
Received: January 9, 2024. Revised: February 8, 2024. 585

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.47

Multi Objective Prairie Dog Optimization Algorithm for Task Scheduling and

Load Balancing

Amith Shekhar Chandrashekhar1* Niranjan Murthy Chandrashekarappa2

Puneetha Bandalli Hanumanthagowda3 Anupkumar Manohara Bongale4

1Department of Computer Science and Engineering, B N M Institute of Technology, Bengaluru, India
2Department of Computer Science and Engineering, Jain Institute of Technology, Davanagere, India

3Department of Computer Science & Business Systems, Bapuji Institute of Engineering & Technology,
Davanagere, India

4Department of Artificial Intelligence and Machine Learning, Symbiosis Institute of Technology, Pune, India

* Corresponding author’s Email: amith_shekhar@bnmit.in

Abstract: An efficient task scheduling plays an important role in facilitating the virtual resource in a cloud computing

environment by minimalizing make span and enhancing the allocation of resources. Requests for resources are treated

as tasks, and appropriate resources are allocated based on user requirements. But, due to high demand and requests,

the cloud has difficulty allocating resources. To overcome the issues, this research introduced an optimization-based

task scheduling approach. The Multi-Objective Prairie Dog Optimization (MOPDO) algorithm is introduced which

considers the makespan time and the execution time as the major objective while allocating resources in IoT. The

proposed MOPDOA effectively allocates the resource to the Virtual Machines (VMs) by choosing the host with

maximized resources. The search mechanism with the help of MOPDO helps to detect a suitable VM for resource

allocation will be continued. After the process of allotting the resources to VMs, the load balancing process must be

initiated to schedule the tasks for VMs. When the task count is assigned as 100, the makespan time of MOPDOA is

12s while Particle Swarm Gray Wolf Optimization (PSGWO) obtains a makespan time of the 20s. Similarly, for

different VMs, the proposed approach is 175.45s for execution whereas the existing Improved Multi-Objective Multi-

Verse Optimizer obtains 186.33s to execute for 10 VMs.

Keywords: Cloud computing, Task scheduling, Multi-objective prairie dog optimization, Make span time, Execution

time, Load balancing.

1. Introduction

Cloud computing emerged as a revolutionized

computing technology where the computing

resources are evaluated globally via the internet.

Moreover, it offers a set of services and resources

through Cloud Service Providers (CSP) [1, 2]. The

term “Cloud Computing” is derived from two unique

words such as cloud which is related to network and

computing refers to calculation. So, cloud computing

is referred to as the process of computing data using

a computer [3]. The available resources are utilized

by physically available machines. While scheduling

the tasks among virtual machines, the load imbalance

is created due to overutilization and unutilization of

resources [4]. Containerizing acts as a relevant

solution to fulfil the needs in a cloud environment [5].

In comparison to virtual machines, containerization

is a cloud-based technology that is becoming more

and more popular because of its advantages in terms

of lightweight, scalability, and availability [6].

Workflows for continuous integration and delivery

are best suited for containers. To balance resources

among the virtual machines and to have positive

feedback in balancing resources, a precise load-

balancing system acts as a key method. In addition,

the load balancing is maintained by spreading the

load by allotting the specified load to every virtual

machine [7, 8]. The resources can be increased in two

Received: January 9, 2024. Revised: February 8, 2024. 586

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.47

different ways: vertically by adding additional

resources to the deployed virtual machines, or

horizontally by adding new virtual machines. Both

approaches take more time, have latency problems,

and could be more expensive [9]. These issues affect

the processing of the data and create a critical

situation in maintaining the equalized data

distribution among the virtual machines.

The optimized load balancer acts as an important

component that considers all the aforementioned

issues by using efficient balancing strategies [10]. In

general, load balancing is classified into two types

such as static load balancing and dynamic load

balancing. In static load balancing, the information is

obtained in a prior state regarding the characteristics,

computing nodes, and network. For dynamic load

balancing, the efficacy of the processor is

distinguished at the initial stage of the execution

process [11, 12]. Every service transaction is

performed based on allocating and scheduling the

resources. At the time of scheduling the tasks, some

of the short-time tasks are dismissed due to time

delay. In the process of task scheduling, the scheduler

deliberates the task based on resource availability

[13]. Moreover, the virtual machine must be suitable

to balance the resources among the hosts which tends

to diminish the computational cost. The scheduling of

virtual machines in a big data environment must act

as an identifier to detect the optimal pairs of virtual

machines [14]. Therefore, a discrete optimization

technique should be utilized to overcome the issues

regarding optimized load balancing [15,16]. This

research introduced an improved optimization-based

load balancing technique based on a cloud

environment for the applications related to the

allocation of resources and scheduling the tasks.

The significant findings of this research are,

1. This research presented an optimization-based

task scheduling scheme using MOPDOA to

maintain load balance in a cloud environment.

2. The proposed MOPDOA is based on multi-

objective functions such as makespan time and

execution time. These two functionalities are

used to allocate the resources in the VMs with

better scalability.

The remaining research paper is structured as

follows: Section 2 describes related works and

Section 3 describes the proposed methodology. The

results and analysis of this research are described in

Section 4 and finally, the conclusion of the research

is described in Section 5.

2. Related works

Here, the various research based on task

scheduling and load balancing in cloud computing

environments are discussed.

Mohd Sha Alam Khan and R. Santhosh [17] have

introduced a hybrid optimization algorithm that is

comprised of Particle Swarm Optimization (PSO)

and Gray Wolf Optimization (GWO) referred to as

PSGWO for an optimistic resource allocation in the

cloud platform. At the initial stage, the VMs are

categorized on the basis of Support Vector Machines

(SVM). The suggested method detects the optimal

VM and helps in the optimal allocation of resources.

Moreover, the suggested approach effectively

minimizes the waiting time and enhances the QoS.

However, the suggested approach offers diminished

results when the VMs are placed randomly.

Sudheer Mangalampalli [18] have introduced a task

scheduling approach using Cat Swarm Optimization

(CSO) algorithm. The CSO addresses the makespan,

time taken for migration, energy consumption, and

power cost. The task scheduling was performed by

calculating the priorities at the task level and VM

level to provide a mapping of tasks for the respective

VMs. However, the suggested approach was not

suitable for scheduling tasks based on a real-time

cloud environment.

Mohammed Otair [19] have introduced an

Improved Multi-Objective Multi-Verse Optimizer

(IMOMVO) to solve the task scheduling problems

which occur in a cloud environment. The suggested

approach rectifies the issues related to average

positioning by improving the position based on the

best solution. The IMOMVO can perform various

tasks comprised of different tasks and VM to evaluate

the ability of the scheduling tasks. However, the

search space of the proposed approach does not

consider any fitness functionalities. Mohammed I.

Alghamdi [20] have introduced Artificial Neural

Network Binary Particle Swarm Optimization (ANN-

BPSO) to perform load balancing and task scheduling

in the cloud computing environment. The ANN-

BPSO allots reference for each particle and helps to

accelerate the search for an optimal solution for the

allocation of resources and scheduling the tasks.

Moreover, the suggested approach updates the

position of every individual particle and helps to

prohibit the overload or underload of VMs. However,

the resource allocation using ANN-BPSO does not

consider energy consumption which is an essential

parameter that needs to be considered while

allocating the resources.

Chirag Chandrasekhar [21] have introduced a

Hybrid Weighted Ant Colony Optimization

Received: January 9, 2024. Revised: February 8, 2024. 587

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.47

(HWACO) algorithm to perform ideal task

scheduling. The suggested HWACO considered two

functions such as the Construct-ANT solution and the

Update pheromone function to schedule the tasks

with better makespan and parameters based on cost.

The HWACO algorithm achieved integration in

minimal time but the algorithm lacked its efficiency

when the task count was enhanced. Mehak Sharma

[22] have introduced an optimistic approach for

scheduling tasks in a cloud computing environment.

The suggested approach plays an effective role in

positioning the VMs and helps to enhance the QoS

parameters. Moreover, the suggested approach

minimizes the configuration overhead in a cloud

environment through effective scheduling and

improvising the QoS with fewer hosts.

The results obtained from the overall methods

discussed in the related works show that the existing

approaches had taken higher makespan time and

execution time while allocating the resources over a

cloud environment. So, the proposed optimization

approach effectively balances the load and allocates

resources to the cloud environment.

3. Optimization-based load balancing and

task scheduling in a cloud environment

The cloud service providers have designed the

cloud environment based on Virtual Machines (VMs)

and Physical Machines (PMs), which also rely as a

boundary for public accessibility. The user executes

tasks based on their requirement and it will be

aggregated by the resource manager to retain the

records effectively. Moreover, the tasks which are

performed based on the user’s request are known as

system loads. Following this, a task scheduler is used

to schedule tasks for the VMs by maintaining the load

balance by allocation of resources. The task

scheduling is performed after the scheduler receives

the task from request manager. The process of

scheduling the task is improvised by obtaining the

exact location of VMs along with the user-requested

tasks. The process involved in task scheduling helps

to minimize the migration cost, utilization of load,

time, and computational cost. The proposed task

scheduling approach is effective in balancing the

loads to the virtual machines and scheduling the tasks.

The incoming tasks from the user get dispersed

among the cloud and the task scheduling is performed

with load balance. The entire process involved in

task scheduling is diagrammatically represented in

Fig. 1 as follows:

The list of tasks that need to be executed is

represented as 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚} and the list of

virtual machines is represented as 𝑉 =

Figure. 1 The architecture of the proposed MOPDOA

task scheduler for allocation of resources in a cloud

environment

{𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑛} . Every individual VM can

process and execute the task that was assigned to it.

The main objective of this research is to build an

effective task scheduler algorithm for the allocation

of resources and maintain the load balance.

3.1 Allocating resources to Virtual Machines

(VMs)

The problem related to the allocation of resources

is framed as an optimization problem (𝑃) which is

represented as Eq. (1).

𝑃 = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (
𝑃𝑗
𝐶𝑃𝑈

𝑉𝑀𝑖

𝐶𝑃𝑈 +
𝑃𝑗
𝑀𝐸𝑀

𝑉𝑀𝑖

𝑀𝐸𝑀 +
𝑃𝑗
𝑏𝑤

𝑉𝑀𝑖

𝑏𝑤) (1)

Where the variables that are required in allocating

the resources in the VM model are represented as

𝑉𝑀𝑖

𝐶𝑃𝑈 (Variable for processing unit),

𝑉𝑀𝑖

𝑀𝐸𝑀(Variable for memory), and 𝑉𝑀𝑖

𝑏𝑤 (Variable

for bandwidth). The variables used by the physical

machines are represented as 𝑃𝑗
𝐶𝑃𝑈 (Variable for

processing unit), 𝑃𝑗
𝑀𝐸𝑀(Variable for memory),

𝑃𝑗
𝑏𝑤(Variable for bandwidth) . Since the host

allows additional resources based on the limit of VMs,

the proposed model worked in detecting a host with

the highest units based on the Eq. (2) to Eq. (5) as

follows:

Received: January 9, 2024. Revised: February 8, 2024. 588

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.47

∀𝑖∑ 𝑦𝑖𝑗 = 1
𝑚

𝑗=1
(2)

∀𝑖∑ 𝑦𝑖𝑗𝑉𝑀𝑖

𝐶𝑃𝑈 ≤ 𝑃𝑗
𝐶𝑃𝑈

𝑛

𝑗=1
(3)

∀𝑖∑ 𝑦𝑖𝑗𝑉𝑀𝑖

𝑀𝐸𝑀 ≤ 𝑃𝑗
𝑀𝐸𝑀

𝑛

𝑗=1
(4)

∀𝑖∑ 𝑦𝑖𝑗𝑉𝑀𝑖

𝑏𝑤 ≤ 𝑃𝑗
𝑏𝑤

𝑛

𝑗=1
(5)

The proposed method focuses on detecting the

host with a maximal count of available resources.

From Eq. (2) to Eq. (5), the count of tasks and the

count of VMs are represented as 𝑀 and 𝑛

respectively. Moreover, 𝑦𝑖𝑗 is known as a binary

variable which shows that the VMs can be placed on

the 𝑗th layer of the physical machine. Eq. (2) shows

that every individual VM is allotted to one physical

machine. Eq. (3), Eq. (4), and Eq. (5) verify the

available resources with the existing ones which

include CPU, memory and the bandwidth of 𝑗th layer

of the physical machine. This bandwidth of the 𝑗th

layer is capable of being selected as a replacement for

𝑖th VMs. If the conditions defined in Eq. (2) to Eq.

(5) are satisfied, then the VMs will be positioned on

the required physical machine.

3.2 Task Scheduling to VMs

Task scheduling is defined as a process of

mapping tasks to suitable resources to optimize their

usage. Tasks are allotted to the VM which has more

effort and less communication delay. The VM host

on the physical machines is used to allocate the

resources and gets isolated from the varying users of

cloud infrastructure. The provider follows up on the

tasks and confirms the effective Quality of Service

(QoS) based on the user requirements. In the stage of

task scheduling, the response time of suggested

approach is minimized. The following Eq. (6) to Eq.

(8) are the conditions that are satisfied by the

proposed method at the time of task scheduling.

∀𝑖∑ 𝑇𝑖𝑗 = 1
𝑚

𝑗=1
(6)

𝐹𝑖 ≤ 𝐴𝑖 + 𝐷𝑖 (7)

𝑒𝑡𝑖𝑗 + 𝐷𝑖 ≤ 𝑐𝑡𝑖𝑗 (8)

Where 𝑇𝑖𝑗 is denoted as the task 𝑖 which is

allotted for 𝑗 the virtual machine, estimated period to

accomplish task is denoted as 𝐹𝑖 and 𝐴𝑖 denotes time

of arrival of the 𝑖𝑡ℎ task. Moreover, the time of the

deadline of the 𝑖𝑡ℎ the task is denoted as 𝐷𝑖. The time

of execution and the time of completion of 𝑖th task in

𝑗th VM is represented as 𝑒𝑡𝑖𝑗 and 𝑐𝑡𝑖𝑗 respectively.

Eq. (6) denotes that every individual task should be

allotted to one VM only and Eq. (7) is utilized to

verify the time of deadline and the time of executing

the 𝑖th task. The final Eq. (8) shows the period taken

to accomplish the 𝑖th task on 𝑗th VM in a minimal

time by considering the deadline. The evaluation of

runtime and the work completion is acquired based

on Eq. (9) and Eq. (10) mentioned as follows:

𝑒𝑡𝑖𝑗 =
𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘

𝑀𝑖𝑝𝑠 𝑜𝑓 𝑉𝑚𝑗
× 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

(9)

𝑐𝑡𝑖𝑗 = etij + 𝑤𝑡𝑖 (10)

Where Vmj
 represents the 𝑗th VM and the time of

waiting to accomplish the 𝑖th task is denoted as 𝑤𝑡𝑖.

3.3 Evaluation of load status

The load status of the VMs is computed based on

the provided load which takes place in the prior time

of scheduling and assigning the task to the preferred

machine. The VM load is based on parameters such

as processor load, memory usage, and bandwidth.

Moreover, these parameters take the significant

responsibility to pre-determine the load state of the

VM. Eq. (11) shows the mathematical expression for

the evaluation of load status.

𝐿 = {𝐿1, 𝐿2, 𝐿3} (11)

Where 𝐿1, 𝐿2 and 𝐿3 represents CPU usage,

memory space and bandwidth respectively. The

evaluation of 𝐿1 , 𝐿2 and 𝐿3 takes place based on

equation (12) as follows:

𝐿1 = CPU usage of
𝑉𝑀𝑖

𝑃𝑗
𝐶𝑃𝑈

𝐿2=Memory usage of
𝑉𝑀𝑖

𝑃𝑗
𝑀𝐸𝑀

𝐿3=Bandwidth usage of 𝑉𝑀𝑖 }

(12)

𝐿𝑖(𝑡) = ∑
𝐿𝑗

𝑛
𝑛
𝑗=1 is the degree of the load and the

conditions to be satisfied are represented in Eq. (13)

Eq. (14).

{
idle, 𝐿𝑖(𝑡) = 𝐿𝑖

𝑖𝑑𝑙𝑒(𝑡) = 0

under load, 𝐿𝑖
𝑖𝑑𝑙𝑒(𝑡) < 𝐿𝑖(𝑡) < 𝐿𝑖

𝑚𝑖𝑛(𝑡)
(13)

Received: January 9, 2024. Revised: February 8, 2024. 589

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.47

{
normal, 𝐿𝑖

𝑚𝑖𝑛(𝑡) < 𝐿𝑖(𝑡) < 𝐿𝑖
𝑚𝑎𝑥(𝑡)

overload, 𝐿𝑖(𝑡) > 𝐿𝑖
𝑚𝑎𝑥(𝑡)

(14)

Where the maximal and minimal load of the host

is represented as 𝐿𝑖
𝑚𝑎𝑥(𝑡) and 𝐿𝑖

𝑚𝑖𝑛(𝑡) respectively,

the status of the load is at the final stage and is

considered as the final decision.

3.4 Overview of PDOA

Generally, the load balancing is performed by the

optimization models which detect an optimistic

solution to balance the load and allocate the tasks to

the respective VMs. In this research, MOPDOA is

used to allocate resources considering the make span

and the execution time while allocating the resources.

The proposed algorithm is obtained from PDOA [23]

to minimize the make span and the execution time

while allocating the resources. The prairie dog’s

population relies as a search agent in d-dimensional

vector space to evaluate an individual’s position. The

activities based on foraging and burrow building

come under the stage of exploration and they produce

a squeaky sound to designate the occurrence of food

which is under the phase of exploitation.

3.4.1. Exploration stage

In the stage of exploration, the prairie dogs

undergo two processes such as foraging and the

construction of burrows which are represented in Eq.

(15) and Eq. (16) respectively.

𝑃𝐷𝑖+1.𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 − 𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝜌 −

𝐶𝑃𝐷𝑖,𝑗 × 𝐿𝑒𝑣𝑦(𝑛)∀𝑖𝑡𝑒𝑟 <
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
(15)

Where 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 is the global best solution and

best solution is denoted as 𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 . The food

source is 𝜌 and randomized outcome is denoted as

𝐶𝑃𝐷𝑖,𝑗. The position will be based on constructing a

burrow which is denoted in Eq. (16).

𝑃𝐷𝑖+1.𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝑟𝑃𝐷 × 𝐷𝑆 ×

𝐿𝑒𝑣𝑦(𝑛)∀
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
≤ 𝑖𝑡𝑒𝑟 <

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
2

(16)

Where the random solution is denoted as 𝑟𝑃𝐷

and the digging strength is denoted as 𝐷𝑆. 𝐿𝑒𝑣𝑦(𝑛)
is the Levy distribution function in the exploration

stage.

3.4.2. Exploitation stage

The communication ability of prairie dogs has a

major role in sustaining food requirements and

safeguarding them from enemies. The two strategies

followed by them are denoted in Eq. (17) and Eq. (18).

𝑃𝐷𝑖+1.𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 − 𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝜀 −

𝐶𝑃𝐷𝑖,𝑗 × 𝑟𝑎𝑛𝑑 ∀
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

2
≤ 𝑖𝑡𝑒𝑟 < 3

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
4

(17)

𝑃𝐷𝑖+1.𝑗+1 = 𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 × 𝑃𝐸 × 𝑟

𝑎𝑛𝑑 ∀ 3
𝑀𝑎𝑥𝑖𝑡𝑒𝑟

4
≤ 𝑖𝑡𝑒𝑟 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 (18)

Where 𝜀 is the quality of the food source and

random number in the range 0 to 1 is denoted as 𝑟𝑎𝑛𝑑

and predator effect is 𝑃𝐸 that is represented in Eq.

(19).

𝑃𝐸 = 1.5 × (1 −
𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)
(2

𝑖𝑡𝑒𝑟

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
)

(19)

Where iteration in current state and best iteration

is denoted as 𝑖𝑡𝑒𝑟 and 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 correspondingly.

3.5 Load balancing and task scheduling using

MOPDOA

After acquiring the information related to load

status, the load balancing is performed. In this

research, load balancing is performed by resource

allocation to VM and task scheduling. The

MOPDOA considered the multiobjective functions

such as makespan and the execution time rather than

the traditional fitness function in PDOA. The

proposed MOPDOA effectively allocates the

resource to the VMs by choosing the host with

maximized resources which should satisfy the

conditions mentioned previously in equations (1-4).

Whenever the computed VM has enough number of

resources, these resources are allotted to the target

VMs. Otherwise, the search mechanism to detect a

suitable VM for resource allocation will be continued.

After the process of allotting the resources to VMs,

the load balancing process must be initiated to

schedule the tasks for VMs. The scheduler selects a

VM to proceed the values based on execution and

completion time which was stored in the memory to

make decisions accordingly. The objective function

of the proposed MOPDOA is updated by considering

the fitness like make span and execution time which

is mathematically represented in Eq. (20) as follows:

Received: January 9, 2024. Revised: February 8, 2024. 590

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.47

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =

∑𝑇𝑖

𝑛

𝑖=1

(𝛼.𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 + 𝛽. 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) (20)

Where the task which is selected from the list of

tasks is represented as 𝑇𝑖 and value of 𝑖 varies from

[1-n] (𝑛 denotes total count of tasks). The make span

constant is represented as 𝛼 and the constant which is

related to execution time is represented as 𝛽. The

steps involved in the process of scheduling the tasks

are listed as follows:

i. The request from the user is transmitted to the

cloud server and the evaluation is done based on

various VMs. The tasks are stored based on time

matrices on execution and completion period.

ii. The set of requests is received and the set with

the minimum deadline is selected. Moreover, the

VMs are selected based on execution and

completion time matrices and the model’s

constraints.

iii. The status of the load for the selected machine is

computed, if the load status of the VM is in the

abnormal state then the search is continued to

find a better machine. The overall process

involved in task scheduling using the proposed

MOPDOA is represented in Fig. 2 as follows:

Figure. 2 Flowchart for the process involved in resource

allocation and task scheduling using MOPDOA

4. Results and analysis

Here, the experimental outcome of the suggested

framework is evaluated based on efficiency in

makespan, execution time, and fitness. The proposed

approach is implemented on a VM with 10GB

Random Access Memory, a 2.4 processor, 36GB

virtual storage, and Windows 10 operating system.

The makespan and the execution time are evaluated

using the Eq. (21) and Eq. (22) respectively.

𝑀𝑎𝑘𝑒 𝑠𝑝𝑎𝑛 =∑∑𝐸𝑖𝑗𝑋𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

(21)

Where the makespan denotes the waiting time

and the completion time of the tasks. The execution

time of the task 𝑖 on the VM is represented as 𝐸𝑖𝑗 and

the Boolean representation in VM is represented in

Eq. (23) 𝑋𝑖𝑗 .

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =

∑𝐸𝑛𝑑 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 −
𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 (𝑡)

𝑛

𝑚

𝑡=0

(23)

Where the number of tasks executed in the VM is

represented as 𝑛.

4.1. Performance analysis

Here, efficiency of MOPDOA is assessed on the

basis of makespan time, execution time, and based on

fitness functions. The effectiveness of MOPDOA is

assessed with existing metaheuristic optimization

techniques such as the Particle Swarm Optimization

algorithm (PSO), Grey Wolf Optimization algorithm

(GWO), Whale Optimization Algorithm(WOA), and

Grasshopper Optimization Algorithm (GOA). The

efficacy of MOPDOA is assessed for different task

count ranges from 100 to 1000. Table 1 exhibits the

experimental outcome based on makespan time.

The outcome through Table 1 exhibits MOPDOA

has taken minimum makespan time when evaluated

with other existing optimization techniques. For

example, makespan time of the proposed MOPDOA

for 100 tasks is 12s whereas the existing optimization

techniques like PSO, GWO, WOA, and GOA have

the makespan time of 37s, 33s, 28s, and 23s

respectively. The optimal outcome of MOPDOA is

due to its ability to maintain balance among

exploration and exploitation that assists in

maintaining load balance while scheduling the tasks

to VMs. Fig. 3 presents the graph for comparison of

makespan time for different task counts.

Received: January 9, 2024. Revised: February 8, 2024. 591

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.47

Table 1. Evaluation of makespan time

Methods Make span time (sec)

100 200 300 400 500 600 700 800 900 1000

PSO 37 76 132 158 189 213 249 281 368 392

GWO 33 64 121 142 187 204 240 274 359 387

WOA 28 60 117 138 175 198 235 277 341 381

GOA 23 54 108 121 172 192 221 260 329 377

MOPDOA 12 48 93 115 168 188 210 255 300 370

Figure. 3 Graphical representation for comparison of makespan time

Table 2. Evaluation of execution time to allocate resources

Methods Execution time (sec)

100 200 300 400 500 600 700 800 900 1000

PSO 1450 1600 1700 1750 1800 1900 2200 2600 3400 3800

GWO 1200 1350 1500 1400 1650 1750 2150 2550 3250 3650

WOA 1050 1300 1250 1350 1500 1700 2000 2500 3150 3400

GOA 900 1150 1100 1150 1400 1600 1900 2450 3100 3150

MOPDOA 750 900 950 1100 1300 1550 1800 2400 2950 3200

Figure. 4 Graphical representation for comparison of execution time

Secondly, the efficiency of MOPDOA is assessed

on the basis of execution time. Table 2 show the time

taken by proposed optimization approach to

implement the tasks when compared with existing

optimization techniques.

Table 2 and Fig. 4 exhibits that MOPDOA took

minimal execution time when it is compared with the

Received: January 9, 2024. Revised: February 8, 2024. 592

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.47

existing optimization algorithm. For a task count of

1000, the proposed approach took 3200 seconds

whereas the existing PSO, GWO, WOA, and GOA

had taken execution times of 3800s, 3650s, 3400s

and 3150s respectively. The better result of

MOPDOA is due to the minimal response time which

helps to execute the tasks to the VM in minimal time.

4.2. Comparative analysis

Here, the efficiency of MOPDOA is assessed on

the basis of makespan time and the execution time for

different task counts. The performance of MOPDOA

is assessed with PSGWO [17], IMOMVO [19] and

ANN-BPSO [20]. The simulation setup of the

proposed approach is based on three cases. The

PSGWO is evaluated based on case 1, the IMOMVO

is evaluated based on case 2 and ANN-BPSO is

evaluated based on case 3.

Case 1: There are 10 data centers considered for

evaluation for task count from 100-1000. The number

of hosts and total VMs are 20 and 100 respectively.

The evaluation of results based on case 1 is presented

in table 3.

Case 2: The evaluation is performed for VMs

from 10-60 and the number of cores from each host

is 2. When VM is 10, the number of tasks is 100 and

vice versa. The evaluation of results based on case 2

is presented in table 4.

Case 3: The evaluation is performed from task

count from 1000-5000. The cloud sim simulator is

used to assess the proposed method’s efficiency and

150 VMs are spread in an even manner across 15

hosts. The evaluation of results based on case 3 is

presented in table 5.

In Table 3, the performance of the proposed

MOPDOA is evaluated with PSGWO for different

task counts ranging from 100 to 1000.

Secondly, the efficiency of MOPDOA is assessed

with IMOMVO based on execution time and

throughput for variable number of VMs. Table 4

presents the outcome achieved while evaluating

MOPDOA with IMOMVO. Thirdly, the performance

is evaluated based on MOPDOA’s efficiency with

ANN-BPSO based on average resource utilization

and make span time. The table 5 presents the results

achieved while evaluating MOPDOA with ANN-

BPSO.The experimental outcome through Table 3

and Table 4 exhibits MOPDOA acquires better

results in terms of make span and execution time for

different numbers of tasks and different numbers of

VMs. When the task count is assigned as 100, the

make span time of MOPDOA is 12 s whereas

PSGWO obtains a make span time of 20 s. Similarly,

for different VMs, the proposed approach is 175.45s

for execution whereas the existing IMOMVO obtains

186.33s to execute for 10 VMs. The experimental

results from Table 5 shows that MPDOA performs

better in terms of average resource utilization and

make span time. The average resource utilization of

MOPDOA for 1000 tasks is 98.21% which is

comparably higher than the existing ANN-BPSO

Table 3. Comparison of makespan and execution time based on number of tasks

Methods Metrics

(sec)

Number of tasks

100 200 300 400 500 600 700 800 900 1000

PSGWO [17] Make span

time

20 60 100 130 180 200 230 270 310 390

MOPDOA 12 48 93 115 168 188 210 255 300 370

PSGWO [17] Execution

time

900 1000 1100 1300 1700 1850 2400 3000 3300 3900

MOPDOA 750 900 950 1100 1300 1550 1800 2400 2950 3200

Table 4. Comparison of execution time based on number of VMs

Methods Metrics

Number of VMs

10 20 30 40 50 60

IMOMVO [19] Execution time

(sec)

186.33 385.34 502.56 743.11 851.89 934.92

MOPDOA 175.45 370.67 400.37 690.87 802.19 883.58

IMOMVO [19] Throughput

(Kbps)

0.19 0.43 0.441 0.525 0.78 0.797

MOPDOA 0.23 0.46 0.47 0.54 0.81 0.83

Table 5. Comparison of average resource utilization and make span time

Methods Methods Number of tasks

1000 2000 3000 4000 5000

ANN-BPSO [20] Average resource

utilization (%)

96.84 95.21 94.54 94.09 93.56

MOPDOA 98.21 97.63 95.98 95.13 94.89

ANN-BPSO [20] Make span time

(Sec)

90 96 100 120 150

MODPOA 86 92 97 108 135

Received: January 9, 2024. Revised: February 8, 2024. 593

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.47

Notation list

Parameter Description

𝑉𝑀𝑖
𝐶𝑃𝑈 Variable for processing unit

𝑉𝑀𝑖
𝑀𝐸𝑀 Variable for memory

𝑉𝑀𝑖
𝑏𝑤 Variable for bandwidth

𝑃𝑗
𝐶𝑃𝑈 Physical machine for processing unit

𝑃𝑗
𝑀𝐸𝑀 Physical machine for memory

𝑃𝑗
𝑏𝑤 Physical machine for bandwidth

𝑀 Number of tasks

𝑛 Number of VM

𝑦𝑖𝑗 Binary variable

𝑇𝑖𝑗 The task 𝑖 which is allotted for 𝑗 the

virtual machine

𝐹𝑖 Estimated period to complete the task

𝐴𝑖 The time of arrival of the 𝑖𝑡ℎ task

𝐷𝑖 The time of the deadline of the 𝑖𝑡ℎ task

𝑒𝑡𝑖𝑗 Time of execution

𝑐𝑡𝑖𝑗 Time of completion

𝐿𝑖
𝑚𝑎𝑥(𝑡) Maximal load of the host

𝐿𝑖
𝑚𝑖𝑛(𝑡) Minimal load of the host

𝐺𝐵𝑒𝑠𝑡𝑖,𝑗 Global best solution

𝑒𝐶𝐵𝑒𝑠𝑡𝑖,𝑗 Best solution among the population

𝜌 Source of food

𝐶𝑃𝐷𝑖,𝑗 Randomized cumulative outcome

𝑟𝑃𝐷 Random solution

𝐷𝑆 Digging strength

𝐿𝑒𝑣𝑦(𝑛) Levy distribution function

𝜀 Quality of the food source

𝑟𝑎𝑛𝑑 Random number in the range 0 to 1

𝑃𝐸 Predator effect

𝑖𝑡𝑒𝑟 Iteration in the current state

𝑀𝑎𝑥𝑖𝑡𝑒𝑟 Maximum iteration

𝑇𝑖 The task which is selected from the list of

tasks

𝛽 The execution time

𝐸𝑖𝑗 The execution time of the task 𝑖 on the

VM

𝑋𝑖𝑗 The Boolean representation in VM

with 96.84% accuracy. The better result of

MOPDOA is due to the ability in balancing load

among exploration and exploitation to maintain the

load balance while scheduling the tasks to VMs.

5. Conclusion

This research introduced an optimization-based

task scheduler that effectively schedule tasks to the

corresponding VMs with minimal make-span time

and execution time. The MOPDO prioritizes make

span time and execution time in resource allocation

with load balancing and task scheduling. When the

job count is set to 100, the suggested approach has a

manufacture span time of 12 s, whereas the existing

Particle Swarm Gray Wolf Optimization (PSGWO)

has a make span time of 20 s. Similarly, the

suggested technique takes 175.45s to run for different

VMs, whereas the existing Improved Multi-

Objective Multi-Verse Optimizer takes 186.33s to

perform for 10 VMs. The better result of MOPDOA

is due to the ability in balancing load among

exploration and exploitation to maintain the load

balance while scheduling the tasks to VMs that helps

in balancing the load and aids in better allocation of

resources. In the future, hybridized optimization

approaches can be utilized to minimize the makespan

time and execution time.

Conflicts of Interest

The authors declare no conflict of interest.

Author Contributions

The paper conceptualization, methodology,

software, validation, formal analysis, investigation,

resources, data curation, writing—original draft

preparation, writing—review and editing,

visualization, have been done by 1st author. The

supervision and project administration, have been

done by 2nd , 3rd and 4th author.

References

[1] U. K. Jena, P. K. Das, and M. R. Kabat,

“Hybridization of meta-heuristic algorithm for

load balancing in cloud computing

environment”, Journal of King Saud University

- Computer and Information Sciences, Vol. 34,

No. 6, pp. 2332–2342, 2022.

[2] C. A. Shekhar and G. S. Sharvani, “MTLBP: A

Novel Framework to Assess Multi-Tenant Load

Balance in Cloud Computing for Cost-Effective

Resource Allocation”, Wireless

Communications and Mobile Computing, Vol.

120, No. 2, pp. 1873–1893, 2021.

[3] P. Rani, P. N. Singh, S. Verma, N. Ali, P. K.

Shukla, and M. Alhassan, “An Implementation

of Modified Blowfish Technique with Honey

Bee Behavior Optimization for Load Balancing

in Cloud System Environment”, Wireless

Communications and Mobile Computing, Vol.

2022, pp. 1–14, 2022.

[4] A. Kaur and B. Kaur, “Load balancing

optimization based on hybrid Heuristic-

Metaheuristic techniques in cloud

environment”, Journal of King Saud University

- Computer and Information Sciences, Vol. 34,

No. 3, pp. 813–824, 2022.

Received: January 9, 2024. Revised: February 8, 2024. 594

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.47

[5] A. Thakur and M. S. Goraya, “RAFL: A hybrid

metaheuristic based resource allocation

framework for load balancing in cloud

computing environment”, Simulation Modelling

Practice and Theory, Vol. 116, p. 102485, 2022

[6] A. Narwal and S. Dhingra, “A novel approach

for Credit-Based Resource Aware Load

Balancing algorithm (CB-RALB-SA) for

scheduling jobs in cloud computing”, Data &

Knowledge Engineering, Vol. 145, p. 102138,

2023.

[7] N. Iqbal, A.N. Khan, A. Rizwan, F. Qayyum, S.

Malik, R. Ahmad and D. H. Kim, “Enhanced

time-constraint aware tasks scheduling

mechanism based on predictive optimization for

efficient load balancing in smart

manufacturing”, Journal of Manufacturing

Systems, Vol. 64, pp. 19–39, 2022,

[8] N. Singh, Y. Hamid, S. Juneja, G. Srivastava, G.

Dhiman, T. R. Gadekallu, and M. A. Shah,

“Load balancing and service discovery using

Docker Swarm for microservice based big data

applications”, Journal of Cloud Computing, Vol.

12, No. 1, p. 4, 2023.

[9] S. Meera and C. Sundar, “A hybrid

metaheuristic approach for efficient feature

selection methods in big data”, Journal of

Ambient Intelligence and Humanized

Computing, Vol. 12, No. 3, pp. 3743–3751, 2021.

[10] K. Sridevi and M. A. Saifulla, “LBABC:

Distributed controller load balancing using

artificial bee colony optimization in an

SDN”, Peer-to-Peer Networking and

Applications, Vol. 16, No. 2, pp. 947–957, 2023.

[11] S. L. Mirtaheri and L. Grandinetti, “Optimized

load balancing in high‐performance computing

for big data analytics”, Concurrency and

Computation: Practice and Experience, Vol. 33,

No. 16, p. e6265, 2021

[12] S. Bagui, K. Devulapalli, and J. Coffey, “A

heuristic approach for load balancing the FP-

growth algorithm on MapReduce”, Array, Vol.

7, p. 100035, 2020

[13] F. N. Al-Wesabi, M. Obayya, M. A. Hamza, J.

S. Alzahrani, D. Gupta, and S. Kumar, “Energy

Aware Resource Optimization using Unified

Metaheuristic Optimization Algorithm

Allocation for Cloud Computing

Environment”, Sustainable Computing:

Informatics and Systems, Vol. 35, p. 100686,

2022

[14] A. Javadpour, A. M. H. Abadi, S. Rezaei, M.

Zomorodian, and A. S. Rostami, “Improving

load balancing for data-duplication in big data

cloud computing networks”, Cluster Computing,

Vol. 25, No. 4, pp. 2613–2631, 2022

[15] Z. Miao, P. Yong, Y. Mei, Y. Quanjun, and X.

Xu, “A discrete PSO-based static load balancing

algorithm for distributed simulations in a cloud

environment”, Future Generation Computer

Systems, Vol. 115, pp. 497–516, 2021.

[16] M. Beshley, N. Kryvinska, O. Yaremko, and H.

Beshley, “A Self-Optimizing Technique Based

on Vertical Handover for Load Balancing in

Heterogeneous Wireless Networks Using Big

Data Analytics”, Applied Sciences, Vol. 11, No.

11, p. 4737, 2021.

[17] M. S. A. Khan and R. Santhosh, “Task

scheduling in cloud computing using hybrid

optimization algorithm”, Soft Computing, Vol.

26, No. 23, pp. 13069–13079, 2022.

[18] S. Mangalampalli, S. K. Swain, and V. K.

Mangalampalli, “Multi Objective Task

Scheduling in Cloud Computing Using Cat

Swarm Optimization Algorithm”, Arabian

Journal for Science and Engineering, Vol. 47,

No. 2, pp. 1821–1830, 2022

[19] M. Otair, A. Alhmoud, H. Jia, M. Altalhi, A. M.

Hussein, and L. Abualigah, “Optimized task

scheduling in cloud computing using improved

multi-verse optimizer”, Cluster Computing, Vol.

25, No. 6, pp. 4221–4232, 2022.

[20] M. I. Alghamdi, “Optimization of Load

Balancing and Task Scheduling in Cloud

Computing Environments Using Artificial

Neural Networks-Based Binary Particle Swarm

Optimization (BPSO)”, Sustainability, Vol. 14,

No. 19, p. 11982, 2022

[21] C. Chandrashekar, P. Krishnadoss, V. Kedalu

Poornachary, B. Ananthakrishnan, and K.

Rangasamy, “HWACOA Scheduler: Hybrid

Weighted Ant Colony Optimization Algorithm

for Task Scheduling in Cloud

Computing”, Applied Sciences, Vol. 13, No. 6, p.

3433, 2023

[22] M. Sharma, M. Kumar, and J. K. Samriya, “An

optimistic approach for task scheduling in cloud

computing”, International Journal of

Information Technology, Vol. 14, No. 6, pp.

2951–2961, 2022.

[23] A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S.

Mirjalili, and A. H. Gandomi, “Prairie Dog

Optimization Algorithm”, Neural Computing

and Applications, Vol. 34, No. 22, pp. 20017–

20065, 2022

