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Abstract: Chronic Kidney Disease (CKD) is a progressive condition that may cause kidney failure, so earlier diagnosis 

is critical for proper management. The condition has a large fatality, particularly in developing nations. CKD often 

remains unnoticed because there is no obvious earlier-stage symptom. Meanwhile, earlier diagnosis and on-time 

clinical intervention are essential for reducing the disease progression. Detecting CKD using deep learning (DL) 

methods and feature selection (FS) could be a useful application of artificial intelligence (AI) in healthcare. DL 

algorithms can provide cost-effective and efficient computer-aided diagnoses (CAD) to assist clinicians in 

accomplishing earlier CKD recognition. Therefore, this study develops an automated CKD detection using Henry Gas 

Optimization Algorithm with DL (CKDD-HGSODL) approach. The drive of the CKDD-HGSODL approach is to 

classify and detect the presence of CKD utilizing FS and hyperparameter tuning strategies. In the presented CKDD-

HGSODL technique, min-max scaling can be used to normalize the input data. In addition, the CKDD-HGSODL 

technique utilizes the HGSO model for selecting optimal features. For the CKD detection process, an attention-based 

gated recurrent unit (AGRU) model can be utilized. At last, the slime mould algorithm (SMA) can be utilized for the 

optimal hyperparameter selection of the AGRU approach that aids in improving the classifier results. To validate the 

outcome of the CKDD-HGSODL approach, a comprehensive simulation value is made on the benchmark CKD 

database. The obtained performances depict the enhanced detection results of the CKDD-HGSODL approach on CKD 

diagnosis. 
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1. Introduction 

CKD is a condition that affects the kidney’s 

capability to function [1]. Generally, CKD is divided 

into stages with renal failures taking place once the 

kidneys are no more capable of completing their 

functions of blood purification and mineral balance 

in the body [2]. Earlier detection and treatment of 

CKD will avoid its development into kidney failure. 

The better method to treat CKD is for diagnosing it 

in the earlier phases, however, it determining in its 

final phases can result in kidney failure that needs 

kidney transplantation or regular dialysis for 

maintaining a normal life [3]. In the medical analysis 

of CKD, two clinical tests are employed for 

diagnosing CKD that is by a urine test to test albumin 

or a blood test to test the glomerular filtrate. Because 

of the increasing number of chronic kidney patients, 

the shortage of medical professionals, and the higher 

expenses of treatment and diagnosis, specifically in 

emerging countries [4], it is a requirement for CAD 

to support doctors and radiologists to help their 

diagnostic evaluation. AI methods have performed a 

function in the medical image processing and medical 

domain [5], where DL and machine learning (ML) 

methods are implemented in the procedures of 

disease diagnosis and prediction in the earlier phases. 

Although the consideration provides to CKD 

diagnosis applying ML technique, only some 

researchers concentrated on detecting the most 

important features required for improving CKD 

diagnosis [6]. If detected properly in suspicious CKD 

patients, these features are used for efficient CAD 

diagnosis of CKD. In ML tasks, the methods use the 

discriminative capability of features for the 
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classification of the samples. The ML technique's 

performance does not only depend on the precise 

training method, but, on the input data features like 

many features and the relationship among the 

features [7]. Furthermore, in major ML applications, 

specifically in medical diagnosis, every input features 

are not an equivalent value. The aim of FS is to 

extract redundant features from the input data and 

make sure the training process learns the information 

very efficiently. By eliminating non-informative 

variables, the computational expenditure of making 

the method can be decreased, resulting in quicker and 

highly effective learning with improved performance 

of classification [8]. In recent times, the ML approach 

is provided for developing robust models in the field 

of medical diagnosis that can make early detection 

and accuracy. DL method is a subcategory of ML that 

look for finding basic connections within a database 

through a set of processes, which takes place in 

training. DL is a multilayer technique to theoretically 

manage non-linear information; it considerably 

influences medical applications [9]. Besides DL 

methods in different applications, it is numerous 

drawbacks owing to the heterogeneity of the 

healthcare information that aggravates the robustness 

and generalization of the established approach, 

causing misrepresentative procedures and 

reproducing diagnostic techniques [10]. Thus, the 

training method in DL is not always guaranteed for 

achieving optimum weights and can accomplish with 

a higher-variation approach. 

This study develops an automated CKD detection 

using Henry Gas Optimization Algorithm with DL 

(CKDD-HGSODL) technique. In the presented 

CKDD-HGSODL technique, min-max scaling can be 

used to normalize the input data. In addition, the 

CKDD-HGSODL technique utilizes the HGSO 

model for selecting optimal features. For the CKD 

detection process, an attention-based gated recurrent 

unit (AGRU) model can be utilized. At last, the slime 

mould algorithm (SMA) can be exploited for the 

optimal hyperparameter selection of the AGRU 

model that aids in improving the classifier results. For 

validating the outcome of the CKDD-HGSODL 

features, a comprehensive simulation outcome is 

made on the benchmark CKD database. 

The remaining sections of the article is arranged 

as: Section 2 offers the literature review and section 

3 represents proposed method. Then, section 4 

elaborates the results evaluation and section 5 

completes the work. 

 

 

 

2. Related works 

Alsekait et al. [11] developed a new ensemble DL 

system for diagnosing CKD; several approaches of 

FS are employed to choose the optimum selected 

features. Furthermore, the authors study the impact of 

the optimum FS on CKD from the medical domain. 

This developed ensemble method incorporates a pre-

trained DL algorithm with the SVM as the meta-

learner technique. In [12], developed an ensemble of 

DL-based clinical decision support systems (EDL-

CDSS) for CKD identification from the IoT platform. 

This method applies the ADASYN algorithm for 

detecting outlier methods. Besides, an ensemble of 

DBN, KELM, and CNN-GRU can be implemented. 

Eventually, the quasi-oppositional butterfly 

optimizer algorithm (QOBOA) has been utilized for 

the hyper-parameter tuning of the CNN-GRU and 

DBN techniques. Lambert and Perumal [13] 

recommended a novel classification approach with a 

metaheuristic method based optimum FS technique. 

Firstly, data with missing values are extracted in the 

preprocessing phase. Secondly, the leading feature 

subsets are chosen by the Oppositional-based FireFly 

Optimizer technique. The integration of oppositional-

based learning models supports enhancing the 

converging FA rate. For classification, DNN is 

developed for diagnosing the presence of CKD. 

The authors [14] presented a Heterogeneous 

Modified-ANN (HMANN) method. Moreover, this 

developed HMANN was classified as SVM and MLP 

with a Back-propagation (BP) system. This method 

works depends on an ultrasound image that can 

depicted as a pre-processing stage and the area of 

kidney interest has been classified from the images of 

ultrasound. Gokiladevi [15] suggested a new chaotic 

binary black hole-based FS with a classification 

method for diagnosing CKD, termed the CBHFSC-

CKD approach. This algorithm includes the 

development of CBH-FS for selecting optimum 

feature subsets and thus improves the analytic 

performance. Besides, the bacterial colony algorithm 

(BCA) with the KELM technique is implemented to 

analyze CKD. 

In [16], introduced a new cloud and IoT-based 

CKD identification method named Flower 

Pollination Algorithm (FPA)-based DNN approach 

(FPA-DNN). This method exploits Oppositional 

Crow Search (OCS) approach for FS that chooses the 

optimum feature subsets from the pre-processed data. 

Prasad Reddy and Vydeki [17] recommended an 

Ebola deep wavelet-ELM (EDWELM) technique for 

accurate non-CKD and CKD classification. Primarily, 

the accessed data is pre-processed. In FS, the fusion 

technique of darts game and battle royale optimizer  
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Fig. 1 Workflow of CKDD-HGSODL approach 

 

termed as darts battle game optimizer are 

implemented. ELM-based AE, wavelet-NN, and 

Ebola optimizer search method is executed for 

efficiently classifying CKD. Several studies have 

proposed advanced methods for diagnosing chronic 

kidney disease (CKD), including ensemble deep 

learning systems with feature selection, metaheuristic 

approaches, and innovative algorithms such as 

chaotic binary black hole-based feature selection and 

Flower Pollination Algorithm-based deep neural 

networks. These methods collectively aim to improve 

CKD diagnostic accuracy. 

3. The proposed model 

In this study, a novel CKDD-HGSODL approach 

is presented for accurate and automated CKD 

classification and detection. The main aim of the 

CKDD-HGSODL approach is to classify and detect 

the presence of CKD using FS and hyperparameter 

tuning strategies. 

In the presented CKDD-HGSODL technique, 

different processes are involved such as min-max 

scaling, HGSO-based FS, AGRU classification, and 

SMA-based hyperparameter tuning. Fig. 1 depicts the 

working flow of the CKDD-HGSODL model. 

3.1 FS using HGSO Algorithmn 

In this work, the HGSO algorithm can be 

designed for selecting an optimal set of features. 

HGSO is based on the behaviour of Henry's law 

which is used to evaluate the solubility of lower 

solubility gas in liquid [18]. Furthermore, the two 

parameters are temperature and pressure which 

affects solubility; at high temperature, gases can 

lesser soluble, but solid becomes more soluble. The 

solubility of gas increases with increasing pressure. 

In this subsection, the mathematical procedure of the 

HGSO approach is discussed in the following: 

Step1: A primary population of solution 

candidates with 𝑁 gases were created using Eq. (1): 

 

𝑥𝑖
(0)

= 𝑙𝑏𝑖 + 𝑟 × (𝑢𝑏𝑖 − 𝑙𝑏𝑖)    (1) 

 

Now 𝑥𝑖
(0)

 refers to the initial location of the 𝑖𝑡ℎ 

gas, and 𝑙𝑏𝑖  and 𝑢𝑏𝑖  denote the lower and upper 

boundaries, correspondingly. 𝑟  shows the random 

generation real number within [0, 1]. 

Step2: Candidates from the population are 

systematized into a group called a cluster. All the 

clusters have an equivalent amount of candidates 

with similar characteristics: 

 

𝐻𝑗
(0)

= 𝑙1 × 𝑟𝑎𝑛𝑑1, 

𝑃𝑖,𝑗
0 = 𝑙2 × 𝑟𝑎𝑛𝑑2, 𝐶𝑗

0 = 𝑙3 × 𝑟𝑎𝑛𝑑3   (2) 

 

In Eq. (2), 𝑙1,  𝑙2 , and 𝑙3  values are fixed to 

5 × 10−02, 100 , and 10−02 , correspondingly. 𝐻𝑗
0 

indicates the initial values of Henry’s co-efficient for 

𝑗𝑡ℎ clusters, 𝑃𝑖,𝑗
(0)

 shows the initial partial pressure of 
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𝑖𝑡ℎ gases in 𝑗𝑡ℎ clusters, and 𝐶𝑗
(0)

 refers to the initial 

constant value of 𝑗𝑡ℎ clusters. 

Step3: The fitness values of the cluster’s gas 

particle were calculated, and the better 𝑥𝑗,𝑏𝑒𝑠𝑡 cluster 

is allocated. Each candidate solution was arranged 

based on fitness to acquire the global optimum 

solution 𝑥𝑏𝑒𝑠𝑡 . 

Step4: Henry’s coefficient 𝐻𝑗
(𝑡+1)

 can be updated 

by using Eq. (3), as the partial pressure on gas-

particle changes at all the iterations: 

 

𝐻𝑗
(𝑡+1)

= 𝐻𝑗
(𝑡)

× 𝑒−𝑐𝑗×(1/𝑇(𝑡)−1/𝑇𝜃)    (3) 

𝑇(𝑡) = 𝑒(−𝑡/𝑡 max ) 

 

In Eq. (3), 𝐻𝑗
(𝑡)

 denotes Henry’s constant for 𝑗𝑡ℎ 

clusters in 𝑡𝑡ℎ  iterations, the parameter 𝑇𝜃  shows a 

value fixed to 298.15, 𝑇(𝑡) signifies the temperature 

at 𝑡𝑡ℎ  iteration, and 𝑡max represents the maximal 

iteration.  

Step5: In the 𝑡𝑡ℎ  iteration, Eq. (4) is used for 

changing the 𝑆𝑖𝑗
(𝑡)

 solubility of the 𝑖𝑡ℎ gas particles in 

the 𝑗𝑡ℎ clusters: 

 

𝑆𝑖,𝑗
(𝑡)

= 𝐾 × 𝐻𝑗
(𝑡+1)

× 𝑃𝑖,𝑗
(𝑡)

    (4) 

 

In Eq. (4), 𝑃𝑖𝑗
(𝑡)

 signifies the pressure applied on 𝑖𝑡ℎ 

gas particles in 𝑗𝑡ℎ clusters and 𝐾 is a fixed value. 

Step6: the position of 𝑖𝑡ℎ gas particles of the 𝑗𝑡ℎ 

clusters are updated by Eq. (5) for 𝑡 = 𝑡 + 1 iteration. 

 

𝑥𝑖,𝑗
(𝑡+1)

= 𝑥𝑖,𝑗
(𝑡)

+ 𝐹 × 𝑟1 × 𝛾 × (𝑥𝑖,𝑏𝑒𝑠𝑡 − 𝑥𝑖,𝑗
(𝑡)

) 

+𝐹 × 𝑟2 × 𝛼 × (𝑆𝑖,𝑠𝑗
(𝑡) × 𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖𝑗

(𝑡))  (5) 

𝛾 = 𝛽 × 𝑒𝑥𝑝 (
−𝐹𝑏𝑒𝑠𝑡

𝑡 + 𝜀

𝐹𝑖,𝑗
𝑡 + 𝜀

) , 𝜀 = 0.05, 

 

Where 𝐹  controls the search direction, 𝛾 shows the 

interaction capability of gas from its cluster and 𝛼 is 

the outcome of other gases on 𝑖𝑡ℎparticles. 𝑟1 and 𝑟2 

are random generation values within [0,1], and 𝜀 =
0.05. 

Step7: As HGSO is a heuristic algorithm, it can 

be a local optimizer. Thus, for re‐initialization, Eq. 

(6) is to rank and count of worse outputs 𝑁𝑤: 

 

𝑁𝑤 = 𝑁 × 𝑟𝑎𝑛𝑑 × (𝑐2 − 𝑐1) + 𝑐1   (6) 

 

In Eq. (6), 𝑁  denotes the overall amount of 

individuals in the population and 𝑟𝑎𝑛𝑑 indicates the 

arbitrarily created value from the range of zero and  

 
Fig. 2. Architecture of AGRU 

 

one. 𝑐1  and 𝑐2  refer to a constant that specifies the 

percentage of worse solutions. Eq. (1) is utilized for 

reinitializing the position of the worse solution. 

During the HGSO methodology, the objective is 

merged as a single objective formula so that a fixed 

weight finds all the main importance [19]. Here, an 

FF is used to combine both objectives of FS: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) = 𝛼 ⋅ 𝐸(𝑋) + 𝛽 × (1 −
|𝑅|

|𝑁|
)  (7) 

 

In Eq. (7), |𝑅| and |𝑁| indicates the selected and 

novel feature counts from the datasets,  𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) 

shows the fitness value of subset 𝑋, 𝐸(𝑋) denotes the 

classifier rate of error by applying the selected 

features from the X subset, 𝛼,  and 𝛽  signifies the 

weights of classifier error and the decrease ratio. 

3.2 Classification using AGRU Model 

For detecting and classifying the CKD, the 

AGRU model can be used. RNN is a network 

persisting data for sequence-related tasks [20]. But, 

RNN suffers from short‐term memory. If the 

sequence is longer enough, it takes the difficulty to 

capture the data from the early to later time step. 

GRU is used to resolve these issues. GRU was 

effective in different applications including temporal 

or sequential information. For example, it is more 

commonly used in machine translation, speech 

recognition, and natural language processing. A 

standard GRU is defined by the following expression: 

 

𝑧𝑡 = 𝜎(𝑊𝑧 ⋅ [ℎ𝑡−1, 𝑥𝑡])    (8) 

 

𝑟𝑡 = 𝜎(𝑊𝑟 ⋅ [ℎ𝑡−1, 𝑥𝑡])    (9) 
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ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ⋅ [𝑟𝑡 × ℎ𝑡−1, 𝑥𝑡])             (10) 

 

ℎ𝑡 = (1 − 𝑧𝑡) × ℎ𝑡−1 + 𝑧𝑡 × ℎ̃𝑡             (11) 

 

Here 𝑥𝑡 refers to the input feature vector of GRU, 

𝑎𝑛𝑑 𝑥𝑡  indicates the frame at 𝑡  time. All the 

segments have 𝑙  frames, and each frame has been 

extracted to the feature vectors. Each feature vector 

is concatenated as a sequence 𝑥 ∈ 𝑅𝑙×𝑑 , where  𝑑 

represents the feature dimension and  𝑙  shows the 

segment length. Fig. 2 shows the AGRU architecture. 

Mostly, the series of feature vectors 𝑥 is fed into 

the GRU model for computing the outcome. Based 

on the perceived engagement levels, the annotator 

gives attention to dissimilar frames of recorded 

videos and labels. It shows dissimilar frames 

contributes to the whole annotation of the videos. 

Therefore, any frames are of greater prominence in 

identifying engagement levels, but others can confuse 

the last prediction. From intuition, while processing 

the information, the proposed model must devote 

considerable attention to specific factors. The 

attention module helps to efficiently select essential 

frames. The GRU take a single recurrent layer that 

transmits feature vector 𝑥𝑡  to search for ℎ𝑡  hidden 

state, 
 

ℎ𝑡 = 𝐺𝑅𝑈(𝑥𝑡), 𝑡 ∈ [1, 𝑙]              (12) 

 

Each hidden state is interconnected to the attention 

layer for finding the weighted feature vectors. The 

vector 𝑢𝑡 is used for computing the weight for all the 

instances and is described as follows 

 

𝑢𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑡−1 + 𝑥𝑡)              (13) 

 

The vector 𝑢𝑡 is normalized by the softmax function. 

The normalized vector 𝛼𝑡 is computed by Eq. (10). 

 

𝛼𝑡 =
𝑒𝑥𝑝(𝑢𝑡

𝑇𝑢)

∑ 𝑒𝑡 𝑥𝑝(𝑢𝑡
𝑇𝑢)

               (14) 

 

𝑣 = 𝛼 ⊙ ℎ                (15) 

 

Each hidden state is interconnected. 

The weighted vector 𝑣 is fed into the FC layer with 

sigmoid activation for attaining regression values. 

3.3 Hyperparameter Tuning 

Finally, the SMA is applied for the parameter 

selection of the AGRU methodology. The study 

presents an approach dependent upon the oscillation 

mode of slime molds (SMs) that can be simulated by 

the changing behaviors of organic material in SMs to 

search for food, surround food, and secrete enzymes 

for food digestion [21]. The architecture of SMA is 

straightforward, commonly due to an iteration 

method to continuously upgrade the location of the 

populace to accomplish a global‐to‐local search 

technique. The basic formula is the adaptive weight 

�⃗⃗⃗�  that is utilized for adjusting the direction and step 

size of all the individuals from the searching range 

based on the fitness value in all the iterations, thereby 

guaranteeing that the SMA has the capability to find 

various points and the equation of �⃗⃗⃗�  is given below: 

 

𝑊(𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝜄))⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

{
1 + 𝑟 ⋅ 𝑙𝑜𝑔 (

𝑏𝐹−𝑆(𝑖)

𝑏𝐹−𝑤𝐹
+ 1) , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

1 − 𝑟 ⋅ 𝑙𝑜𝑔 (
𝑏𝐹−𝑆(𝑖)

𝑏𝐹−𝑤𝐹
+ 1) , 𝑜𝑡ℎ𝑒𝑟𝑠

            (16) 

 

In Eq. (16),  𝑆(𝑖)  indicates the fitness value of 

𝑖𝑡ℎ individuals and 𝑆 shows the sequence of fitness 

values of populations at all the iterations. Based on 

the rank of fitness value, 𝑆 splits the population into 

two parts, elite individuals with tremendous fitness 

value and an average individual with lesser fitness 

value. 𝑟 depicts an arbitrarily produced integer inside 

[0,1],  𝑏𝐹  shows the better fitness attained in the 

existing iteration, 𝑎𝑛𝑑 𝑤𝐹 indicates the worst fitness 

attained in the existing iteration. 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝑖) 

shows the sorted sequence of fitness values. 

Eq. (17), simulates the pattern of food pursuit by 

SMs, viz., using negative and positive feedback 

weights �⃗⃗⃗�  to modify the distance between different 

food sources and individual members of the 

population, thereby completing global to local range 

pursuit for superiority and the multi‐point search. 

 

𝑥∗⃗⃗⃗⃗ = {

𝑟𝑎𝑛𝑑 ⋅ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟𝑎𝑛𝑑 < 𝑧

𝑥𝑏(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑣𝑏⃗⃗⃗⃗ ⋅ (𝑊 ⋅ 𝑥𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑥𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) , 𝑟 < 𝑝

𝑣𝑐⃗⃗⃗⃗ ⋅ 𝑥(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟 ≥ 𝑝

 

                 (17) 

 

In Eq. (17), 𝑣𝑏⃗⃗⃗⃗  shows the parameter with 𝑎 range of 

[‐ 𝑎, 𝑎]. 𝐿𝐵 and 𝑈𝐵 characterize the lower and upper 

limitations of the search region, and 𝑟 indicates the 

arbitrarily produced number inside [0,1].  

The 𝑎 value is derived from 𝑎𝑟𝑐𝑡𝑎𝑛ℎ (−(
𝑡

max−𝑡
) +

1) which is primarily based on the location of the 

existing iteration (𝑡) from the overall iteration counts 

(max−𝑡) . The fundamental assumption is that an 

individual uses a perturbation range based on the  
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Fig. 3 Confusion matrices of: (a-b) 80:20 and (c-d) 70:30 of TR/TS set 

 

iteration. 𝒙𝒃(𝒕)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   characterizes the individual location 

with better fitness value (high fragrance intensity),  

𝒗𝒄⃗⃗⃗⃗  linearly drops from 1 to 𝟎. 𝒕 indicates the present 

iteration, 𝒙(𝒕)⃗⃗⃗⃗ ⃗⃗ ⃗⃗   shows the position of SM at 𝒕𝒕𝒉 

iterations, 𝒙𝑨⃗⃗ ⃗⃗  and 𝒙𝑩⃗⃗ ⃗⃗   denotes the random selection of 

individuals in the population, �⃗⃗⃗⃗�  shows the weighted 

of SMs. The values of 𝒗𝒄⃗⃗⃗⃗  oscillate within [−𝟏, 𝟏] 
and eventually incline to 𝟎 . 𝒑  indicates the 

probability concentration of an individual adopting a 

behavioral mechanism, and its formula is given 

below: 

 

𝑝 = 𝑡𝑎𝑛𝑏|𝑆(𝑖) − 𝐷𝐹|              (18) 

 

Here, 𝑖 ∈ 1, 2, … , 𝑛, 𝑆(𝑖)  signifies the fitness of 𝑥𝑖⃗⃗  ⃗, 
𝑎𝑛𝑑 𝐷𝐹 signifies the better fitness value attained at 

each iteration. 

The SMA model derives an FF to achieve the higher 

classifier effectiveness. It defines a positive number 

to characterize the greater candidate performance 

outputs. The decrease in the classifier error rate is 

regarded as the FF.  
Table 1. Specification of database 

Class Instance Numbers 
CKD 250 

NOT CKD 150 
Total Samples 400 

 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
× 100              (19) 

 

4. Performance Valiation 

The CKD detection performances of the CKDD-

HGSODL approach are tested using the benchmark 

CKD database from UCI databases [22]. The dataset 

includes 400 samples with 24 features. The CKDD-

HGSODL technique has chosen 13 features as 

defined in Table 1. 
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Fig. 3 depicts the confusion matrices presented by 

the ABCFS-OHML technique on distinct datasets.  
Table 2. CKD detection outcome of CKDD-HGSODL method at 80:20 of TR/TS set 

Class 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 MCC 

TR set (80%) 

CKD 100.00 99.52 100.00 99.76 99.32 

NOT CKD 99.12 100.00 99.12 99.56 99.32 

Average 99.56 99.76 99.56 99.66 99.32 

TS set (20%) 

CKD 97.67 100.00 97.67 98.82 97.52 

NOT CKD 100.00 97.37 100.00 98.67 97.52 

Average 98.84 98.68 98.84 98.75 97.52 

 

 
Figure. 4 Average of CKDD-HGSODL method at 80:20 

of TR/TS set 

 

 
Figure. 7 PR curve of CKDD-HGSODL method at 80:20 

of TR/TS set 

 

 
Figure. 6 Loss curve of CKDD-HGSODL method at 

80:20 of TR/TS set 

 
Figure. 8 ROC of CKDD-HGSODL method at 80:20 of 

TR/TS set 

 

The figure depicted that the ABCFS-OHML 

technique has detected and classified CKD and NOT 

CKD class labels accurately. 

The CKD detection results of the CKDD-

HGSODL technique under 80:20 of the TR/TS set are 

studied in Table 2 and Fig. 4. These values inferred 

the proficient recognition of the CKD and NOT CKD 

samples. On the 80% TR set, the CKDD-HGSODL 

technique exhibits average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 

𝐹𝑠𝑐𝑜𝑟𝑒 , and MCC of 99.56%, 99.76%, 99.56%, 

99.66%, and 99.32% respectively. Meanwhile, on the 

20% TS set, the CKDD-HGSODL model depicts 

average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 𝐹𝑠𝑐𝑜𝑟𝑒 , and MCC of 

99.56%, 99.76%, 99.56%, 99.66%, and 99.32% 

subsequently. 
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In Fig. 6, the 𝑇𝑅_𝑙𝑜𝑠𝑠 and 𝑉𝑅_𝑙𝑜𝑠𝑠 curves of the 

CKDD-HGSODL approach at 80:20 of the TR/TS set 

are depicted. The 𝑇𝑅_𝑙𝑜𝑠𝑠 demonstrates the error 

among the anticipated and original outputs on the TR  

 
Figure. 9 Average of CKDD-HGSODL method at 70:30 

of TR/TS set 

 

 
Figure. 10 𝑨𝒄𝒄𝒖𝒚 curve of CKDD-HGSODL method at 

70:30 of TR/TS set 

 

 
Figure. 11 Loss curve of CKDD-HGSODL method at 

70:30 of TR/TS set 

 

data. The 𝑉𝑅_𝑙𝑜𝑠𝑠  signifies the performance 

measure of the CKDD-HGSODL approach on 

discrete TS data. The results portrayed that the 

𝑇𝑅_𝑙𝑜𝑠𝑠  and 𝑉𝑅_𝑙𝑜𝑠𝑠  lessened with an epoch 

upsurge. It depicted the improved achievement of the 

CKDD-HGSODL technique and its capacity to 

produce precise classification. The lesser 𝑇𝑅_𝑙𝑜𝑠𝑠 

and 𝑉𝑅_𝑙𝑜𝑠𝑠 value determines the enhanced solution 

of the CKDD-HGSODL method to comprehend 

patterns and relationships. 
Table 3. CKD detection outcome of CKDD-HGSODL 

method at 70:30 of TR/TS set  

Class  𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝑺𝒄𝒐𝒓𝒆 
MC

C 

TR set (70%) 

CKD 95.98 94.89 95.98 95.43 87.82 

NOT 

CKD 
91.51 93.27 91.51 92.38 87.82 

Averag

e 
93.74 94.08 93.74 93.90 87.82 

TS set (30%) 

CKD 98.68 100.00 98.68 99.34 98.23 

NOT 

CKD 
100.00 97.78 

100.0

0 
98.88 98.23 

Averag

e 
99.34 98.89 99.34 99.11 98.23 

 

The outputs inferred that the CKDD-HGSODL 

approach performance in higher PR values. However, 

it can be noticed that the CKDD-HGSODL model 

achieves enhanced PR values on 2 classes. 

In Fig. 8, a ROC outcome of the CKDD-

HGSODL method is demonstrated at 80:20 of the 

TR/TS set. The outcome defined that the CKDD-

HGSODL method led to better performances of ROC.  

Then, the CKDD-HGSODL model exhibited an 

improved ROC values on 2 classes. 

The CKD detection output of the CKDD-

HGSODL methodology at 70:30 of the TR/TS set is 

studied in Table 3 and Fig. 9. These values stated the 

proficient detection of the CKD and NOT CKD 

samples. On 70% TR set, the CKDD-HGSODL 

methodology depicts average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , 

𝐹𝑠𝑐𝑜𝑟𝑒 , and MCC of 93.74%, 94.08%, 93.74%, 

93.90%, and 87.82% respectively. Meanwhile, on the 

30% TS set, the CKDD-HGSODL algorithm displays 

average 𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , 𝐹𝑠𝑐𝑜𝑟𝑒 , and MCC of 

99.34%, 98.89%, 99.34%, 99.11%, and 98.23% 

respectively. 
Fig. 10 portrayed the 𝑇𝑅_𝑎𝑐𝑐𝑢𝑦  and 𝑉𝐿_𝑎𝑐𝑐𝑢𝑦 

of the CKDD-HGSODL model at 70:30 of the TR/TS 

set. The 𝑇𝐿_𝑎𝑐𝑐𝑢𝑦  is defined by assessing the 

CKDD-HGSODL model on the TR dataset, while the 

𝑉𝐿_𝑎𝑐𝑐𝑢𝑦 is computed by analyzing the achievement 

on a discrete TR dataset. The performances display 

that 𝑇𝑅_𝑎𝑐𝑐𝑢𝑦 and 𝑉𝐿_𝑎𝑐𝑐𝑢𝑦 upsurge with an epoch 

rise. So, the outcome of the CKDD-HGSODL 
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approach rises on the TR/TS dataset with an epoch 

rise. 

In Fig. 11, the 𝑇𝑅_𝑙𝑜𝑠𝑠 and 𝑉𝑅_𝑙𝑜𝑠𝑠 curves of 

the CKDD-HGSODL methodology at 70:30 of the 

 
Figure. 12 PR curve of CKDD-HGSODL method at 

70:30 of TR/TS set  

 

 
Figure. 13 ROC of CKDD-HGSODL method at 70:30 of 

TR/TS set  

 

TR/TS set are depicted. The 𝑇𝑅_𝑙𝑜𝑠𝑠 

demonstrates the error among the anticipated and 

original TR data values. The 𝑉𝑅_𝑙𝑜𝑠𝑠  depicts the 

measure of the outcome of the CKDD-HGSODL 

methodology on a discrete VR data. The results 

portrayed that the 𝑇𝑅_𝑙𝑜𝑠𝑠  and 𝑉𝑅_𝑙𝑜𝑠𝑠  lessened 

with an epoch upsurge. It represented the improved 

achievement of the CKDD-HGSODL technique and 

its capability to produce a precise classification. The 

lesser 𝑇𝑅_𝑙𝑜𝑠𝑠  and 𝑉𝑅_𝑙𝑜𝑠𝑠  values reveal the 

enhanced output of the CKDD-HGSODL technique 

to comprehend patterns and relationships. 

A complete PR outcome of the CKDD-HGSODL 

methodology is defined at 70:30 of the TR/TS set in 

Fig. 12. The outcome values demonstrated that the 

CKDD-HGSODL methodology performs at higher 

PR values. Afterwards, it can be clear that the 

CKDD-HGSODL model achieves higher values of 

PR on 2 classes. 

In Fig. 13, a ROC outcome of the CKDD-

HGSODL methodology is determined at 70:30 of the 

TR/TS set. The simulation value demonstrated that 

the CKDD-HGSODL approach resulted in higher  

 
Figure. 14 Comparative outcome of CKDD-HGSODL 

method with recent approaches 

 

 
Figure. 15 CT outcome of CKDD-HGSODL method with 

recent approaches 

 

ROC values. But it can be obvious that the CKDD-

HGSODL system is extend greater values of ROC on 

2 classes. 

The enhanced results of the CKDD-HGSODL 

approach can be assured by a comparative results 

analysis, as given in Table 4 and Fig. 14 [15-16]. The 

outputs depicted the weak outputs of the NN-GA and 

EP-CRD models. Next to that, the PKD-DM, EAML-

CKD, and SVM models obtain moderately improved 

achievement. Meanwhile, the BCA-KELM and 

CBHFSC-CKD models offer considerably closer 

results. Nevertheless, the CKDD-HGSODL 

technique shows superior results with maximum 

𝑎𝑐𝑐𝑢𝑦 , 𝑝𝑟𝑒𝑐𝑛 , 𝑟𝑒𝑐𝑎𝑙 , and 𝐹1𝑠𝑐𝑜𝑟𝑒  of 99.56%, 

99.76%, 99.56%, and 99.66% subsequently. 

Finally, computation time (CT) values of the 

CKDD-HGSODL approach and existing approaches 
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are given in Fig. 15. The outcome demonstrated that 

the EP-CRD, SVM, and BCA-KELM approaches 

have reported worse CT values. Along with that, the 

NN-GA, PKD-DM, EAML-CKD, and CBHFSC-

CKD techniques have revealed nearer CT values. 

However, the CKDD-HGSODL technique illustrated 

the greater outcome of the CKDD-HGSODL 

technique with recent systems. Therefore, the 

CKDD-HGSODL technique can be applied to the 

automated CKD detection process. 

5. Conclusion 

In this study, a novel CKDD-HGSODL approach 

is presented for accurate and automated CKD 

classification and detection. The major aim of the 

CKDD-HGSODL approach is to classify and detect 

the presence of CKD using FS and hyperparameter 

tuning strategies. In the proposed CKDD-HGSODL 

technique, different processes are involved such as 

min-max scaling, HGSO-based FS, AGRU 

classification, and SMA-based hyperparameter 

tuning.  Moreover, the CKDD-HGSODL approach 

applies the HGSO approach for the election of 

optimal features. Finally, the SMA can be utilized for 

optimum hyperparameter selection of the AGRU 

approach which aids in improving the classifier 

results. For validating the outcome of the CKDD-

HGSODL technique, a comprehensive simulation 

value is made on the benchmark CKD database. The 

obtained performances depict the enhanced detection 

results of the CKDD-HGSODL technique on CKD 

diagnosis. Future directions for CKDD-HGSODL 

may involve assessing its suitability across diverse 

datasets in real clinical scenarios, while potential 

limitations include the necessity for extensive 

validation on larger datasets and challenges in result 

interpretability due to the complexity of the hybrid 

approach. 
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