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Abstract: Huge demand on business intelligence applications over large volume of enterprise data has resulted in 

rapid adoption of High performance data analytics. Hadoop based high performance computing environment are 

optimized for large files. Data centric execution with localization of computing proximal to data provided higher 

performance for large files. But for small files, the performance reduced and overhead increased due to the way Hadoop 

handles files. Resource allocation and scheduling policies of Hadoop has to be improvised to handle small files. This 

work proposes an integrated data, task, and resource management technique to speed up processing of small files in 

Hadoop based high performance computing environment. As part of data management, the data placement is made 

dynamic to access frequency and inherent data semantics. As part of task management, tasks were grouped based on 

fine grained data semantics correlation they process. As part of resource management, data blocks or storage nodes 

are replicated to improve the access latency with minimal cost overheads. With this integrated management, the 

proposed solution is able to increase the speedup of handling small files by at least 8.7% compared to most recent 

works on individual management of data, task and resources. 
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1. Introduction 

Business environment has become more 

competitive, and data centric orientation is the way 

forward for enterprises to thrive in this environment. 

Realizing it many businesses are using cutting edge 

data analytics over the large volumes of data to mine 

valuable knowledge for fine tuning their business 

decisions. High performance computing (HPC) along 

with machine learning and artificial intelligence are 

the enabler technologies for this data centric business 

transformation. Hadoop is the open source big data 

processing component of HPC.  It is designed for 

optimal execution of data intensive applications. 

Hadoop’s distributed file system (HDFS) deal with 

the partioning, distribution and access of massive file 

shares with sequential data access patterns, running 

on clusters of nodes. HDFS organizes the files as 

blocks and assign a map task to each block. By 

collocating map tasks near to data blocks, Hadoop 

reduces the latency in data access and speeds up the 

execution of tasks. With emergence of IoT big data 

integration, the files need to be mined were of small 

size typically less than 2KB. Hadoop performance 

dropped due to working with these small files as the 

overhead in meta-data management and map 

spawning overhead were higher [1-3]. Over the years, 

many resource allocation, data management and 

scheduling algorithms have been proposed to solve 

this problem and improve the Hadoop performance 

for small files. The solution lacked adaptation to data 

semantics, tasks nature and service level agreements 

of the customers. Also works addressing small file 

problem to Hadoop clusters in the background of high 

performance data analytics environment are very 

meager.  

This work addresses the problem of working with 

small files in Hadoop based HPC environment and 

proposes an integrated strategy involving joint 

management of data, task, and resources. The 
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objective is to speed the execution of data analytics 

on small files. The approach involves categorization 

of data based on data semantics and placement of 

them in storage nodes based on the categorization. 

The tasks are grouped based on data access nature 

and localized proximal to data blocks in such way to 

optimize the data access latency and resource 

consumption. The data blocks are replicated to 

maximize the speed with minimal resource 

consumption costs. Following are the contributions 

of this work. 

(i) A novel on fly data semantics extraction and 

data semantics correlation technique to aid in 

data co-location decision. The data co-location 

based on the proposed data semantics reduced 

the data access latency and helped to achieve 

speed up of processing small files.  

(ii) A task grouping algorithm based on task nature 

and fine grained data access semantics is 

proposed to group relevant tasks and collocate 

their execution. This is done to minimize the 

data transfer overheads and achieve speedup.  

(iii) A data replication technique to speed up the 

execution of tasks with multi objective 

optimization of task speedup and resource costs 

in Hadoop clusters. The optimization problem is 

solved using elephant herding optimization 

(EHO) algorithm. 

The rest of the paper is organized as follows. 

Section II provides the survey of existing algorithms 

in category of data, task and resource management 

and details the open issues. Section III details the 

proposed integrated data, task, and resource 

management technique. Section IV provides the 

results of the proposed technique and its comparison 

to existing works. Section V provides the concluding 

remarks and presents the scope for future work. 

2. Survey 

The survey is in three categories of data, task and 

resource management techniques. 

 

A. Data management 

Chen et al [4] proposed a data locality management 

technique to speed up tasks. The Datanode’s storage 

capability is set based on its execution capability. 

Blocks are given importance to be stored in the fastest 

Data node. By this way the performance of the map 

tasks was improved. But the scheme did not consider 

application and data characteristics in data block 

allocation and scheduling of tasks. Xie et al [5] 

proposed a data management technique for optimal 

placement of data in heterogeneous Hadoop clusters. 

A new metric called computing ratio was proposed to 

profile the nodes and data is placed in proportion to 

computing ratio. Authors also redistributed the data 

based on node utilization. The data placement 

strategy did not consider the data semantics and tasks 

correlation. Also the redistribution scheme proposed 

in this work has higher communication overhead. 

Marquez et al [6] proposed a genetic programming 

based data placement technique. The data placement 

was optimized based on reduction of data write time 

using genetic algorithm. Resource allocation was 

optimized based on maximum utilization of physical 

machine. But the approach did not consider data 

semantics and task relation for data placement and 

allocation. Jeyaraj et al [7] proposed a fine grained 

data locality aware scheduling algorithm for reducing 

the makespan of map reduce jobs in Hadoop clusters. 

This scheduler attempts to minimize the amount of 

intermediate data in the shuffle phase by using multi 

level per node combiner. This scheme reduced the 

intermediate data by executing group of map jobs 

belonging to same application together. But the 

scheme did not consider data proximity for grouping 

map jobs. Amin et al [8] proposed a data provisioning 

strategy to localize Hadoop clusters proximal to data 

in high performance cloud computing environment. 

The strategy minimizes the data access delay in the 

environment by placing VM’s in Hadoop cluster 

close to the storage node. By this way, the file transfer 

time and hence the MapReduce job completion time 

is reduced. The provisioning scheme does not 

consider collocating inter related data and tasks 

together to achieve maximal performance. Li et al [9] 

proposed two different data locality optimization for 

geo distributed clouds. In the first optimization 

scheme, tasks are assigned according to node locality, 

and access data of non-node-locality tasks are 

migrated in advance by using the idle network 

bandwidth. In the second optimization scheme, hot 

files are predicted and synchronized among the nodes. 

The tasks were not grouped based on similarity on 

data access and thus the data transfer cost is higher in 

this approach. 

 

B. Task management 

Hammoud et al [10] proposed a task scheduler to 

improve the map reduce tasks performance in 

Hadoop clusters. In addition to scheduling map based 

on data locality, reduce tasks are also scheduled 

based on data locality in this scheme. The early merge 

of map outputs is delayed and once after a sufficient 

time, the reduce task is scheduled on the node which 

is close to maximum size of map outputs. This 

improves the performance of reduce tasks by 

minimizing the data shuffling volume. But the 

scheme not does fully exploit the nature of data and 
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its semantics in its scheduling decision. Yao et al [11] 

improvised the Hadoop’s YARN task scheduler to 

address the problems in fairness and efficiency while 

processing inter related tasks in Hadoop. The goal of 

the scheduler was to reduce the makespan of the 

batch of jobs by using the information on requested 

resources, resource capacities and dependency 

between tasks.  Though authors  considered 

maximizing the CPU and memory usage, they did not 

consider data nature and localization of tasks in their 

scheduling decision.  Kousiouris  et  al  [12] 

experimented with CPU percentage allocated to tasks 

and their impact on application performance in 

clusters. Authors found that collocating inter related 

tasks on same node improves the performance. Thus 

identifying the inter related based on data 

characteristics and scheduling them on same node 

increases the performance. But the authors did not 

propose any scheme for identifying inter related tasks. 

Wang et al [13] proposed a two stage scheduling 

algorithm to increase the throughput in Hadoop 

clusters. The algorithm has separate queue for each 

node and a common queue for all nodes. Nodes 

process task from its corresponding local queue when 

it is free, it process task from global queue using 

MaxWeight policy. Task processing did not consider 

data localization. Yang et al [14] proposed two 

techniques to optimize the internal overlap between 

map and reduce jobs to reduce the map reduce 

execution time in Hadoop clusters. Lazy start of 

reduce tasks and batch finish of map tasks are done 

for better alignment of map and reduce tasks. This 

alignment improved node throughput. But the 

proposed scheduling did not consider node 

localization in allocation of reduce tasks to node. Liu 

et al [15] proposed a Fair Sojourn Protocol in YARN 

scheduler to improve the responsiveness and ensure 

fairness in Hadoop clusters.  It is a size based 

scheduler where job size is predicted and based on 

job size, resources are allocated to it. The efficiency 

of the scheduling depends on the accuracy of the job 

prediction. But prediction is based on moving 

average. But job size prediction did not consider data 

semantics. Zhang et al [16] proposed a task 

scheduling algorithm for heterogeneous Hadoop 

clusters. The tasks are allocated to node based on 

objective of minimizing the waiting time and 

transmission time for data. A metric based on 

predicted waiting time and transmission time if 

formulated. For batch of jobs, the metric is calculated, 

and the jobs are allocated to node with overall goal 

of minimizing the metric value.  Task correlation and 

data correlation was not exploited to maximize the 

performance in this work. But the idea of evaluating 

the tasks for allocation using a metric is novel 

contribution in this work. Chen et al [17] proposed a 

data locality aware real time scheduling technique for 

Hadoop clusters. The tasks were categorized to data 

intensive and CPU intensive. Data intensive tasks are 

scheduled to data proximal nodes and CPU intensive 

tasks are scheduled to nodes with minimal load 

interference. Authors did not consider collocating 

interrelated tasks to same node to maximize data 

proximity. Wei et al [18] extended the default first in 

first out (FIFO) scheduler of Hadoop with data 

locality awareness and sharing. Tasks requesting 

same data are grouped as batches and processed in 

same node, so that data to be shared across tasks is 

maximized. The scheduling algorithm was designed 

only for homogenous clusters. The proposed tasks 

grouping mechanism works did not consider the 

granularity of data and semantics of the data for 

grouping the tasks.Gandomi et al [19] proposed a 

hybrid scheduling algorithm combining dynamic 

priority and localization. The algorithm aimed to 

increase the data locality rate and reduce completion 

time. With dynamic priority and proportional share 

assignment, tasks requesting same data are processed 

in batches. This reduces the makespan for related 

tasks. But the proposed scheme did not exploit the 

data collocation and grouping data based on 

semantics to maximize the performance gain. Choi et 

al [20] proposed a task scheduling algorithm to solve 

the performance problem due to input split consisting 

of multiple data blocks. The algorithm operates in 

two stages. In the first stage, tasks are classified to 

three types based on data proximity. In the second 

stage, classified tasks are assigned to nodes based on 

priority criteria.  Task classification method proposed 

in this paper classifies task only based on data 

location in rack and neglects the data semantics. The 

performance of this method can be still improved by 

data grouping based on semantics. Convolbo et al 

[21] proposed a heuristic scheduling algorithm called 

GeoDis to optimize the makespan for data intensive 

jobs in geo distributed clouds. Authors formulated 

the task placement and data access as a linear 

programming problem and used heuristics linear 

problem solver to find optimal task placement 

schedule. But the solution is not scalable and 

computing complexity is higher. Xie et al [22] 

proposed a stochastic delay optimal algorithm called 

Pandas to reduce the makespan of data intensive tasks. 

It is task-level algorithm that specifies the priority 

among tasks of any data-processing phase by 

considering data locality considering data locality. 

Pandas predict the contents for data blocks and create 

replicas to avoid contention. By this way task 

processing time is reduced at cost of minor storage 

overhead. The contention blocks are predicted only
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Table 1. Survey summary 

Work Solution for small file problem Gap  

Liu et al [18] File content based merging  Constructing a global feature 

space for streaming data is 

difficult and thus this approach is 

not suitable for streaming data 

Lyu et al [19] optimized merging strategy to solve small file 

problem. 

Only block size utilization was 

considered as the only criteria for 

merging without considering 

content characteristics and 

semantic relations 

Wang et al [21] probabilistic latent semantic analysis to determine 

the user access pattern and based on it small files 

are merged to a large file 

scheme is not suitable for multi 

user environment as for each user, 

a merging order must be kept and 

this increases the storage 

overhead 

He et al [22] merging the small files based on balance of data 

blocks 

Merging did not consider content 

characteristics and their semantic 

relation 

Fu et al [23] flat storage architecture collocating metadata and 

file in same object 

the scheme is not suited for 

Hadoop as collocation causes 

higher access overhead for large 

files 

Tao et al [24] merged small files to large file and built a linear 

hash to small files to speed up access 

File size was the only criteria 

considered for merging 

Bok et al [25] integrated file merging and caching to solve the 

small file problem 

The merging was based only on 

size without considering the 

content characteristics and 

semantic similarity 

Sharma et al [29] Authors created Hadoop archive from small files 

but made access faster using two special hash 

functions. 

Archiving was done without 

analysis of content characteristics 

and similarity  

Li et al [30] Improved genetic algorithm is used to schedule the 

resources to the tasks with goal of minimizing the 

task completion time. 

Task collocation based on data 

sharing characteristics was not 

considered.  

 

 

based on access frequency and performance can be 

still improved by using data semantic correlation to 

predict zero day blocks for replication. Li et al [23] 

proposed a performance aware scheduler (PAS) to 

schedule jobs in Hadoop clusters. The proposed 

solution automatically adjusts the scheduling policies 

to improve application performance and resource 

utilization.  Multiple concurrent tasks are scheduled 

using different policies based on predicted job 

completion time. Greedy policy based adjustment of 

policy is done to maximize average job performance 

frequently. Task grouping did not consider data 

access similarity and data location. If these are 

considered, the makespan of tasks can be still reduced.
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Figure. 1 Integrated management architecture 
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C. Resource management 

Lim et al [24] modeled resource allocation of 

scheduling on Hadoop as a optimization problem and 

proposed a constraint programming based resource 

allocation algorithm for Hadoop map reduce jobs. 

Each job has a service level agreement (SLA) in 

terms of deadline time for execution. A batch of jobs 

is considered for resource allocation and they are 

scheduled in such way to minimize theSLA miss ratio. 

The proposed scheduling algorithm was data locality 

aware and it placed jobs proximal to data. In case of 

small files, the number of jobs shoots up and the 

computational complexity for resource allocation 

using constraint programming becomes NP hard in 

this approach. Lim et al [25] improvised the 

constraint programming based resource management 

in Hadoop clusters to achieve higher performance. 

The job execution times were estimated using a 

presheduling error handling technique. But the error 

estimation technique proposed in this work did not 

consider the localization and proximity of data. Bader 

et al [26] proposed a resource allocation algorithm 

called Tarema. The resource allocation algorithm was 

designed to process scientific workflows in Hadoop 

clusters effectively. The nodes are clustered based on 

profile similarity and task were grouped based on 

semantics. The task groups are allocated to node 

clusters. But the scheme did not consider the data 

semantics while grouping the tasks.  Tao et al [27] 

proposed a dynamic Hadoop cluster on cloud 

infrastructure. The clusters were scaled based on load 

by varying the number of virtual machine. The VM 

were split to two categories of data storage and 

computing node. Computing nodes and storage node 

are placed proximal to minimize access delay. The 

tasks requesting same data are placed in computing 

node and data is placed in storage node. But the 

authors did not consider grouping data based on 

semantics and placing them on storage node. Due to 

this, the make span of Map reduce jobs increased in 

this work. Li et al [30] minimized execution time 

through optimal allocation of tasks to resources. But 

the work did not consider task collocation based on 

data sharing characteristics. 

The summary of most important works in the 

survey is presented in Table 1.  From the survey, it 

can be seen the existing works did not consider the 

joint influence of data, resource and task management 

in each other perceptive and thus performance gains 

were limited. Datasemantics and correlation of tasks 

based on semantics were not considered in 

scheduling andresource management decisions. To 

address this gap, this work integrates the data, task , 

and resource management with consideration for data 

semantics and data semantics based correlation in 

Table 2. Notations used in equations 
Notation  Detail  

xci,j
 Current position of elephant in the clan  

xcenter,ci
 Center position of all elephants in the 

clan 

xworst,ci,j
= Position of the elephant with worst 

fitness within the clan  

RC Overall resource cost  

SL Service level adherence  

ERE Overall distance between related task 

entities  

f Fitness function for task management  

PC Popularity counter  

α Popularity increment step ( value is set 

as 1 in this work) 

β Popularity decrement step ( value is set 

as 1 in this work) 

NT Number of tasks  

 

 

the task scheduling decisions. 

3. Proposed methodology 

The architecture of the integrated management 

technique is given in Fig. 1. It is layered architecture 

with management of data, task and resource in three 

layers of data placement; multi criteria task grouping 

and resource optimization. In the data placement 

layer, the incoming small files are analyzed and 

categorized based semantics. The small files are then 

organized to data blocks and moved to storage nodes. 

The metadata hash is then built to fetch the files in 

lowest latency and moved to Named node. Machine 

learning is applied for semantic analysis and 

categorization. In the multi criteria task group layer, 

the tasks are grouped based on the correlation 

between the semantics of data accessed by them. This 

is done to increase the volume of sharable 

information between the tasks and reduce the latency 

in data movement across computing nodes. The 

computing and storage resources are allocated based 

on task grouping. In the resource optimization layer, 

the data blocks or the storage nodes are replicated to 

increase the speed up with a minimal addition to 

resource cost. The details of each of the layers are 

presented in below subsections.  

The notations used in equations below are 

summarized in Table 2. 

 

A. Data placement layer 

For categorization of incoming text, the data 

semantics must be learnt. This work relies on named 

entity recognition model to learn data semantics. This 

work adopts DBpedia Spotlight [28] for named entity 

recognition. It is a widely used open source named 
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Figure. 2 Steiner minimal tree 

 

 

entity recognition system to label named references 

in text as entities in the DBpedia knowledge base. 

But the problem in use of DBpedia is that it provides 

vast number of named entities. Creating a data block 

for each named entity and keeping the small files 

containing the named entity in corresponding data 

blocks increases the storage volume and cost. To 

solve this, this work proposes named entity (NE) 

selection algorithm using the concept of Steiner 

minimal tree graph theory. Taking a batch of 

incoming text documents as input, the NE’s are first 

extracted for each document.  A graph is constructed 

with each NE as vertex. The weights between the NE 

is calculated using a combination of co-occurrence 

frequency and Word2vec similarity between the NE. 

Co-occurrence frequency is the number of documents 

in which the NE appear together. From the graph 

Steiner minimal tree is constructed as shown in Fig. 

2. The Steiner minimal tree identifies the optimal 

vertex points called Salient points representing close 

proximal vertexes. Once the Salient points are 

identified, the set of vertices near to the Salient points 

are grouped as related entities (RE). Since finding the 

Salient point is non polynomial complexity problem, 

this work using graph iterated 1-steiner heuristics to 

find the optimal Steiner points. Once the RE is 

constructed, a data block is created for each RE. For 

each text document association score to RE is 

calculated based on the number of NE shared 

between the text document and the RE. The text is 

placed in data block corresponding to the RE having 

highest association score the text document.  For each 

RE an index file is created and the metadata of file 

categorized to RE is kept in its corresponding index 

file. By this way, index file is generated for each RE. 

Locality sensitive hashing(LSH) is used for indexing 

the metadata. LSH is a method for approximate 

neighbor search in high dimensional space. It maps 

the high dimensional data to lower dimensional  

 
Figure. 3 LSH lookup 

 

 

representation using random hash function such a 

way that points closer in higher dimensional space 

maps to same low dimensional space with higher 

probability. LSH hashes the item repeatedly several 

times, so that similar items are more likely hashed to 

same bucket than dissimilar items as shown in Fig. 3. 

Thus to find the items in a database, which is similar 

to a query, LSH maps to most relevant bucket and 

number of buckets are also less. Due to this lookup 

becomes faster in LSH compared to hashing based 

lookup. The idea of LSH is to construct hash 

functions g: Rd → U such that for any two points p, q 

if ||p − q|| ≤ r, then Pr[g(p) = g(q)]  is high 

if ||p − q|| > 𝑐𝑟, 𝑡ℎ𝑒𝑛 Pr[g(p) = g(q)]  is small 

This is achieved with family H of functions 

 

g(p) =< h1(p), h2(p), … . hk(p) >  (1) 

 

For all data point pϵP ,  is hashed to buckets 

g1(p), g2(p), … gb(p) 

For an input query , the points are retrieved from the 

buckets g1(q), g2(q) ,… until all points from 

b buckets are retrieved. The effectiveness of LSH 

comes from use of multiple hash functions instead of 

single hash. Multiple hash reduces the number of 

buckets needed for mapping the items in the database 

The metadata mapping to a context is indexed using 

LSH to generate the buckets. The buckets 

corresponding to the context are written to a index 

file. When user/application queries for the small file, 

they can query the file by name or keywords. When 

the user queries by file name, parallel search is 

launched on each of index file using LSH. The bucket 

matching the filename is returned. From the bucket 

linear search is done with filename as key to return 

the metadata. When the query is done with keyword, 

linear search is done over the context file to find the 

matching context at first step and search is launched 
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the index file corresponding to that context using 

LSH. The bucket matching the filename is returned. 

From the bucket linear search is done with filename 

as key to return the metadata. 

The RE can be grouped based on the cosine 

similarity between the NE contained in them. The 

related RE are placed in the same storage node. 

Through this approach, the data placement layer 

ensures higher co-occurrence between the semantic 

similar data in the storage nodes. 

 

B. Task grouping layer 

In most of existing works, tasks operating on 

same data in terms of storage node commonality were 

grouped. This increased the sharable intermediate 

data volume for inter related tasks thereby increasing 

speed up and system utilization. But the problem in 

method is that, without organizing the data based on 

their correlations and without operating at fine 

grained level of data organized, the sharable 

intermediate volume cannot be increased. Also the 

speed up cannot be increased. Another problem is 

grouping tasks and allocating to computing nodes 

without considering their service level requirements 

increases the SLA miss rates. This work proposes a 

multi criteria task grouping with consideration for 

both data locality and task service level requirements. 

The tasks are processed in batches. In a batch, the 

tasks requesting for content are first grouped based 

on RE to which the content belongs. The RE to which 

the content belongs can be found from the index file. 

The initial group of tasks found based on RE must be 

further optimized based on two goals of (i) 

minimization of overall cost for execution (ii) 

maximization of SLA adherence and (iii) 

minimization of overall distance of RE in each group. 

Solution to this optimization problem is found using 

modified elephant herding optimization (MEHO) 

algorithm in this work. 

Elephant herding optimization (EHO) is a 

population based algorithm inspired by the herding 

behavior of elephants.  In EHO, the entire population 

of the elephants is split to certain number of clans. An 

adult female elephant called matriarch leads the clan. 

It is found as the best positioned agent in each 

iteration.  After each iteration, worst agent (male 

elephant) leaves the clan to live alone. The core of 

EHO is in two operations of: clan operation and 

separation operation. 

The position of the elephant or search agent (j) in 

clan ( ci)  is updated in relation to clan leader or 

matriarch as 

 

xnew,ci,j
=  xci,j

+  α (xbest,ci
− xci,j

) × r1  (2) 

Where xci,j
 is the current position, xnew,ci,j

 is new 

position xbest,ci
 is the position of best agent in clan ci 

and r1 is the random number in range of 0 to 1. The 

position of clan leader is taken as center of positions 

of all agents in the clan. It is calculated as 

 

xcenter,ci
=  

1

n
∑ xci,,j

n
j=1     (3) 

 

Where n is the number of agents in the clan.  

Male elephants leave the clan to avoid in-breeding 

within the clan. This leaving behavior is represented 

as separator operator given as  

 

xworst,ci,j
=  xmin + (xmax − xmin + 1) × r2  (4) 

 

Where xmin, xmax represents upper and lower bound 

of individual position and r2 is random number with 

value from 0 to 1.  

At each iteration of herd selection, best m elephants 

with higher fitness are selected to be explored for 

next iteration. By this way better performing agents 

are preserved. The steps in the algorithm are given 

below  

 

Algorithm: EHO  

Input: population size( ), number of clans( ), upper 

and lower bound of positions (xmin, xmax) 

Output: Best solution 

1. Initialize population with random positions  

2. Calculate fitness for all agents in population and 

sort based on fitness value 

3. Save the best  agents 

4. Divide the initial population into  clans  

5. while max generation is reached  

6.       for ci=1:c  

7.              for j=1: number of agents in clan  

8.                    updatexci,j
 as in eq. 2 

9.                    generatexcenter,ci
  as in eq. 3 

10.            end 

11.     end 

12.    for ci=1:c  

13.          replace agent with worst fitness xworst,ci,j
 

14.     end 

15. end 

16. return best solution 

 

In the EHO algorithm, the position of elephant is 

updated based on its current position and its clan 

leader position. Clan leader position is updated as 

center of new position of each elephant in the clan. 

This process of position update can get into local 

minimum problem. This work proposes a modified 
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EHO algorithm to avoid the local minima problem. 

The modified EHO allow elephants to also learn its 

position from other clan leaders in its neighborhood 

range. The center of all leaders within a configured 

neighborhood value is calculated as 

 

Ml =
1

m
∑ xcenter,cm

m
i=1     (5) 

 

Where  is the number of clans within the 

neighborhood.  The position of the agents are now 

updated as in Eq. (11) replacing the Eq. (7). 

 

xnew,ci,j
=  xci,j

+  α (xbest,ci
− xci,j

) × r1 +  (1 −

α)((xbest,ci
− Ml) × r2     (6) 

 

By this way, local minima problem in original EHO 

is avoided in the MEHO algorithm. 

The fitness function for MEHO for the problem 

of finding optimal group of tasks is formulated as 

 

f =
1

RC
+

1

SL
+

1

ERE
    (7) 

 

The overall resource cost (RC)   is calculated as the 

aggregation of cost of all the computing nodes used 

for execution of tasks. The computation nodes to be 

used for execution are calculated for each group as 

the total MIPS (million instructions per second) 

divided by the maximal MIPS capacity of the 

computing node. 

 

RC =  ∑
∑ MIPSi

NT
i=1

max  MIPS

NG
k=1    (8) 

 

Where NG  is the number of groups and NT  is the 

number of tasks in the group. The service level 

adherence ( SL) for a group is calculated in terms of 

 

𝑆𝐿 = {
1, ∑ T × max MIPS ≥  ∑ MIPSi

NT
i=1

NG
k=1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (9) 

 

Where T is threshold for maximum MIPS capacity 

that can be used by tasks in the computing node.  It is 

fixed as 0.8 in this work.  

Overall distance for RE ( ERE)  in the group is 

calculated as the sum of distance of RE between each 

task in group divided by the number of tasks. It is 

calculated as 

 

ERE =  ∑
∑ ∑ |dis(Ri)−dis(Rj)|NT−1

j=1
NT
i=1

NT

NG
k=1              (10) 

 

Starting with initial group of tasks, MEHO is invoked 

to optimize the fitness function Eq. (7). The result of  

Table 3. Node configuration 

Parameter Value 

CPU 2 core with 2.13 GHZ 

RAM 8 GB 

Disk 500 GB 

OS Ubuntu 

Hadoop version 2.9.1 

Number of replicas 3 

HDFS block size 512 MB 

 

MEHO is the optimized group of tasks.  Each group 

of task is scheduled to computing node  

 

C. Resource optimization layer 

In most existing works, data blocks are replicated 

for ease of faster access by computing nodes spread 

across multiple sites, but replicating storage node as 

whole increases the storage cost and also has poor 

resource utilization when few parts of storage node 

alone are accessed. This work proposes a replication 

strategy with less storage cost overhead by exploiting 

the fine grained access to data blocks in the storage 

node.  A popularity counter (PC) is maintained for 

each RE in the Namenode. This counter is either 

incremented or decremented based on access of data 

blocks corresponding to the RE. At Namenode, for 

every time duration, when a data block corresponding 

to RE in accessed, PC is incremented by up step and 

when not accessed the PC value is decremented by 

down step.  

PC =  {
PC + α , when RE is accessed
PC − β, when RE is not accessed

 

The number of replicas of the data block is made 

proportional to the PC value of RE to which the data 

block belongs. By this way, the data blocks with 

higher popularity based on it RE context alone are 

replicated, thus speeding the applications accessing 

those popular contents. Since replication is based on 

RE, even the data blocks which don’t have higher 

access are still replicated expecting a higher access 

pre-emptively. 

4. Results 

The performance of the proposed solution is 

tested against experimental setup consisting of 6 

nodes with 1 Namenode and 5 Data node. The 

configuration of each node is given in Table 3. Small 

text dataset of 100000,200000,300000 and 400000 

files with file size from 1KB to 10 MB is used for 

experimentation. Three recent works in category of 

data management (Dynamic repository approach by 

Sharma et al [29]), task management (PAS scheme 

by Li et al [23]) and resource management (genetic  
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Figure. 4 Execution time for word count application 

 

 
Figure. 5 Execution time for K mean clustering 

 

algorithm based resource optimization scheme by Li 

et al [30]).  Each of the above works attempted to 

speed up execution from three different perspectives 

of data, task and resource management and thus the 

proposed solution was compared with these works to 

prove the effectiveness of joint management of data, 

task and resources.  

The application execution time was measured for 

two applications of word count and k-mean clustering 

for various sizes of small files and the result is given 

in Figs. 4 and 5. The average execution time in the 

proposed solution for word count application is 11% 

lower compared to Sharma et al [29], 20.4% lower 

compared to Li et al [23] and 15.7% lower compared 

to Li et al [30]. The average execution time in the 

proposed solution for K-means clustering application 

is 8.73 lower compared to Sharma et al [29], 16% 

lower compared to Li et al [23] and 12% lower 

compared to Li et al [30]. The application speedup 

has increased in the proposed solution due to 

combined three factors high relevant task grouping, 

fine grained data locality and popularity based data 

block replication at a fine grained level. All these 

factors increased the volume of sharable data and 

reduced data transportation costs. The access time is 

measured for different number of random files and 

 
Figure. 6 Access time for 5 random files 

 

 
Figure. 7 Access time for 10 random files 

 

 
Figure. 8 Access time for 50 random files 

 

the results are given in Figs 6-8. The average access 

time in proposed solution is atleast 2.7% lower 

compared to Sharma et al [29], 4.6 % lower compared 

to Li et al [23] and 5.9 % lower compared to Li et al 

[30]. The access time has reduced in the proposed 

solution due to LSH based hashing of metadata in the 

index file compared to sequential search used in 

existing works. Use of LSH hashing combined to 

organization of index file based on RE has facilitated 

faster access to data.  

The normalized resource cost (NRC) is measured 

in terms of normalized percentage of overall time  
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Figure. 9 Normalized resource cost 

 

 
Figure. 10 SLA miss rate 

 

resources were occupied for word count and K-means 

clustering application and the result is given in Fig. 9. 

The average resource cost in proposed solution is 

atleast 9% lower compared to existing works. The 

resource cost reduction is due to use of fine grained 

replication at level of RE in the proposed solution 

compared to replication of all data blocks or storage 

node as a whole in the existing works.  

The SLA miss rate (SMR) is measured for various 

instances of tasks and the result is given in Fig. 10. 

The SLA miss rate in proposed solution is atleast 

37% compared to existing works. The SLA has 

reduced in the proposed solution due to effective 

grouping of tasks based on fine grained data locality. 

 

Discussion 

The salient features of these existing works are 

given in Table 4. The proposed solution’s application 

speedup increased by atleast 8.73% compared to 

Sharma et al, increased by atleast 16% compared to 

Li et al [23] and increased by atleast 12% compared 

to Li et al [30]. The reasons of the better performance 

of proposed solution were analyzed through ablation 

studies listed in Table 5.  The studies were conducted 

with K mean clustering application by comparing the 

application execution time. The results for execution 

are presented in Table 6. In comparison to Sharma et 

al [29] (Data management), ablation 1 achieved 

Table 4. Salient features of existing works 

Sharma et al [29] 

Authors created Hadoop archive 

from small files but made access 

faster using two special hash 

functions. 

Li et al [23] 
Dynamic policy update with the 

goal of improving job performance 

Li et al [30] 

Improved genetic algorithm is 

used to schedule the resources to 

the tasks with goal of minimizing 

the task completion time. 

 

 
Table 5. Ablation postulates 

Ablation 1 
Only fine grained data locality + LSH 

based hashing  (data management) 

Ablation 2 
Only fine grained task grouping (task 

management) 

Ablation 3 
Only fine grained data replication 

( resource management ) 

Ablation 4 

Combined fine grained task grouping, 

fine grained data locality and fine 

grained data replication (Integrated 

management) 

 

 

Table 6. Results of ablation studies 
Data management  

Sharma et al [29] 137   

Ablation 1 133   

Ablation 4 126 

Task management  

Li et al [23]  146.5 

Ablation 2 140 

Ablation 4 126 

Resource management 

Li et al [30] 141.5 

Ablation 3 139.7 

Ablation 4 126 

 

3.17% speedup. Thus the contribution of fine grained 

data locality+ LSH based hashing to application 

speed up in the proposed solution is 3.17%. But the 

overall integration (ablation 4) achieved 8.73% speed 

up. The LSH based hashing with data localization 

brings semantically similar data to same bucket and 

this in turn reduces the data transfer cost and 

increases application speed up. This proves that LSH 

based hashing with fine grained data localization 

management is very effective compared to Hadoop 

archive with hashing scheme adopted in Sharma et al 

[29]. 

In comparison to Li et al [23] (task management), 

ablation 2 achieved 5.51%. speedup. Thus the 

contribution of fine grained grouping in proposed 

solution is 5.51%. EHO based task grouping with 
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goal of task execution time minimization at same 

time exploiting task data sharing characteristics has 

increased the speedup compared to dynamic policy 

update strategy followed in Li et al [23]. The task 

grouping based on similarity is enhanced by using it 

as a important factor in fitness function to be 

optimized by modified EHO in the proposed task 

management scheme. This in combination with 

integrated management increased the speedup by 

another 3.2% to overall 8.73% speedup. 

In comparison to Li et al [30] (resource 

management), ablation 3 achieved 1.4% speed up. 

The speedup in ablation 3 is less compared to ablation 

1 and ablation 2. The fine grained resource 

replication performed only marginally higher 

compared to improved genetic algorithm based 

resource matching strategy proposed by Li et al [30]. 

But still the overall speed in integrated is higher due 

to contribution of ablation 1 and ablation 2. 

From these observations, it is proved that 

integrated management strategy adopted in proposed 

solution has contributed significantly positive to the 

application speedup. 

5. Conclusion 

An integrated management technique considering 

data, task and resource is proposed for speed up of 

small files processing in Hadoop clusters.  The 

proposed scheme grouped files at fine grained level 

based on semantics using natural language 

processing. The tasks are grouped based on multi 

criteria optimization using modified elephant herding 

algorithm. In addition replication of data blocks were 

done based on popularity at a fine grained level. Due 

to the joint integration of data, task and resource 

management, the proposed solution is able to achieve 

at least 8.7% speed up, reduce resource cost by 9% 

and reduce SLA miss rate by at least 37% compared 

to most recent works on individual management of 

data, task and resources. 
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