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Abstract:  
This paper focuses on modeling the tribological properties of AZ31-SiC 
composite using an artificial neural network (ANN) fabricated through the 
stir casting method. The twenty-seven tests were performed with three 
loads (10 N, 15 N, and 20 N), three sliding speeds (0.5 m/s, 1.0 m/s, and 1.5 
m/s), and three sliding distances (500 m, 750 m, and 1000 m) on wear 
testing machine and are used in the formation of training sets of ANN. Using 
the wear test data, Taguchi, Analysis of Variance (ANOVA), and regression 
analysis were carried out to determine the effect of the control parameters 
on the wear and coefficient of friction (COF). The experimental results 
demonstrate that the wear rate increases with an increase in load and 
distance and decreases with an increase in velocity. In addition, an 
alternative method is proposed to predict the wear and COF using ANN 
modeling with single and multi-hidden layer techniques. With good training, 
ANN gives accurate and close results to the experimental results. The results 
obtained using ANN modeling have a percentage of error of 4.71% and 
5.79% for wear and COF respectively, when compared to experimental 
values. This prediction process saves time and costs for the manufacturer.  
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1. INTRODUCTION   
 

Composite material is a mixture of two or more 
materials or phases of the same material, insoluble 
in one another, possessing properties that are 
superior to any of the component materials [1, 2]. 
The demand for magnesium alloys has been 
increasing due to their small weight and excellent 
cast-ability compared to aluminum alloys [3]. 
Nevertheless, magnesium alloys have 
comparatively lower mechanical properties and 
wear resistance [4]. The wear limitation of 
magnesium can be improved by adding ceramic 
materials to the base metal [5]. Magnesium metal 
matrix composites have enhanced properties 
compared to magnesium alloys, like high stiffness, 
high specific strength, and also improved wear 
resistance [6, 7]. In general, silicon carbide 

particles are the most favorable reinforcement due 
to their high hardness and low cost [8]. The tensile 
and wear properties of composites are also 
effectively improved by using micro silicon carbide 
particles due to their easy dispersion during the 
manufacturing process [9, 10]. The addition of SiC 
to AZ91 up to 2%, increases the mechanical 
properties and thermal stability and decreases 
beyond 2% [11]. The decrease in ultimate tensile 
strength, and increase in yield strength and 
hardness is observed in AZ91 alloy SiC composite, 
with an increase in percentage of reinforcement 
[12, 13] and no interfacial reaction is observed at 
the interface of matrix and reinforcement [14]. 
From the above literature, it was found that the 
magnesium alloy composites with silicon carbide 
reinforcement of 3% or above exhibited excellent 
mechanical properties. The influence of control 
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parameters on wear and coefficient of friction for 
magnesium-based composite is predicted using 
Taguchi, analysis of variance (ANOVA), and 
regression analysis [15-18]. The Artificial Neural 
Network (ANN) models are used for the prediction 
of optimization of die casting parameters of AZ91D 
alloy and also discussed the higher efficiency of 
ANN model on prediction of significant factors [19]. 
The optimization of machining parameters using 
simulated annealing and pattern search is 
addressed [20].  The methodology for the ant lion 
optimization algorithm was proposed [21].  The 
optimization of wear for the aluminum alloy with 
SiC-Gr reinforcements was discussed by using the 
antlion algorithm [22].  A multi-objective 
optimization algorithm for solving engineering 
problems by using an Ant lion optimizing algorithm 
was reported [23]. Optimization of AZ31-SiC 
Composite using a whale optimization algorithm, 
particle swarm optimization, and fire fly algorithm 
[24]. Few attempts have been made to forecast 
magnesium-based composites' wear and 
coefficient of friction. Still, a considerable amount 
of ambiguity exists in the prediction of wear 
parameters using computational methods. Hence, 
the focus is made on this present work on the ANN 
modeling with single and multi-layer to predict the 
wear and coefficient of friction for AZ31 
magnesium alloy SiC composite.  

The present study is to investigate a well-
trained network is expected to be a helpful and 
powerful tool for neural network modeling to 
predict the wear and COF of AZ31-SiC metal matrix 
composite. The rest of the paper is followed as the 
second section describes the experimental 
procedure and the third section presents 
experimental results. The fourth section presents 
the simulation results of ANN modeling with single 
and multi-hidden layer perception. The fifth 
section depicts the confirmation of experiments. 
The conclusion part is described in the sixth 
section. 

 
2. MATERIALS AND METHODS 

 
2.1 Materials and Manufacturing of Composites 

 
Composites are fabricated by using the stir 

casting method. The AZ31 material was loaded into 
a graphite crucible and heated to a temperature of 
7500C to form a pool. An argon gas environment is 
provided during heating to avoid oxidation. The 
formation of the vortex was done by a stirrer with 
a graphite impeller rotating at a speed of 700 rpm 

and the addition of SiC reinforcement was done to 
have a uniform distribution. The liquid metal was 
dispensed into a preheated mold, and the 
homogenization process was done. The properties 
of AZ31 magnesium alloy reinforced with SiC at 1%, 
2%, 3%, and 4% are tabulated in Table 1. The focus 
is made on AZ31- 4%SiC composite for the analysis 
due to its enhanced properties [25] presented in 
Table 1. 

 
Table 1.  Properties of AZ31-SiC composites 

 
2.2 Wear Test Experimentation 

 
The ASTM G-99 standard composite specimens 

of AZ31-SiC are used for conducting experiments 
on a wear testing machine (Ducom) to determine 
the tribological properties. The composite pins of 8 
mm diameter and 35 mm length are polished with 
1200 grit of abrasive and are pressed against the 
counter body of the EN31 steel disc. The applied 
load is 50 N, the area of the pin in contact is 50.24 
mm2, and the normal pressure acting on the pin is 
0.995 MPa.  The EN31 steel disc is harder than the 
developed composites, which is supposed to be a 
dominating factor for forecasting tribological 
behavior. The steel disc and pin are cleaned with 
acetone before each wear test to avoid the 
presence of non-desirable deposits. The wear tests 
were conducted for various control parameters of 
load (10, 15, and 20 N), velocity (0.5, 1, and 1.5 
m/s), and sliding distance (500, 750, and 1000 m) 
with a full factorial design of experiments. The 
mass loss of the composite was calculated with a 
micro-weighing machine for each wear test. The 
wear rate (mg) of the composite is determined by 
the weight loss of the pin divided by the sliding 
distance. Taguchi, ANOVA, and Regression analysis 
were carried out for the wear results [26, 27]. The 
wear test data is used to form ANN sets as testing 
data(20%) and training data(80%). ANN modeling 
with single and multi hidden layer techniques is 
used for the prediction of wear and COF for various 
operating conditions. 

 
 

Description 0% 1% 2% 3% 4% 
Density (kg/m3) 1.8 1.811 1.812 1.825 1.833 

Hardness (HRC) 69.56 70.25 80.97 92.5 98.89 

Y.S. (MPa) 65.09  72.05  86.31  92.6  88.44 

U.T.S (MPa) 102.3  114.5  128.1  178.4  170.7  

Comp.Strength 
(MPa) 

173.4  194.3  313.3  365.5  380.2  
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2.3 ANN Modeling of Tribological Parameters 
Optimization 

 
Artificial Neural Network is a mathematical 

modeling technique used to correlate the 
experimental data that are difficult to simulate 
with conventional models [28-30]. ANN is 
successfully utilized by researchers for predicting 
the optimum physical, mechanical, and wear 
properties [31]. The ANN model consists of three 
layers which are an input layer, a hidden layer, and 
an output layer. In this present work, 27 
experimental data are divided into experiments 
data of 21 and training experiments data of 6. 
Among the 6 experiment data, ANN splits into 
three groups: Training (60%), independent testing 
(20%), and validation (20%). For the validation of 
the trained network, the testing set of 6 data was 
used. In the process of prediction of wear for the 
composite, modeling of the network is carried out 
with the variation of training function, transfer 
function, number of layers, and number of neurons. 
A prime flow chart is used to follow single and 
multi hidden layers for modeling is presented in Fig. 
1.  

 

Fig. 1. ANN architecture 
 

The ANN model with back propagation learning 
algorithm was more popular in recent time and is 
specifically used for engineering applications [32]. 
In this work, the ANN have been modeled with 
Feed Forward Back Propagation (FFBP) and 
Cascade Forward Back Propagation (CFBP) 
networks and Layer Recurrent (LR) networks with 
the selection of neurons and layers by trial and 
error method. Accordingly the ANN structure was 
optimized to identify the best process parameters 
for wear test [33] is shown in Fig. 2. 

 

Fig. 2. Optimization flow chart for SHL and MHL 
 
3.  RESULTS AND DISCUSSIONS 
 
3.1 Tribological Performance Charecterisitcs of 

AZ31/SiC composite 
 
The wear test experiments for wear and COF 

for various loading conditions of load, speed, and 
sliding distance were conducted based on the full 
factorial design of experiments, and the results are 
presented in Table 2. The experimental 
investigation of the composite demonstrates that 
the minimum wear is noticed at a load of 10 N. The 
wear increases with the load increases due to deep 
penetration resulting in a higher material removal 
rate depicted in Fig. 3. The wear is proportional to 
the sliding distance, load, and inversely with the 
velocity.  The influence of the load, speed, and 
sliding distance on wear and COF is analyzed using 
MINITAB software. This analysis is done for wear 
and COF separately using MINITAB software. 
ANOVA is used to study the effect of discrete 
process factors. The ANOVA analysis was 
employed at a confidence interval of 0.95 or a p-
value of 0.05. It implies that the p-value resulting 
from any parameter ≤ 0.05 is significant.  The 
conformity of the significance of individual 
parameters was accomplished with the aid of the 
main effects plot. 
 
Table 2. Design of experiments using L27 orthogonal 
array 

S. No 
Load 
(N) 

Velocity 
(m/s) 

Distance 
(m) 

Wear 
(mg) 

COF 

1 10 0.5 500 4.053 0.390 

2 10 0.5 750 4.514 0.470 

3 10 0.5 1000 5.803 0.480 

4 10 1 500 3.777 0.380 

5 10 1 750 4.237 0.420 

6 10 1 1000 4.974 0.450 
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Table 2. Design of experiments using L27 orthogonal 
array - Continuation of the Table from the previous page 

7 10 1.5 500 3.961 0.330 

8 10 1.5 750 3.869 0.390 

9 10 1.5 1000 5.159 0.460 

10 15 0.5 500 4.974 0.467 

11 15 0.5 750 5.896 0.493 

12 15 0.5 1000 6.356 0.473 

13 15 1 500 4.882 0.440 

14 15 1 750 5.619 0.460 

15 15 1 1000 5.896 0.487 

16 15 1.5 500 4.698 0.433 

17 15 1.5 750 4.974 0.453 

18 15 1.5 1000 5.619 0.473 

19 20 0.5 500 5.435 0.490 

20 20 0.5 750 5.988 0.510 

21 20 0.5 1000 7.185 0.530 

22 20 1 500 4.974 0.470 

23 20 1 750 5.435 0.495 

24 20 1 1000 6.54 0.505 

25 20 1.5 500 4.514 0.485 

26 20 1.5 750 4.882 0.465 

27 20 1.5 1000 6.264 0.490 

 

 

Fig. 3. Main effects plot for data means of wear  
 

The ANOVA results obtained for wear and COF 
are presented in Table 3.  These results reveal that 
the highest contributing parameter for wear is the 
distance of 45.72%, followed by a load of 36.83% 
and 11.21% of velocity and the highest 
contributing parameter for COF is the distance of 
52.13%, followed by a load of 27.52% and 9.41% of 
velocity [28,29].  

The regression equation for wear is obtained 
for the corresponding R, and R-Adjusted values of 
94.18% and 92.43%, and for COF is obtained for 
the corresponding R and R-Adjusted values of 
89.03% and 86.74%. The obtained regression 
equations are shown in Eq 1 and 2 [30]. The R-
coefficient values are close to each other, which 
indicates that the relations between experimental 

parameters were well predicted and are 
significant. The values of interaction terms and 
higher-order terms are close to zero, and hence 
the model becomes linear. 

 Wear =  1.999 + 0.1208 L - 0.696 V + 0.002784 D        (1) 

 COF =  0.3060 + 0.007444 L - 0.03600V + 0.000103 D   (2) 
 

Table 3.  ANOVA results for wear and COF 

Source DF SS MS F 
P-

Value 

% of 
Contri-
bution 

Wear 

Load 2 0.2925 0.1462 67.82 0.00 39.4 

Velocity 2 0.0774 0.0387 17.96 0.00 10.4 

Distance 2 0.3277 0.1638 75.97 0.00 44.2 

Error 20 0.0431 0.0021   5.8 

Total 26 0.7409    100  

COF 

Load 2 0.0219 0.0109 48.07 0.00 52.5 

Velocity 2 0.0058 0.0029     12.76 0.00 13.9 

Distance 2 0.0094 0.0047     20.68 0.00 22.6 

Error 20 0.0045 0.0002   10.93 

Total 26 0.0417    100 

 

3.2  Simulation results of ANN modeling 
 
3.2.1 Simulation results of ANN modeling with 

Single Hidden Layer Perception 
 

The data set for Networks 1 to 18 framed with 
various inputs are tabulated in Table 4. The 
training function is considered as Trlm (Trainlm 
Transfer Function) for all the considered networks. 
The Network with the least error for wear and 
coefficient of friction is considered optimal. Purelin 
Transfer Function (Prln) transfer function exhibits a 
better error than Tan-Sigmoid and Log-Sigmoid as 
shown in Fig. 4. The next step is to optimize the 
type of network and number of neurons by fixing 
the transfer function as Prln. The data set for 
Networks 19 to 36 for wear and coefficient of 
friction are also tabulated in Table 4. The variation 
in the error from the networks 19-36, reveals that 
the CFBP network with 9 numbers neurons 
exhibited minimum error shown in Fig. 5. Hence, 
network number 2 was considered the best 
network for a single layer for wear and coefficient 
of friction with an error of ±6.10% and ±5.75%.  
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Table 4. Optimization of network type and number of 
layers  

Run Network  Neurons 
Transfer  
function 

Wear COF 

Error (%) Error (%) 

1 CFBP 9 Logs 13.43 13.20 

2 CFBP 9 Prln 6.10 5.75 

3 CFBP 9 Trsg 38.29 7.38 

4 FFBP 9 Logs 6.64 8.77 

5 FFBP 9 Prln 9.71 7.15 

6 FFBP 9 Trsg 41.70 13.46 

7 LR 9 Logs 15.07 6.94 

8 LR 9 Prln 9.07 7.51 

9 LR 9 Trsg 32.40 6.39 

10 CFBP 10 Logs 21.57 9.28 

11 CFBP 10 Prln 10.10 6.21 

12 CFBP 10 Trsg 29.77 6.38 

13 FFBP 10 Logs 6.46 14.37 

14 FFBP 10 Prln 10.64 7.32 

15 FFBP 10 Trsg 27.87 10.88 

16 LR 10 Logs 12.92 6.17 

17 LR 10 Prln 9.09 6.92 

18 LR 10 Trsg 42.37 7.21 

19 CFBP 7 Prln 8.372 6.386 

20 CFBP 8 Prln 7.836 8.034 

21 CFBP 9 Prln 6.109 5.757 

22 CFBP 10 Prln 8.106 7.216 

23 CFBP 11 Prln 8.391 6.781 

24 CFBP 12 Prln 8.854 7.318 

25 FFBP 7 Prln 11.28 9.675 

26 FFBP 8 Prln 11.61 9.649 

27 FFBP 9 Prln 9.710 7.151 

28 FFBP 10 Prln 10.64 9.322 

29 FFBP 11 Prln 8.789 7.585 

30 FFBP 12 Prln 8.582 7.526 

31 LR 7 Prln 10.01 10.09 

32 LR 8 Prln 8.784 11.51 

33 LR 9 Prln 9.076 7.517 

34 LR 10 Prln 9.09 10.92 

35 LR 11 Prln 9.062 8.900 

36 LR 12 Prln 9.753 10.49 

 
 

 
Fig. 4. Error (%) for SHL-ANN architecture (Network 

Nos. 1−18) for Wear  
 

 
Fig. 5. Error (%) for SHL-ANN architecture (Network 

Nos. 19−36) for Wear 
 

The best validation image for network number 
2 is presented in Fig. 6, and the corresponding 
regression plots are also presented in Fig. 7. The 
dashed line represents the best linear fit. The 
regression plots indicate the training errors, test 
errors, and validation errors. As most of the data 
points were close to the central line, the model 
was considered accurate. The confirmation of 
predicted and test results are closer with an overall 
correlation coefficient of 0.982 as shown in Fig.7 
[34]. 

 

 

Fig. 6. Performance plot of optimized Network (No: 2)  
for SHL-ANN architecture 

 

 

Fig. 7. Regression plot of optimized Network (No: 2) 
for SHL-ANN architecture 
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3.2.2  Simulation results of ANN modeling with 
Multi Hidden Layer perception 

 

Multi-layered network was executed for the 
improvement of the accuracy of predicted results. 
The multi hidden layer network architecture was 
primarily built with 2, 3, and 4 hidden layers with 
Trlm and Prln as the functions. The multi-layered 
data set with 9 number of neurons for Networks 
37 to 45 is tabulated in Table 5.  The corresponding 
error is presented in Fig. 8. The FFBP network with 
three layers is considered accurate from the data 
of networks 37 to 45.  In order to find the optimum 
parameters in multi multi-layered network, 
networks 46 to 66 are considered and 
corresponding errors are tabulated in Table 5. 

 
Table 5. Optimization of network type and number of 
layers (Network 37-45) 

Run Network  
No. of 
Layers 

Neurons 
Wear COF 

Error (%) Error (%) 

37 CFBP 2 9, 9 7.752 7.423 

38 CFBP 3 9, 9, 9 9.299 5.881 

39 CFBP 4 9, 9, 9, 9 10.07 6.825 

40 FFBP 2 9, 9 12.25 6.512 

41 FFBP 3 9, 9, 9 9.844 5.477 

42 FFBP 4 9, 9, 9, 9 8.215 6.035 

43 LR 2 9, 9 11.79 6.630 

44 LR 3 9, 9, 9 8.995 5.484 

45 LR 4 9, 9, 9, 9 8.910 6.962 

46 FFBP 3 9, 9, 1 7.924 6.903 

47 FFBP 3 9, 9, 3 11.691 7.600 

48 FFBP 3 9, 9, 5 8.530 8.088 

49 FFBP 3 9, 9, 7 10.326 7.587 

50 FFBP 3 9, 9, 9 9.177 7.175 

51 FFBP 3 9, 9, 11 8.685 7.032 

52 FFBP 3 9, 9, 13 9.594 6.740 

53 FFBP 3 9, 1, 9 7.481 5.933 

54 FFBP 3 9, 3, 9 7.178 6.564 

55 FFBP 3 9, 5, 9 8.624 6.734 

56 FFBP 3 9, 7, 9 9.087 6.432 

57 FFBP 3 9, 9, 9 8.427 5.947 

58 FFBP 3 9, 11, 9 7.911 6.286 

59 FFBP 3 9, 13, 9 8.962 7.425 

60 FFBP 3 1, 9, 9 10.790 6.263 

61 FFBP 3 3, 9, 9 8.342 6.391 

62 FFBP 3 5, 9, 9 12.901 7.548 

63 FFBP 3 7, 9, 9 6.777 5.526 

64 FFBP 3 9, 9, 9 8.147 6.763 

65 FFBP 3 11, 9, 9 9.883 8.632 

66 FFBP 3 13, 9, 9 9.158 5.806 
 

 
Fig. 8. Error (%) for MHL-ANN architecture (Network 

Nos. 37−45) for Wear 
 

The errors for networks 46 to 66 are presented 
in Fig. 9, revealing that the network (63) with 7-9-9 
neurons was considered better than others with an 
error of 6.777% for the wear rate and 5.526% for 
the coefficient of friction. Therefore, the FFBP 
network with Prln transfer functions and 7-9-9 
neurons is considered to be optimum. The best 
validation image for the network number 63 is 
presented in Fig. 10, and the corresponding 
regression plots are also presented in Fig. 11. The 
dashed line represents the best linear fit. The 
regression plots indicate the training errors, test 
errors, and validation errors. As most of the data 
points were close to the central line, the model 
was considered accurate. The confirmation of -
predicted and test results are closer with an overall 
correlation coefficient of 0.943 [35]. 

 
Fig. 9. Error (%) for MHL-ANN architecture (Network 

Nos. 46−66) for Wear 
 

   
Fig. 10. Performance plot of optimized Network (No: 

63) for MHL-ANN architecture 
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Fig. 11. Regression plot of optimized Network  (No: 

63) for MHL-ANN architecture 
 

The optimized networks of ANN modeling with 
single and multi hidden layer perception are 
tabulated in Table 6. Trlm and Prln act as training 
and transfer functions to predict better results in 
both single and multi hidden layer perception [36]. 
The ANN model delivers the CFBP network with 
single hidden layer perception and the FFBP 
network with multi hidden layer for the prediction 
of better results for wear and COF. 

 

 

Table 6. Best predicted network in SHL-ANN and            
MHL-ANN architectures with Trlm as Train Function 

Network  Layers Neurons 
Transfer 
 function 

Wear COF 

Total  
Error  
(%) 

Total  
Error 
 (%) 

CFBP 1 9 Prln 6.10 5.75 

FFBP 3 7, 9, 9 Prln 6.777 5.526 

 
3.2.3 Confirmation of experiments 
 

In the last stage of the design of the experiment 
i.e., confirmation test, execution of a specific 
combination of the process parameters for wear 
and COF is carried out for validation. The output 
results for a set of control parameters from the 
experiments are compared with the results of 
regression analysis and with the results of ANN 
modeling with single and multi hidden layers. 
These comparison results are tabulated for wear 
and coefficient of friction in Table 7. The deviation 
error for the values from regression analysis and 
ANN are calculated as the percentage of deviation 
and the range of deviation is less than 9%.  The 
results from ANN modeling with multi-layer are 
closer to the experimental values. Hence ANN 
models were confirmed as precise. 

 
Table 7. Confirmatory tests for the wear and COF 

Wear 

Load            
(L) 

Velocity 
(V) 

Distance  
 (D) 

Experimental 
Results 

Wear (mg) 

Prediction 

Regression Single hidden layer Multi hidden layer 

Predicted 
Results 

Deviation 
(%) 

Predicted 
Results 

Deviation 
(%) 

Predicted 
Results 

Deviation 
(%) 

10 0.7 600 4.3902 4.075 7.17 4.1832 4.71 4.2095 4.11 

15 0.9 800 5.4118 5.328 1.54 5.3862 0.47 5.3926 0.35 

20 1.2 900 6.213 6.0854 2.05 6.1321 1.30 6.0640 0.88 

20 1.4 1000 6.2246 6.172 0.84 6.1953 0.47 6.2075 0.27 

COF   

Load            
(L) 
(N) 

Velocity 
(V) 

(m/s) 

Distance   
(D) 

(m) 

Experimental 
Results 

COF 

Prediction 

Regression Single hidden layer Multi hidden layer 

Predicted 
Results 

Deviation 
(%) 

Predicted 
Results 

Deviation 
(%) 

Predicted 
Results 

Deviation 
(%) 

10 0.7 600 0.442 0.417 5.65 0.4192 5.15 0.4219 4.54 

15 0.9 800 0.465 0.4526 2.66 0.4558 1.97 0.4611 0.83 

20 1.2 900 0.495 0.4761 3.81 0.4891 1.19 0.4923 0.54 

20 1.4 1000 0.487 0.4433 8.97 0.4588 5.79 0.4681 3.88 
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4. CONCLUSIONS 
 

In this present work, the modeling of 
tribological properties of AZ31-SiC composite using 
the ANN fabricated through the stir casting 
method was done. AZ31-SiC metal matrix 
composite was fabricated through a stir-casting 
process. The twenty-seven tests were performed 
with three types of loads, sliding speeds, and 
sliding distances on the wear testing machine for 
the formation of training sets of ANN. Using the 
output data of the wear tests, Taguchi, analysis of 
variance (ANOVA), and regression analysis were 
carried out to determine the effect of the control 
parameters on the wear and COF. The results from 
ANN modeling prove its practicability and fine 
correlation with the experimental results. The 
following conclusions were emerging from the 
present study: 
1. Taguchi analysis depicts that the wear and 

coefficient of friction increase with an increase 
in load, and decrease in distance, with an 
increase in sliding velocity. 

2. ANOVA depicts that distance is the highest 
contributor followed by load and sliding 
velocity for wear and load is the highest 
contributor followed by distance and sliding 
velocity for COF.   

3. Regression analysis equations were developed 
for the prediction of wear and COF. 

4. An alternative method of ANN modeling can 
be used for the prediction of tribological 
parameters without conducting the wear test 
which saves a lot of time, and cost.  

5. In the ANN model with single hidden layer 
perception, the Cascade Forward Back 
Propagation (CFBP) network with Trlm and Prln 
as the functions provides the best prediction 
results with an optimum percentage of error of 
6.1%, 5.75% for wear and COF respectively.   

6. In the ANN model with multi hidden layer 
perception, Feed Forward Back Propagation 
(FFBP) network with Trlm and Prln as the 
functions provides the best prediction results 
with an optimum percentage of error of 
6.777%, and 5.52% for wear and COF 
respectively.   

7. The maximum percentage of deviation in ANN 
modeling with single and multi hidden layers is 
less than 9%.  Hence ANN modeling may be 
used as an alternative method for the 
prediction of wear and COF for optimization of 
tribological parameters. This prediction 

process saves time and effort for 
experimentation. 

 
NOMENCLATURE: 
 

CFBP : Cascade Forward Back Propagation, FFBP : 
Feed Forward Back Propagation, LR : Layer 
Recurrent, Trlm : Trainlm Transfer Function, Prln : 
Purelin Transfer Function, Trsg : Transig Transfer 
Function, Logs : Logsig Transfer Function. 
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