosome 19 and exhibits three principal
allelic forms, €2, €3, and €4. The presence of the ¢4 allele is
considered a strong genetic risk factor for late-onset AD (Liu
et al.,, 2013; Serrano-Pozo et al., 2021). Mice carrying APOE
modifications (APOE knock-in, APOE knock-out, and APOE-
targeted replacement) combined with APP mutations serve as
useful models for studying AD pathology. For example, APOE
KO/PDAPP mice show reduced AR deposition at 6 months of
age, while APOE4-KI/5xFAD mice demonstrate delayed AR
deposition compared to 5xFAD mice (Liao et al., 2015).
TREM2 transgenesis: Mutation of the TREM2 gene on
human chromosome 6 is another critical risk factor for late-
onset AD (Zhou et al., 2019). TREM2 is highly expressed in
microglial cells, which play an important role in promoting AB
clearance and suppressing tau propagation (Zhou etal.,
2019). Crossing mice carrying TREMZ2 modifications with
those carrying mutant APP genes, such as TREM2

KO/APP/PS1 mice, leads to a reduction in the accumulation of
AB and tau, suggesting that targeting microglial activity may
be a novel therapeutic approach for AD (Jay et al., 2015).

Due to the complex role of autophagy in the pathogenesis of
AD, changes in autophagy in AD animal models have been
extensively studied to verify the credibility of models and to
investigate the underlying regulatory mechanisms. Recent
research identified similar autophagy dysregulation in neurons
in five different AD mouse models in vivo, including early-
onset (5xFAD, TgJCRNDS8, and PSAPP mice) and late-onset
(Tg2576 and APP51 mice) models (Lee etal., 2022).
Autolysosomal acidification declines in vulnerable neuronal
populations well before extracellular amyloid deposition,
associated with deficiencies in V-ATPase activity and
accumulation of AR/APP-BCTF selectively within poorly
acidified autolysosomes (pa-AL). In more damaged neurons,
AB-filled autophagic vacuoles (AVs) cluster into large
membrane blebs and the fluorescent petal-like blebs
surrounding DAPI-positive nuclei form flower-like perikaryal
rosettes, termed ‘PANTHOS’ (poisonous flower). Quantitative
analysis revealed that PANTHOS neurons are the source of
most senile plaques in AD mouse models, prompting a re-
evaluation of the traditionally known sequence of events in
amyloid plaque deposition in AD pathology (Lee et al., 2022).

The expression level of p62, an essential autophagy
receptor, is markedly elevated in APP/PS1 mice due to
impaired neuronal autophagic flux. Overexpression of p62
regulates TNF-a signaling through its interaction with RIPK1,
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contributing to neuronal death in AD (Xu etal, 2021a).
Accumulation of autophagy-related proteins, including p62,
has also been observed in microglial cells within the
hippocampus of aged PDAPP-J20 mouse models of AD,
associated with prolonged exposure to AR peptides (Pomilio
et al., 2020).

Autophagic dysfunction is induced by the accumulation of
microtubule-associated protein tau (MAPT) in HsMAPT
transgenic mice, which exacerbates tau aggregation, leading
to synaptic and behavioral dysfunction. Tau accumulation
suppresses autophagy flux by disrupting the formation of the
IST1-regulated ESCRT-IIl complex, which is required for
autophagosome-lysosome fusion. Up-regulation of IST1
facilitates autophagic clearance of insoluble tau, thereby
improving synaptic plasticity and ameliorating cognitive deficits
in HSMAPT mice (Feng et al., 2020).

Differential expression of several autophagy-related genes
(ATGs) has been demonstrated in the brains of AD mice.
Analysis has shown that the expression of genes encoding the
autophagy kinase complexes BECN1-PIK3C3 and ULK1/2-
FIP200 is significantly down-regulated in the parahippocampal
gyrus of 5xFAD mice, while deletion of NRBF2, a component
of the BECN1-PIK3C3 complex that also interacts with
ULK1/2-FIP200, leads to reduced autophagic clearance of A
in the hippocampus and cognitive impairment (Lachance
et al.,, 2019). DEF8 is a member of the Rubicon protein family
implicated in the final step of autophagy and the
endolysosomal pathway. Its gene expression is altered in AD
models along with other ATGs, which present as reduced
transcriptional levels of DEF8 mRNA but increased protein
levels of DEF8 in 5xFAD mice (Leyton et al., 2021).

Amyloidosis  precipitates dysfunction in mitochondrial
biogenesis and dynamics in APP/PS1 murine models.
Concurrently, AB pathology prompts the early induction of
both autophagy and mitophagy, mirroring the up-regulation of
autophagic processes observed in the early stages of AD in
humans (de la Cueva et al., 2022).

Defective CMA is also observed in various AD models
(Caballero etal., 2021; Wang & Lu, 2022). Notably, CMA
activity is inhibited in hTauP301L AD mice, whereas neuronal
loss of CMA significantly increases the accumulation of
phosphorylated tau, APP CTFs, and AB42 peptides in 3xTg
mice. Conversely, chemical activation of CMA improves
behavior and neuropathology in PS1 mice with frontotemporal
dementia-related proteotoxicity (Bourdenx et al., 2021).

The role of dysfunctional autophagy in the pathogenesis of
Drosophila models is similar to that in mammalian systems.
Reduced levels of Atg1 or Atg18 increase neurotoxicity in
Drosophila overexpressing AB42, whereas knockdown of Atg5
or Atg12 significantly mitigates amyloid accumulation,
suggesting a dual nature of autophagic pathway components
involved in AD progression (O’Keefe & Denton, 2018).

TARGETING AUTOPHAGY IN THE TREATMENT OF AD
MODELS

Substantial efforts have been made in the development of
effective pharmacological interventions to slow or reverse the
progression of AD (Jucker & Walker, 2023; Long & Holtzman,
2019; Sose etal., 2023; Thakral et al., 2023). Nonetheless,
drugs currently approved by the US FDA for the treatment of
AD exhibit limited efficacy and pronounced inter-individual
variability (Knight etal., 2018). Accumulating evidence
highlights the potential of autophagy-mediated degradation of
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amyloid and tau pathologies, as well as impaired organelles,
as a promising therapeutic approach for AD. Autophagy-
stimulating strategies to ameliorate neuropathology have been
extensively studied in AD animal models. Although many
novel therapies, such as immunotherapy and gene therapy,
have emerged as potential options for AD intervention in
preclinical trials, small molecule autophagy stimulators are still
preferred due to their relatively high bioactivity and proficiency
in crossing the blood-brain barrier (BBB) (Zhang et al., 2021b).
Endogenous genes and components involved in the regulation
of autophagy in AD have also been screened, with their
therapeutic effects verified in many animal studies, identifying
potential autophagy modulating targets for the development of
agonists or antagonists for the treatment of AD. The following
section summarizes the performance of recently discovered
autophagy-stimulating interventions used in the treatment of
AD and introduces their possible underlying mechanisms.

Pharmacological interventions

Most autophagy-stimulating agents studied in AD animal
models enhance autophagy by inhibiting mTOR or activating
AMPK signaling pathways (Table 3). However, mTOR and
AMPK may also be dispensable targets for autophagy
induction.

Current research indicates that caloric restriction and its
mimetics, including compounds such as resveratrol,
spermidine, rapamycin, metformin, and curcumin, exert
significant effects on autophagic modulation (Yang & Zhang,
2020). Rapamycin, also known as sirolimus, is a well-
described autophagy stimulator through inhibition of mTOR.
Administration of rapamycin in hTauP301S mice alleviates
amyloidosis and tauopathies and improves cognitive function
(Yang & Zhang, 2020). Resveratrol, a natural polyphenol
found in grape skins and seeds, induces autophagy by
controlling  sirtuin 1 (SIRT1)-mediated transcriptional
regulation or AMPK/mTOR-dependent signaling pathways,
leading to a reduction in amyloid deposition in the brains of
APP transgenic mice and improvement in memory in
ovariectomized AD rats (Kou & Chen, 2017). Spermidine, a
small endogenous polyamine required for cell proliferation,
differentiation, and apoptosis, activates autophagy by
modulating Beclin-1. Oral administration of spermidine in
APP/PS1 mice reduces neurotoxic soluble AR expression and
attenuates AD-associated neuroinflammation (Freitag et al.,
2022). Metformin, a biguanide compound widely used in the
treatment of type 2 diabetes, induces autophagy via activation
of AMPK and inhibition of mTORC1. Notably, metformin
induces CMA via activation of the TAK1-IKKa/B signaling
pathway, leading to the phosphorylation of Hsc70. In APP/PS1
mice, metformin-mediated activation of CMA potently reduces
AB plaque accumulation in the brain and ameliorates
molecular and behavioral AD phenotypes (Xu et al., 2021b).
Curcumin, a natural polyphenolic compound extracted from
Curcuma longa, enhances autophagy by suppressing the
PI3K-Akt-mTOR signaling pathway. Curcumin treatment in
APP/PS1 mice significantly reduces amyloid aggregation and
improves memory deficits (Salehi et al., 2019).

Lithium is an antipsychotic drug that induces autophagy by
activating AMPK. Lithium treatment significantly ameliorates
tauopathies in 3xTg AD mice but shows no significant
inhibitory effects on tau phosphorylation in clinical trials
(Matsunaga etal., 2015). Lychee seed fraction-enriched
polyphenol (LSP), reported to have anti-neuroinflammatory



Table 3 Summary of autophagy-stimulating agents with therapeutic potential in Alzheimer’s disease (AD) animal models

Compound Mechanism of action Pharmacological activity AD animal model Reference
Reduces AR deposition and
Rapamycin mTOR inhibition tauopathies, improves cognitive hTauP301S mice Yang & Zhang, 2020
dysfunction
s Reduces AR deposition APP transgenic mice
Resveratrol mT.OR.lnhlbmon and/or AMPK . . Ovariectomized AD  Kou & Chen, 2017
activation Improves cognitive dysfunction rats
Reduces neurotoxic soluble AB,
Spermidine modulation of Beclin-1 attenuates AD-associated APP/PS1 mice Freitag et al., 2022
neuroinflammation
‘Ind.uclzl.ng autophagy via T“TQR Reduces AB deposition and
. inhibition and AMPK activation; . . . .
Metformin ) . tauopathies, ameliorates behavioral ~APP/PS1 mice Xu et al., 2021b
Inducing CMA via TAK1-IKKa/
AD phenotypes
pathways
Curcumin mTOR inhibition Reduces AB aggregation, Improves  »oppg 1 mice Salehi et al., 2019
memory deficits
Lithium AMPK activation and GSK3 inhibition Ameliorates tauopathies 3xTg AD mice Matsunaga et al., 2015

Lychee seed fraction
enriched polyphenol
(LSP)

Oleuropein
Carbamazepine

Magnolol
Hederagenin (HD)
Bergaptene (BG)
Tadalafil (TAD)

Trehalose

LH2-051

HEP14 and HEP15

Lactulose
Anthocyanin-rich
blueberry extracts (BE)
and protocatechuic
acid (PCA)
Cannabidiol (CBD)

UMI-77
Melatonin

B-Asarone and icariin

Kaempferol and
rhapontigenin

AMPK activation

mTOR inhibition and AMPK activation

Activating autophagy in an mTOR-

dependent or -independent manner
Activation of AMPK/mTOR/ULK1

pathway
PPARa/TFEB activation

Modulation of PI3K/Akt, Wnt/B-catenin

and AMPK/mTOR pathways

TFEB activation

DAT-TFEB axis regulation

PKC/TFEB activation
Not reported

Not reported

Not reported

Ameliorates cognitive dysfunction

Reduces A deposition, improves
synaptic plasticity
Reduces AR deposition, improves

cognitive dysfunction
Reduces AB deposition, improves

cognitive impairment

Improves cognitive dysfunction
Reduces AR deposition and
"tauopathies, improves cognitive
dysfunction

Reduces AR deposition and
tauopathies, improves behavioral
deficits

Reduces AB deposition, improves
cognitive dysfunction

Reduces A deposition

Improves cognitive dysfunction

Reduces neuronal damage

Improves the immune response

Activation of mitophagy via the ATG5 Reverses the inflammatory response

pathway
Modulation of mitophagosome-

lysosome fusion

Mitophagy stimulation

Mitophagy stimulation

and improves cognitive dysfunction

Reduces AR deposition and improves

cognitive dysfunction

Reduces A deposition, improves
cognitive impairment

Ameliorates AB and Tau pathologies,
forestalls memory deficits

APP/PS1 mice

TgCRND8 mice
3xTg AD mice

APP/PS1 mice
APP/PS1 mice

STZ-induced AD mice

AB-injected mice

APP/PS1 mice

APP/PS1 mice
APP/PS1 mice

APP/PS1 mice

APP/PS1 mice
APP/PS1 mice

5%FAD mice
APP/PS1 mice

3xTg AD mice

Qiu et al., 2020

Nediani et al., 2019
Lietal., 2013

Wang & Jia, 2023
Xie et al., 2023

Salem et al., 2021

Pupyshev et al., 2022

Yin et al., 2023

Lietal., 2016
Lee et al., 2021

Li et al., 2022

Hao & Feng, 2021
Cen et al., 2020

Chen et al., 2021a
Wang et al., 2021

Xie et al., 2022

properties in AD,

ameliorates cognitive dysfunction by
promoting LRP1/AMPK-mediated autophagy in APP/PS1 mice
(Qiu etal., 2020). Oleuropein, extracted from green olives,
stimulates autophagy by inhibiting mTOR and activating

AMPK/mMTOR pathways

catenin,
Magnolol, an active
officinalis,
cognitive impairment

ingredient

in APP/PS1

(Salem etal.,
isolated from Magnolia
decreases amyloid pathology and
mice by promoting

2021).

improves

AMPK. Notably, oleuropein treatment significantly reduces AB
deposition and improves synaptic plasticity in TJCRND8 mice
(Nediani etal.,, 2019). Carbamazepine, an FDA-approved
antiepileptic drug that induces autophagy through mTOR-
dependent or independent pathways, promotes autophagic
clearance of amyloid plaques and cognitive improvement in
3xTg AD mice (Li et al., 2013). Bergaptene (BG), found in a
variety of medicinal plants, and phosphodiesterase 5 inhibitors
such as tadalafil (TAD) exhibit neuroprotective effects. Of
note, administration of TAD or BG in streptozotocin (STZ)-
induced AD mice ameliorates tau pathology, amyloidosis, and
associated cognitive  deficits  via modulation  of
neuroinflammation and crosstalk between PI3K/Akt, Wnt/B-

autophagy through activation of the AMPK/mTOR/ULK1
signaling pathway (Wang & Jia, 2023). Hederagenin (HD), a
triterpene compound isolated from a variety of foods,
ameliorates cognitive impairment and pathological changes in

APP/PS1 mice by enhancing PPARa/TFEB-mediated
autophagy (Xie etal, 2023). Trehalose, a natural
disaccharide, activates autophagy by modulating the

transcription factor TFEB. Notably, trehalose treatment in AB-
injected mice prolongs autophagy induction and transcriptional
activation of autophagy-related genes, prevents amyloid
deposition and tau pathology, and effectively reverses
behavioral deficits, with the best results achieved in
combination with rapamycin (Pupyshev etal., 2022). The
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small-molecule compound LH2-051, an inhibitor of the
dopamine transporter (DAT), mediates lysosome biogenesis
by negatively regulating TFEB activity. Administration of LH2-
051 significantly promotes the clearance of AB aggregates
and improves memory function in APP/PS1 mice (Yin etal.,
2023). As small-molecule compounds isolated from Euphorbia
peplus Linn, HEP14 and HEP15 regulate lysosomal
biogenesis through protein kinase C (PKC)-dependent TFEB
activating pathways. These PKC activators can facilitate
clearance of AR accumulation in APP/PS1 mouse brains (Li
et al., 2016). The prebiotic lactulose, an analog of trehalose,
ameliorates cognitive deficits in AD mice through autophagy
and CMA pathways, and exhibits better inducing effects than
trehalose in enhancing synaptic protein expression level (Lee
etal.,, 2021). Anthocyanins, a group of naturally occurring
phenolic compounds, can also promote autophagy.
Anthocyanin-rich blueberry extract and protocatechuic acid, a
major anthocyanin metabolite, alleviate the AB-induced
inhibitory effects of autophagy and reduce neuronal damage in
APP/PS1 mice (Li et al., 2022). Cannabidiol (CBD), a natural
component isolated from the cannabis plant, exerts
neuroprotective effects in AD, with treatment in APP/PS1 mice
significantly improving immune response and autophagy (Hao
& Feng, 2021).

In addition, emerging evidence suggests that small
molecules enhancing neuronal aggregation and mitophagy
may also be considered as therapeutic targets for AD (Zeng
et al., 2022). UMI-77, an established BH3 mimetic, selectively
targets MCL-1, a receptor that directly interacts with LC3A to
promote mitophagy. UMI-77 induces mitophagy via the ATG5
pathway and significantly reverses the inflammatory response
and cognitive deficits in APP/PS1 mice (Cen etal., 2020).
Melatonin, a hormone secreted by the pineal gland, exerts
protective effects in mitochondria-related diseases and
neurodegenerative disorders, attenuating neurotoxicity via
regulating the aberrant activation of autophagy mediated by
cyclin-dependent kinase 5 (CDK5) (Feng etal., 2013; Su
etal.,, 2015). Oral treatment with melatonin in 5xFAD mice
improves mitophagy by enhancing mitophagosome-lysosome
fusion, attenuating amyloid pathology and cognitive deficits
(Chen et al., 2021a). B-Asarone is an essential component of
Acorus tatarinowii Schott volatile oil and icariin is a flavonoid
constituent of Epimedium species exhibit pharmacological
effects in neurodegenerative diseases, inhibiting AR
deposition and reversing cognitive dysfunction by promoting
mitophagy in APP/PS1 mice (Wang etal., 2021). Recent
combined usage of machine learning and cross species
validation have identified several novel mitophagy stimulators
for AD treatment. Among the Al-selected candidates,
kaempferol and rhapontigenin induce mitophagy, restore
memory deficits, and abrogate pathologies in 3xTg AD mice
(Xie et al., 2022).

Endogenous autophagy modulators in AD
Recent investigations have revealed a number of endogenous
genes and components, including microRNAs (Zhang et al.,
2022a), transcription factors, and cytosolic and membrane
proteins, involved in the regulation of autophagy. These
components, as verified in AD animal studies, are posited as
prospective therapeutic targets for AD intervention via
modulation of autophagy (Kou etal., 2020; Martini-Stoica
et al., 2016; Salminen et al., 2013; Zhang et al., 2021a).
UVRAG mediates the recognition and fusion of
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autophagosomes and lysosomes (Xu et al., 2021a). Notably,
its transcriptional down-regulation in AD leads to impaired
autophagic flux and neuronal necroptosis, while its
overexpression in APP/PS1 AD mice significantly rescues
learning and memory deficits and reverses neuronal
necroptosis (Xu et al., 2021a). Overexpression of UBE4B, a
miR-9 target gene, promotes the autophagic degradation of
oligomeric tau in tau-BiFC mice (Chen etal., 2021b). The
microRNAs miR-331-3p and miR-9-5p, which target the
autophagy receptors Sgstm1 and Optn, respectively, display
lower expression in early-stage AD mice but higher expression
in late-stage AD mice. Inhibition of late-stage miR-337-3p and
miR-9-5p improves mobility and cognitive dysfunction by
enhancing autophagic clearance of AR in APP/PS1 mice
(Chen et al., 2021b; Subramanian et al., 2021).

The peroxisome proliferator-activated receptor alpha
(PPARA/PPARGa) transcription factor regulates autophagic
activity in the nervous system. Pharmacological activation of
PPARA with gemfibrozil or Wy14643 promotes AP clearance
and reverses memory impairment in APP/PS1 mice by
inducing autophagosome biogenesis (Luo et al., 2020; Raha
et al., 2021). Activating transcription factor 6 (ATF6), a key
sensor of ER stress, and cystathionine y-lyase (CTH), which
mediates endogenous signal H2S production, are both
reduced in AD models. ATF6 enhances autophagy via the
regulation of CTH expression, thereby rescuing memory
impairment in APP/PS1 ATF6 knockout mice (Zhang et al.,
2022b). Myocardin and myocardin-related transcription factor-
A (MRTF-A), both co-activators of the serum response factor
(SRF) that regulates the transcription of genes involved in
cytoskeletal organization and muscle cell differentiation, are
down-regulated in AD models. Overexpression of MRTF-A
reverses AB-induced autophagy deficits by targeting the miR-
1273g-3p/mTOR axis and protects against neuronal apoptosis
in Tg2576 mice (Zhang et al., 2022¢).

SIRT5 is a mammalian sirtuin that removes lysine acylation
from proteins and is often considered an autophagy inducer.
SIRT5 expression is impaired in APP695/PS1dE9 mice, while
overexpression of ectopic SIRTS suppresses microglial and
astrocyte activation and oxidative stress-induced damage and
apoptosis in mice (Wu etal., 2021). Transmembrane
glycoprotein NMB (GPNMB) is highly expressed in the brains
of AD mice. Overexpression of GPNMB enhances autophagic
clearance of AR via suppression of mTOR signaling and
ameliorates cognitive dysfunction in APP/PS1 mice (Zhu et al.,
2022). IKKB, a constituent of the IkB kinase complex,
modulates activity of the NF-kB pathway, which is intricately
linked to inflammatory processes. Inhibition of IKKB increases
AB accumulation and RIPK1-mediated necroptosis via
suppression of autophagy in APP/PS1 mice, while IKKB
overexpression restores impaired autophagy caused by AR
and mitigates tau pathology in these AD models (Wang et al.,
2022). Ryanodine receptors (RyanRs) with increased basal
activity in AD inhibit autophagy via repression of the
AMPK/ULK1 pathway mediated by activated calcineurin. The
RyanR2-E4872Q mutation, which reduces basal activity of
RyanR2 in APPKI and APP/PS1 mice, markedly disinhibits the
autophagic pathway for amyloid clearance and rescues AD
phenotypes (Zhang et al., 2023). The CCZ1-MON1A complex
functions as the guanine nucleotide exchange factor (GEF) for
RAB7, a small GTPase essential for the maturation of
endosomes and autophagosomes. The active form of RAB7 is
decreased in AD, accompanied by impaired CCZ1-MON1A



activity, whereas overexpression of CCZ1-MON1A increases
RAB7 activity, enhances autophagosome maturation,
promotes autophagic degradation of AR, and alleviates
cognitive dysfunction in 3xTg AD mice (Cai etal., 2022).
Lysosomal two-pore segment channel 2 (TPCN2/TPC2)
mediates the excessive release of Ca®" that causes
autophagy-lysosomal pathway impairment in AD. Genetic
knockdown or pharmacological inhibition of the TPCN2
channel in 5xFAD mice significantly reduces amyloid
accumulation and ameliorates cognitive deficits by restoring
autophagy-lysosomal pathway function (Tong etal., 2022).
The metabotropic glutamate receptor 5 (mGIuR5) is a member
of the G protein-coupled receptor (GPCR) superfamily,
implicated as an extracellular scaffold for AR oligomers.
mGIuR5 is highly expressed on the cell surface in AD and
associated with impaired autophagic flux, whereas
pharmacological or genetic inhibition of mGIuR5 signaling
facilitates ULK1 activation, thereby activating autophagy in
APPswe/PS1AE9 and 3xTg-AD mice (Abd-Elrahman et al.,
2018).

Stem cell stimulations

Stem cell therapy has shown efficacy in enhancing memory
and cognitive functions in animal models of AD, with extensive
preclinical research dedicated to elucidating the mechanisms
involved (Chang et al.,, 2024; Temple, 2023). Transplanted
bone marrow-derived mesenchymal stem cells (BMMSCs)
stimulate neurogenesis and inhibit apoptosis, regulated by
crosstalk between apoptosis and autophagy (Qin etal.,
2021a). BMMSCs can activate autophagy by increasing the
expression of BECN1/Beclin-1 and  LC3-ll-positive
autophagosomes in the hippocampus of APP/PS1 mice,
thereby ameliorating AB accumulation, hyperphosphorylated
tau pathology, and cognitive deficits (Qin et al., 2021b).

CONCLUSIONS

Neurodegenerative diseases are characterized by the
accumulation of insoluble and toxic protein aggregates in the
brain. Although therapeutic interventions targeting amyloid
and tau pathologies in AD have been investigated for many
years, no effective strategies for curing AD have been
discovered in clinical trials (Knight etal., 2018). Recent
research suggests that autophagy dysregulation may play a
critical and complex role in the pathogenesis of AD. Various
mutated genes relevant to AD risk, including PSEN1 and
PSEN2, are implicated in the modulation of autophagy (Deng
etal.,, 2022). Autophagy impairment is positively correlated
with AB production and tau pathology, with AB deposits known
to further exacerbate impairment of autophagic flux (Fleming
et al., 2022) and autophagy-stimulating interventions found to
reverse synaptic plasticity and cognitive function in AD (Zhang
et al., 2021b). These findings suggest a dual functional role for
autophagy, both upstream and downstream of AR metabolism
and tau pathology. Therefore, targeting autophagy to enhance
clearance of toxic protein aggregates is a potential approach
for the treatment of AD. Various stimulators and endogenous
targets of autophagy have been discovered in recent years
(Kou etal., 2020; Salminen etal.,, 2013), although their
underlying mechanisms and therapeutic potential remain to be
verified at the preclinical stage in AD animal models. Animal
studies are essential for bridging the gap between basic and
clinical drug-screening applications (Chen & Zhang, 2022),
thus streamlining the translation of drug candidates into

clinical AD treatment. AD transgenic mice show similar
neuropathologies and autophagy impairments as AD patients
(Nakai et al., 2021), offering valuable models for investigating
the molecular mechanisms of autophagy involved in AD
progression and autophagy-stimulating strategies in the
treatment of AD.

AD is a complex multifactorial disease, and research into
appropriate therapeutics still faces many challenges. As
classic autophagy-stimulating agents mainly regulate
autophagy through mTOR inhibition (Yang & Zhang, 2020),
the discovery of novel mTOR-independent drug targets is
imperative. Elucidating the molecular basis of endogenous
autophagy modulation in AD may also help to achieve precise
autophagy regulation in the nervous system (Kou et al., 2020).
For autophagy modulators that cannot cross the BBB,
nanocapsule applications may be an effective approach to
achieve targeted brain therapy (Zhang etal., 2017b). In
addition, more reliable means of monitoring in vivo autophagy
flux need to be investigated for more precise modulation of
autophagy for AD treatment.
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