
Received: January 2, 2023. Revised: February 8, 2024. 572

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

Integrated Data, Task and Resource Management to Speed Up Processing Small

Files in Hadoop Cluster

Shwetha K S1* Chandramouli H1

1Department of Computer Science and Engineering, East Point College of Engineering and Technology,

Bengaluru, Karnataka, India
* Corresponding author’s Email: shwethaise.nhce@gmail.com

Abstract: Huge demand on business intelligence applications over large volume of enterprise data has resulted in

rapid adoption of High performance data analytics. Hadoop based high performance computing environment are

optimized for large files. Data centric execution with localization of computing proximal to data provided higher

performance for large files. But for small files, the performance reduced and overhead increased due to the way Hadoop

handles files. Resource allocation and scheduling policies of Hadoop has to be improvised to handle small files. This

work proposes an integrated data, task, and resource management technique to speed up processing of small files in

Hadoop based high performance computing environment. As part of data management, the data placement is made

dynamic to access frequency and inherent data semantics. As part of task management, tasks were grouped based on

fine grained data semantics correlation they process. As part of resource management, data blocks or storage nodes

are replicated to improve the access latency with minimal cost overheads. With this integrated management, the

proposed solution is able to increase the speedup of handling small files by at least 8.7% compared to most recent

works on individual management of data, task and resources.

Keywords: Hadoop, Small file, Speed up, Integrated management.

1. Introduction

Business environment has become more

competitive, and data centric orientation is the way

forward for enterprises to thrive in this environment.

Realizing it many businesses are using cutting edge

data analytics over the large volumes of data to mine

valuable knowledge for fine tuning their business

decisions. High performance computing (HPC) along

with machine learning and artificial intelligence are

the enabler technologies for this data centric business

transformation. Hadoop is the open source big data

processing component of HPC. It is designed for

optimal execution of data intensive applications.

Hadoop’s distributed file system (HDFS) deal with

the partioning, distribution and access of massive file

shares with sequential data access patterns, running

on clusters of nodes. HDFS organizes the files as

blocks and assign a map task to each block. By

collocating map tasks near to data blocks, Hadoop

reduces the latency in data access and speeds up the

execution of tasks. With emergence of IoT big data

integration, the files need to be mined were of small

size typically less than 2KB. Hadoop performance

dropped due to working with these small files as the

overhead in meta-data management and map

spawning overhead were higher [1-3]. Over the years,

many resource allocation, data management and

scheduling algorithms have been proposed to solve

this problem and improve the Hadoop performance

for small files. The solution lacked adaptation to data

semantics, tasks nature and service level agreements

of the customers. Also works addressing small file

problem to Hadoop clusters in the background of high

performance data analytics environment are very

meager.

This work addresses the problem of working with

small files in Hadoop based HPC environment and

proposes an integrated strategy involving joint

management of data, task, and resources. The

Received: January 2, 2023. Revised: February 8, 2024. 573

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

objective is to speed the execution of data analytics

on small files. The approach involves categorization

of data based on data semantics and placement of

them in storage nodes based on the categorization.

The tasks are grouped based on data access nature

and localized proximal to data blocks in such way to

optimize the data access latency and resource

consumption. The data blocks are replicated to

maximize the speed with minimal resource

consumption costs. Following are the contributions

of this work.

(i) A novel on fly data semantics extraction and

data semantics correlation technique to aid in

data co-location decision. The data co-location

based on the proposed data semantics reduced

the data access latency and helped to achieve

speed up of processing small files.

(ii) A task grouping algorithm based on task nature

and fine grained data access semantics is

proposed to group relevant tasks and collocate

their execution. This is done to minimize the

data transfer overheads and achieve speedup.

(iii) A data replication technique to speed up the

execution of tasks with multi objective

optimization of task speedup and resource costs

in Hadoop clusters. The optimization problem is

solved using elephant herding optimization

(EHO) algorithm.

The rest of the paper is organized as follows.

Section II provides the survey of existing algorithms

in category of data, task and resource management

and details the open issues. Section III details the

proposed integrated data, task, and resource

management technique. Section IV provides the

results of the proposed technique and its comparison

to existing works. Section V provides the concluding

remarks and presents the scope for future work.

2. Survey

The survey is in three categories of data, task and

resource management techniques.

A. Data management

Chen et al [4] proposed a data locality management

technique to speed up tasks. The Datanode’s storage

capability is set based on its execution capability.

Blocks are given importance to be stored in the fastest

Data node. By this way the performance of the map

tasks was improved. But the scheme did not consider

application and data characteristics in data block

allocation and scheduling of tasks. Xie et al [5]

proposed a data management technique for optimal

placement of data in heterogeneous Hadoop clusters.

A new metric called computing ratio was proposed to

profile the nodes and data is placed in proportion to

computing ratio. Authors also redistributed the data

based on node utilization. The data placement

strategy did not consider the data semantics and tasks

correlation. Also the redistribution scheme proposed

in this work has higher communication overhead.

Marquez et al [6] proposed a genetic programming

based data placement technique. The data placement

was optimized based on reduction of data write time

using genetic algorithm. Resource allocation was

optimized based on maximum utilization of physical

machine. But the approach did not consider data

semantics and task relation for data placement and

allocation. Jeyaraj et al [7] proposed a fine grained

data locality aware scheduling algorithm for reducing

the makespan of map reduce jobs in Hadoop clusters.

This scheduler attempts to minimize the amount of

intermediate data in the shuffle phase by using multi

level per node combiner. This scheme reduced the

intermediate data by executing group of map jobs

belonging to same application together. But the

scheme did not consider data proximity for grouping

map jobs. Amin et al [8] proposed a data provisioning

strategy to localize Hadoop clusters proximal to data

in high performance cloud computing environment.

The strategy minimizes the data access delay in the

environment by placing VM’s in Hadoop cluster

close to the storage node. By this way, the file transfer

time and hence the MapReduce job completion time

is reduced. The provisioning scheme does not

consider collocating inter related data and tasks

together to achieve maximal performance. Li et al [9]

proposed two different data locality optimization for

geo distributed clouds. In the first optimization

scheme, tasks are assigned according to node locality,

and access data of non-node-locality tasks are

migrated in advance by using the idle network

bandwidth. In the second optimization scheme, hot

files are predicted and synchronized among the nodes.

The tasks were not grouped based on similarity on

data access and thus the data transfer cost is higher in

this approach.

B. Task management

Hammoud et al [10] proposed a task scheduler to

improve the map reduce tasks performance in

Hadoop clusters. In addition to scheduling map based

on data locality, reduce tasks are also scheduled

based on data locality in this scheme. The early merge

of map outputs is delayed and once after a sufficient

time, the reduce task is scheduled on the node which

is close to maximum size of map outputs. This

improves the performance of reduce tasks by

minimizing the data shuffling volume. But the

scheme not does fully exploit the nature of data and

Received: January 2, 2023. Revised: February 8, 2024. 574

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

its semantics in its scheduling decision. Yao et al [11]

improvised the Hadoop’s YARN task scheduler to

address the problems in fairness and efficiency while

processing inter related tasks in Hadoop. The goal of

the scheduler was to reduce the makespan of the

batch of jobs by using the information on requested

resources, resource capacities and dependency

between tasks. Though authors considered

maximizing the CPU and memory usage, they did not

consider data nature and localization of tasks in their

scheduling decision. Kousiouris et al [12]

experimented with CPU percentage allocated to tasks

and their impact on application performance in

clusters. Authors found that collocating inter related

tasks on same node improves the performance. Thus

identifying the inter related based on data

characteristics and scheduling them on same node

increases the performance. But the authors did not

propose any scheme for identifying inter related tasks.

Wang et al [13] proposed a two stage scheduling

algorithm to increase the throughput in Hadoop

clusters. The algorithm has separate queue for each

node and a common queue for all nodes. Nodes

process task from its corresponding local queue when

it is free, it process task from global queue using

MaxWeight policy. Task processing did not consider

data localization. Yang et al [14] proposed two

techniques to optimize the internal overlap between

map and reduce jobs to reduce the map reduce

execution time in Hadoop clusters. Lazy start of

reduce tasks and batch finish of map tasks are done

for better alignment of map and reduce tasks. This

alignment improved node throughput. But the

proposed scheduling did not consider node

localization in allocation of reduce tasks to node. Liu

et al [15] proposed a Fair Sojourn Protocol in YARN

scheduler to improve the responsiveness and ensure

fairness in Hadoop clusters. It is a size based

scheduler where job size is predicted and based on

job size, resources are allocated to it. The efficiency

of the scheduling depends on the accuracy of the job

prediction. But prediction is based on moving

average. But job size prediction did not consider data

semantics. Zhang et al [16] proposed a task

scheduling algorithm for heterogeneous Hadoop

clusters. The tasks are allocated to node based on

objective of minimizing the waiting time and

transmission time for data. A metric based on

predicted waiting time and transmission time if

formulated. For batch of jobs, the metric is calculated,

and the jobs are allocated to node with overall goal

of minimizing the metric value. Task correlation and

data correlation was not exploited to maximize the

performance in this work. But the idea of evaluating

the tasks for allocation using a metric is novel

contribution in this work. Chen et al [17] proposed a

data locality aware real time scheduling technique for

Hadoop clusters. The tasks were categorized to data

intensive and CPU intensive. Data intensive tasks are

scheduled to data proximal nodes and CPU intensive

tasks are scheduled to nodes with minimal load

interference. Authors did not consider collocating

interrelated tasks to same node to maximize data

proximity. Wei et al [18] extended the default first in

first out (FIFO) scheduler of Hadoop with data

locality awareness and sharing. Tasks requesting

same data are grouped as batches and processed in

same node, so that data to be shared across tasks is

maximized. The scheduling algorithm was designed

only for homogenous clusters. The proposed tasks

grouping mechanism works did not consider the

granularity of data and semantics of the data for

grouping the tasks.Gandomi et al [19] proposed a

hybrid scheduling algorithm combining dynamic

priority and localization. The algorithm aimed to

increase the data locality rate and reduce completion

time. With dynamic priority and proportional share

assignment, tasks requesting same data are processed

in batches. This reduces the makespan for related

tasks. But the proposed scheme did not exploit the

data collocation and grouping data based on

semantics to maximize the performance gain. Choi et

al [20] proposed a task scheduling algorithm to solve

the performance problem due to input split consisting

of multiple data blocks. The algorithm operates in

two stages. In the first stage, tasks are classified to

three types based on data proximity. In the second

stage, classified tasks are assigned to nodes based on

priority criteria. Task classification method proposed

in this paper classifies task only based on data

location in rack and neglects the data semantics. The

performance of this method can be still improved by

data grouping based on semantics. Convolbo et al

[21] proposed a heuristic scheduling algorithm called

GeoDis to optimize the makespan for data intensive

jobs in geo distributed clouds. Authors formulated

the task placement and data access as a linear

programming problem and used heuristics linear

problem solver to find optimal task placement

schedule. But the solution is not scalable and

computing complexity is higher. Xie et al [22]

proposed a stochastic delay optimal algorithm called

Pandas to reduce the makespan of data intensive tasks.

It is task-level algorithm that specifies the priority

among tasks of any data-processing phase by

considering data locality considering data locality.

Pandas predict the contents for data blocks and create

replicas to avoid contention. By this way task

processing time is reduced at cost of minor storage

overhead. The contention blocks are predicted only

Received: January 2, 2023. Revised: February 8, 2024. 575

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

Table 1. Survey summary

Work Solution for small file problem Gap

Liu et al [18] File content based merging Constructing a global feature

space for streaming data is

difficult and thus this approach is

not suitable for streaming data

Lyu et al [19] optimized merging strategy to solve small file

problem.

Only block size utilization was

considered as the only criteria for

merging without considering

content characteristics and

semantic relations

Wang et al [21] probabilistic latent semantic analysis to determine

the user access pattern and based on it small files

are merged to a large file

scheme is not suitable for multi

user environment as for each user,

a merging order must be kept and

this increases the storage

overhead

He et al [22] merging the small files based on balance of data

blocks

Merging did not consider content

characteristics and their semantic

relation

Fu et al [23] flat storage architecture collocating metadata and

file in same object

the scheme is not suited for

Hadoop as collocation causes

higher access overhead for large

files

Tao et al [24] merged small files to large file and built a linear

hash to small files to speed up access

File size was the only criteria

considered for merging

Bok et al [25] integrated file merging and caching to solve the

small file problem

The merging was based only on

size without considering the

content characteristics and

semantic similarity

Sharma et al [29] Authors created Hadoop archive from small files

but made access faster using two special hash

functions.

Archiving was done without

analysis of content characteristics

and similarity

Li et al [30] Improved genetic algorithm is used to schedule the

resources to the tasks with goal of minimizing the

task completion time.

Task collocation based on data

sharing characteristics was not

considered.

based on access frequency and performance can be

still improved by using data semantic correlation to

predict zero day blocks for replication. Li et al [23]

proposed a performance aware scheduler (PAS) to

schedule jobs in Hadoop clusters. The proposed

solution automatically adjusts the scheduling policies

to improve application performance and resource

utilization. Multiple concurrent tasks are scheduled

using different policies based on predicted job

completion time. Greedy policy based adjustment of

policy is done to maximize average job performance

frequently. Task grouping did not consider data

access similarity and data location. If these are

considered, the makespan of tasks can be still reduced.

Received: January 2, 2023. Revised: February 8, 2024. 576

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

Figure. 1 Integrated management architecture

Data placement

layer

Data semantics feature

extraction

Data from streams
Machine learning based

data categorization

Fine grained grouping

within storage node

Second level storage node

grouping

Multi criteria task

grouping layer

Multi criteria task grouping

Tasks
Compute node

resource allocation for

task groups

Task groups

Resource

optimization layer

Multi criteria data

replication

Data access history

+ task profile + Data

semantics

Replication within

storage node

Replication across

storage node

Received: January 2, 2023. Revised: February 8, 2024. 577

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

C. Resource management

Lim et al [24] modeled resource allocation of

scheduling on Hadoop as a optimization problem and

proposed a constraint programming based resource

allocation algorithm for Hadoop map reduce jobs.

Each job has a service level agreement (SLA) in

terms of deadline time for execution. A batch of jobs

is considered for resource allocation and they are

scheduled in such way to minimize theSLA miss ratio.

The proposed scheduling algorithm was data locality

aware and it placed jobs proximal to data. In case of

small files, the number of jobs shoots up and the

computational complexity for resource allocation

using constraint programming becomes NP hard in

this approach. Lim et al [25] improvised the

constraint programming based resource management

in Hadoop clusters to achieve higher performance.

The job execution times were estimated using a

presheduling error handling technique. But the error

estimation technique proposed in this work did not

consider the localization and proximity of data. Bader

et al [26] proposed a resource allocation algorithm

called Tarema. The resource allocation algorithm was

designed to process scientific workflows in Hadoop

clusters effectively. The nodes are clustered based on

profile similarity and task were grouped based on

semantics. The task groups are allocated to node

clusters. But the scheme did not consider the data

semantics while grouping the tasks. Tao et al [27]

proposed a dynamic Hadoop cluster on cloud

infrastructure. The clusters were scaled based on load

by varying the number of virtual machine. The VM

were split to two categories of data storage and

computing node. Computing nodes and storage node

are placed proximal to minimize access delay. The

tasks requesting same data are placed in computing

node and data is placed in storage node. But the

authors did not consider grouping data based on

semantics and placing them on storage node. Due to

this, the make span of Map reduce jobs increased in

this work. Li et al [30] minimized execution time

through optimal allocation of tasks to resources. But

the work did not consider task collocation based on

data sharing characteristics.

The summary of most important works in the

survey is presented in Table 1. From the survey, it

can be seen the existing works did not consider the

joint influence of data, resource and task management

in each other perceptive and thus performance gains

were limited. Datasemantics and correlation of tasks

based on semantics were not considered in

scheduling andresource management decisions. To

address this gap, this work integrates the data, task ,

and resource management with consideration for data

semantics and data semantics based correlation in

Table 2. Notations used in equations
Notation Detail

xci,j
 Current position of elephant in the clan

xcenter,ci
 Center position of all elephants in the

clan

xworst,ci,j
= Position of the elephant with worst

fitness within the clan

RC Overall resource cost

SL Service level adherence

ERE Overall distance between related task

entities

f Fitness function for task management

PC Popularity counter

α Popularity increment step (value is set

as 1 in this work)

β Popularity decrement step (value is set

as 1 in this work)

NT Number of tasks

the task scheduling decisions.

3. Proposed methodology

The architecture of the integrated management

technique is given in Fig. 1. It is layered architecture

with management of data, task and resource in three

layers of data placement; multi criteria task grouping

and resource optimization. In the data placement

layer, the incoming small files are analyzed and

categorized based semantics. The small files are then

organized to data blocks and moved to storage nodes.

The metadata hash is then built to fetch the files in

lowest latency and moved to Named node. Machine

learning is applied for semantic analysis and

categorization. In the multi criteria task group layer,

the tasks are grouped based on the correlation

between the semantics of data accessed by them. This

is done to increase the volume of sharable

information between the tasks and reduce the latency

in data movement across computing nodes. The

computing and storage resources are allocated based

on task grouping. In the resource optimization layer,

the data blocks or the storage nodes are replicated to

increase the speed up with a minimal addition to

resource cost. The details of each of the layers are

presented in below subsections.

The notations used in equations below are

summarized in Table 2.

A. Data placement layer

For categorization of incoming text, the data

semantics must be learnt. This work relies on named

entity recognition model to learn data semantics. This

work adopts DBpedia Spotlight [28] for named entity

recognition. It is a widely used open source named

Received: January 2, 2023. Revised: February 8, 2024. 578

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

Figure. 2 Steiner minimal tree

entity recognition system to label named references

in text as entities in the DBpedia knowledge base.

But the problem in use of DBpedia is that it provides

vast number of named entities. Creating a data block

for each named entity and keeping the small files

containing the named entity in corresponding data

blocks increases the storage volume and cost. To

solve this, this work proposes named entity (NE)

selection algorithm using the concept of Steiner

minimal tree graph theory. Taking a batch of

incoming text documents as input, the NE’s are first

extracted for each document. A graph is constructed

with each NE as vertex. The weights between the NE

is calculated using a combination of co-occurrence

frequency and Word2vec similarity between the NE.

Co-occurrence frequency is the number of documents

in which the NE appear together. From the graph

Steiner minimal tree is constructed as shown in Fig.

2. The Steiner minimal tree identifies the optimal

vertex points called Salient points representing close

proximal vertexes. Once the Salient points are

identified, the set of vertices near to the Salient points

are grouped as related entities (RE). Since finding the

Salient point is non polynomial complexity problem,

this work using graph iterated 1-steiner heuristics to

find the optimal Steiner points. Once the RE is

constructed, a data block is created for each RE. For

each text document association score to RE is

calculated based on the number of NE shared

between the text document and the RE. The text is

placed in data block corresponding to the RE having

highest association score the text document. For each

RE an index file is created and the metadata of file

categorized to RE is kept in its corresponding index

file. By this way, index file is generated for each RE.

Locality sensitive hashing(LSH) is used for indexing

the metadata. LSH is a method for approximate

neighbor search in high dimensional space. It maps

the high dimensional data to lower dimensional

Figure. 3 LSH lookup

representation using random hash function such a

way that points closer in higher dimensional space

maps to same low dimensional space with higher

probability. LSH hashes the item repeatedly several

times, so that similar items are more likely hashed to

same bucket than dissimilar items as shown in Fig. 3.

Thus to find the items in a database, which is similar

to a query, LSH maps to most relevant bucket and

number of buckets are also less. Due to this lookup

becomes faster in LSH compared to hashing based

lookup. The idea of LSH is to construct hash

functions g: Rd → U such that for any two points p, q

if ||p − q|| ≤ r, then Pr[g(p) = g(q)] is high

if ||p − q|| > 𝑐𝑟, 𝑡ℎ𝑒𝑛 Pr[g(p) = g(q)] is small

This is achieved with family H of functions

g(p) =< h1(p), h2(p), … . hk(p) > (1)

For all data point pϵP , is hashed to buckets

g1(p), g2(p), … gb(p)

For an input query , the points are retrieved from the

buckets g1(q), g2(q) ,… until all points from

b buckets are retrieved. The effectiveness of LSH

comes from use of multiple hash functions instead of

single hash. Multiple hash reduces the number of

buckets needed for mapping the items in the database

The metadata mapping to a context is indexed using

LSH to generate the buckets. The buckets

corresponding to the context are written to a index

file. When user/application queries for the small file,

they can query the file by name or keywords. When

the user queries by file name, parallel search is

launched on each of index file using LSH. The bucket

matching the filename is returned. From the bucket

linear search is done with filename as key to return

the metadata. When the query is done with keyword,

linear search is done over the context file to find the

matching context at first step and search is launched

Received: January 2, 2023. Revised: February 8, 2024. 579

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

the index file corresponding to that context using

LSH. The bucket matching the filename is returned.

From the bucket linear search is done with filename

as key to return the metadata.

The RE can be grouped based on the cosine

similarity between the NE contained in them. The

related RE are placed in the same storage node.

Through this approach, the data placement layer

ensures higher co-occurrence between the semantic

similar data in the storage nodes.

B. Task grouping layer

In most of existing works, tasks operating on

same data in terms of storage node commonality were

grouped. This increased the sharable intermediate

data volume for inter related tasks thereby increasing

speed up and system utilization. But the problem in

method is that, without organizing the data based on

their correlations and without operating at fine

grained level of data organized, the sharable

intermediate volume cannot be increased. Also the

speed up cannot be increased. Another problem is

grouping tasks and allocating to computing nodes

without considering their service level requirements

increases the SLA miss rates. This work proposes a

multi criteria task grouping with consideration for

both data locality and task service level requirements.

The tasks are processed in batches. In a batch, the

tasks requesting for content are first grouped based

on RE to which the content belongs. The RE to which

the content belongs can be found from the index file.

The initial group of tasks found based on RE must be

further optimized based on two goals of (i)

minimization of overall cost for execution (ii)

maximization of SLA adherence and (iii)

minimization of overall distance of RE in each group.

Solution to this optimization problem is found using

modified elephant herding optimization (MEHO)

algorithm in this work.

Elephant herding optimization (EHO) is a

population based algorithm inspired by the herding

behavior of elephants. In EHO, the entire population

of the elephants is split to certain number of clans. An

adult female elephant called matriarch leads the clan.

It is found as the best positioned agent in each

iteration. After each iteration, worst agent (male

elephant) leaves the clan to live alone. The core of

EHO is in two operations of: clan operation and

separation operation.

The position of the elephant or search agent (j) in

clan (ci) is updated in relation to clan leader or

matriarch as

xnew,ci,j
= xci,j

+ α (xbest,ci
− xci,j

) × r1 (2)

Where xci,j
 is the current position, xnew,ci,j

 is new

position xbest,ci
 is the position of best agent in clan ci

and r1 is the random number in range of 0 to 1. The

position of clan leader is taken as center of positions

of all agents in the clan. It is calculated as

xcenter,ci
=

1

n
∑ xci,,j

n
j=1 (3)

Where n is the number of agents in the clan.

Male elephants leave the clan to avoid in-breeding

within the clan. This leaving behavior is represented

as separator operator given as

xworst,ci,j
= xmin + (xmax − xmin + 1) × r2 (4)

Where xmin, xmax represents upper and lower bound

of individual position and r2 is random number with

value from 0 to 1.

At each iteration of herd selection, best m elephants

with higher fitness are selected to be explored for

next iteration. By this way better performing agents

are preserved. The steps in the algorithm are given

below

Algorithm: EHO

Input: population size(), number of clans(), upper

and lower bound of positions (xmin, xmax)

Output: Best solution

1. Initialize population with random positions

2. Calculate fitness for all agents in population and

sort based on fitness value

3. Save the best agents

4. Divide the initial population into clans

5. while max generation is reached

6. for ci=1:c

7. for j=1: number of agents in clan

8. updatexci,j
 as in eq. 2

9. generatexcenter,ci
 as in eq. 3

10. end

11. end

12. for ci=1:c

13. replace agent with worst fitness xworst,ci,j

14. end

15. end

16. return best solution

In the EHO algorithm, the position of elephant is

updated based on its current position and its clan

leader position. Clan leader position is updated as

center of new position of each elephant in the clan.

This process of position update can get into local

minimum problem. This work proposes a modified

Received: January 2, 2023. Revised: February 8, 2024. 580

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

EHO algorithm to avoid the local minima problem.

The modified EHO allow elephants to also learn its

position from other clan leaders in its neighborhood

range. The center of all leaders within a configured

neighborhood value is calculated as

Ml =
1

m
∑ xcenter,cm

m
i=1 (5)

Where is the number of clans within the

neighborhood. The position of the agents are now

updated as in Eq. (11) replacing the Eq. (7).

xnew,ci,j
= xci,j

+ α (xbest,ci
− xci,j

) × r1 + (1 −

α)((xbest,ci
− Ml) × r2 (6)

By this way, local minima problem in original EHO

is avoided in the MEHO algorithm.

The fitness function for MEHO for the problem

of finding optimal group of tasks is formulated as

f =
1

RC
+

1

SL
+

1

ERE
 (7)

The overall resource cost (RC) is calculated as the

aggregation of cost of all the computing nodes used

for execution of tasks. The computation nodes to be

used for execution are calculated for each group as

the total MIPS (million instructions per second)

divided by the maximal MIPS capacity of the

computing node.

RC = ∑
∑ MIPSi

NT
i=1

max MIPS

NG
k=1 (8)

Where NG is the number of groups and NT is the

number of tasks in the group. The service level

adherence (SL) for a group is calculated in terms of

𝑆𝐿 = {
1, ∑ T × max MIPS ≥ ∑ MIPSi

NT
i=1

NG
k=1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9)

Where T is threshold for maximum MIPS capacity

that can be used by tasks in the computing node. It is

fixed as 0.8 in this work.

Overall distance for RE (ERE) in the group is

calculated as the sum of distance of RE between each

task in group divided by the number of tasks. It is

calculated as

ERE = ∑
∑ ∑ |dis(Ri)−dis(Rj)|NT−1

j=1
NT
i=1

NT

NG
k=1 (10)

Starting with initial group of tasks, MEHO is invoked

to optimize the fitness function Eq. (7). The result of

Table 3. Node configuration

Parameter Value

CPU 2 core with 2.13 GHZ

RAM 8 GB

Disk 500 GB

OS Ubuntu

Hadoop version 2.9.1

Number of replicas 3

HDFS block size 512 MB

MEHO is the optimized group of tasks. Each group

of task is scheduled to computing node

C. Resource optimization layer

In most existing works, data blocks are replicated

for ease of faster access by computing nodes spread

across multiple sites, but replicating storage node as

whole increases the storage cost and also has poor

resource utilization when few parts of storage node

alone are accessed. This work proposes a replication

strategy with less storage cost overhead by exploiting

the fine grained access to data blocks in the storage

node. A popularity counter (PC) is maintained for

each RE in the Namenode. This counter is either

incremented or decremented based on access of data

blocks corresponding to the RE. At Namenode, for

every time duration, when a data block corresponding

to RE in accessed, PC is incremented by up step and

when not accessed the PC value is decremented by

down step.

PC = {
PC + α , when RE is accessed
PC − β, when RE is not accessed

The number of replicas of the data block is made

proportional to the PC value of RE to which the data

block belongs. By this way, the data blocks with

higher popularity based on it RE context alone are

replicated, thus speeding the applications accessing

those popular contents. Since replication is based on

RE, even the data blocks which don’t have higher

access are still replicated expecting a higher access

pre-emptively.

4. Results

The performance of the proposed solution is

tested against experimental setup consisting of 6

nodes with 1 Namenode and 5 Data node. The

configuration of each node is given in Table 3. Small

text dataset of 100000,200000,300000 and 400000

files with file size from 1KB to 10 MB is used for

experimentation. Three recent works in category of

data management (Dynamic repository approach by

Sharma et al [29]), task management (PAS scheme

by Li et al [23]) and resource management (genetic

Received: January 2, 2023. Revised: February 8, 2024. 581

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

Figure. 4 Execution time for word count application

Figure. 5 Execution time for K mean clustering

algorithm based resource optimization scheme by Li

et al [30]). Each of the above works attempted to

speed up execution from three different perspectives

of data, task and resource management and thus the

proposed solution was compared with these works to

prove the effectiveness of joint management of data,

task and resources.

The application execution time was measured for

two applications of word count and k-mean clustering

for various sizes of small files and the result is given

in Figs. 4 and 5. The average execution time in the

proposed solution for word count application is 11%

lower compared to Sharma et al [29], 20.4% lower

compared to Li et al [23] and 15.7% lower compared

to Li et al [30]. The average execution time in the

proposed solution for K-means clustering application

is 8.73 lower compared to Sharma et al [29], 16%

lower compared to Li et al [23] and 12% lower

compared to Li et al [30]. The application speedup

has increased in the proposed solution due to

combined three factors high relevant task grouping,

fine grained data locality and popularity based data

block replication at a fine grained level. All these

factors increased the volume of sharable data and

reduced data transportation costs. The access time is

measured for different number of random files and

Figure. 6 Access time for 5 random files

Figure. 7 Access time for 10 random files

Figure. 8 Access time for 50 random files

the results are given in Figs 6-8. The average access

time in proposed solution is atleast 2.7% lower

compared to Sharma et al [29], 4.6 % lower compared

to Li et al [23] and 5.9 % lower compared to Li et al

[30]. The access time has reduced in the proposed

solution due to LSH based hashing of metadata in the

index file compared to sequential search used in

existing works. Use of LSH hashing combined to

organization of index file based on RE has facilitated

faster access to data.

The normalized resource cost (NRC) is measured

in terms of normalized percentage of overall time

35

55

75

95

115

135

155

175

time(s)

Number of files

Proposed

Sharma [29]

Li et al [23]

Li et al [30]

0

50

100

150

200

250

time(s)

Number of files

Proposed

Sharma [29]

Li et al [23]

Li et al [30]

415

420

425

430

435

440

445

450

455

Proposed Sharma
et al [29]

Li et al
[23]

Li et al
[30]

time(s)

500
510
520
530
540
550
560

time(s)

590
600
610
620
630
640
650
660

time(s)

Received: January 2, 2023. Revised: February 8, 2024. 582

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

Figure. 9 Normalized resource cost

Figure. 10 SLA miss rate

resources were occupied for word count and K-means

clustering application and the result is given in Fig. 9.

The average resource cost in proposed solution is

atleast 9% lower compared to existing works. The

resource cost reduction is due to use of fine grained

replication at level of RE in the proposed solution

compared to replication of all data blocks or storage

node as a whole in the existing works.

The SLA miss rate (SMR) is measured for various

instances of tasks and the result is given in Fig. 10.

The SLA miss rate in proposed solution is atleast

37% compared to existing works. The SLA has

reduced in the proposed solution due to effective

grouping of tasks based on fine grained data locality.

Discussion

The salient features of these existing works are

given in Table 4. The proposed solution’s application

speedup increased by atleast 8.73% compared to

Sharma et al, increased by atleast 16% compared to

Li et al [23] and increased by atleast 12% compared

to Li et al [30]. The reasons of the better performance

of proposed solution were analyzed through ablation

studies listed in Table 5. The studies were conducted

with K mean clustering application by comparing the

application execution time. The results for execution

are presented in Table 6. In comparison to Sharma et

al [29] (Data management), ablation 1 achieved

Table 4. Salient features of existing works

Sharma et al [29]

Authors created Hadoop archive

from small files but made access

faster using two special hash

functions.

Li et al [23]
Dynamic policy update with the

goal of improving job performance

Li et al [30]

Improved genetic algorithm is

used to schedule the resources to

the tasks with goal of minimizing

the task completion time.

Table 5. Ablation postulates

Ablation 1
Only fine grained data locality + LSH

based hashing (data management)

Ablation 2
Only fine grained task grouping (task

management)

Ablation 3
Only fine grained data replication

(resource management)

Ablation 4

Combined fine grained task grouping,

fine grained data locality and fine

grained data replication (Integrated

management)

Table 6. Results of ablation studies
Data management

Sharma et al [29] 137

Ablation 1 133

Ablation 4 126

Task management

Li et al [23] 146.5

Ablation 2 140

Ablation 4 126

Resource management

Li et al [30] 141.5

Ablation 3 139.7

Ablation 4 126

3.17% speedup. Thus the contribution of fine grained

data locality+ LSH based hashing to application

speed up in the proposed solution is 3.17%. But the

overall integration (ablation 4) achieved 8.73% speed

up. The LSH based hashing with data localization

brings semantically similar data to same bucket and

this in turn reduces the data transfer cost and

increases application speed up. This proves that LSH

based hashing with fine grained data localization

management is very effective compared to Hadoop

archive with hashing scheme adopted in Sharma et al

[29].

In comparison to Li et al [23] (task management),

ablation 2 achieved 5.51%. speedup. Thus the

contribution of fine grained grouping in proposed

solution is 5.51%. EHO based task grouping with

0
0.2
0.4
0.6
0.8

1
1.2

NRC
Word count

K means
clustering

0

0.05

0.1

0.15

0.2

0.25

0.3

10 20 30 40

SMR

Number of task

Proposed

Sharma [29]

Li et al [23]

Li et al [30]

Received: January 2, 2023. Revised: February 8, 2024. 583

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

goal of task execution time minimization at same

time exploiting task data sharing characteristics has

increased the speedup compared to dynamic policy

update strategy followed in Li et al [23]. The task

grouping based on similarity is enhanced by using it

as a important factor in fitness function to be

optimized by modified EHO in the proposed task

management scheme. This in combination with

integrated management increased the speedup by

another 3.2% to overall 8.73% speedup.

In comparison to Li et al [30] (resource

management), ablation 3 achieved 1.4% speed up.

The speedup in ablation 3 is less compared to ablation

1 and ablation 2. The fine grained resource

replication performed only marginally higher

compared to improved genetic algorithm based

resource matching strategy proposed by Li et al [30].

But still the overall speed in integrated is higher due

to contribution of ablation 1 and ablation 2.

From these observations, it is proved that

integrated management strategy adopted in proposed

solution has contributed significantly positive to the

application speedup.

5. Conclusion

An integrated management technique considering

data, task and resource is proposed for speed up of

small files processing in Hadoop clusters. The

proposed scheme grouped files at fine grained level

based on semantics using natural language

processing. The tasks are grouped based on multi

criteria optimization using modified elephant herding

algorithm. In addition replication of data blocks were

done based on popularity at a fine grained level. Due

to the joint integration of data, task and resource

management, the proposed solution is able to achieve

at least 8.7% speed up, reduce resource cost by 9%

and reduce SLA miss rate by at least 37% compared

to most recent works on individual management of

data, task and resources.

Conflicts of Interest

Authors declare no conflict of interest.

Author Contributions

Shwetha is the primary author who

conceptualized, implemented and documented this

paper work. Chandramouli reviewed the work and

contributed to improvising the paper work.

Acknowledgments

Shwetha was the primary author who

conceptualized, implemented the concept, collected

results and documented the paper. Chandramouli

reviewed the work, suggested changes and verified

the results.

References

[1] R. Aggarwal, J. Verma, and M. Siwach, “Small

files’ problem in Hadoop: A systematic literature

review”, Journal of King Saud University -

Computer and Information Sciences, Vol. 34, No.

10, pp. 8658-8674, 2022.

[2] A. Mehmood, M. Usman, W. Mehmood and Y.

Khaliq, “Performance efficiency in Hadoop for

storing and accessing small files”, In: Proc. of

Seventh International Conference on Innovative

Computing Technology (INTECH), pp. 211-21,

2017.

[3] B. Dong, Q. Zheng, F. Tian and K. Chao, “An

optimized approach for storing and accessing

small files on cloud storage”, Journal of Network

and Computer Applications, Vol. 35 pp. 1847-

1862, Elsevier, 2012.
[4] T. Chen, J. Hung, S. Hsieh and R. Buyya,

“Heterogeneous Job Allocation Scheduler for
Hadoop MapReduce Using Dynamic Grouping
Integrated Neighboring Search”, IEEE
Transactions on Cloud Computing, Vol. 8, No. 1,
pp. 193-206, 2020.

[5] J. Xie, S. Yin, X. Rua and X. Qin, “Improving
MapReduce performance through data placement
in heterogeneous Hadoop clusters”, In: Proc. of
IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd
Forum (IPDPSW), pp. 1-9, 2010.

[6] J. Marquez, H. Mondragon, and D. Juan, “An
Intelligent Approach to Resource Allocation on
Heterogeneous Cloud Infrastructures”, Applied
Sciences, Vol. 11, No. 21, pp. 9940, 2021.

[7] R. Jeyaraj, S. Ananthanarayana and A. Paul,
“Fine-grained data-locality aware MapReduce
job scheduler in a virtualized environment”, J
Ambient Intell Human Comput, Vol. 11, pp.4261-
4272 ,2020.

[8] F. Thaha, M. Amin, S. Kannan and M. Ahmad,
“Data location aware scheduling for virtual
Hadoop cluster deployment on private cloud
computing environment,” In: Proc. of 22nd Asia-
Pacific Conference on Communications (APCC),
pp. 103-109, 2016.

[9] C. Li, J. Zhang and M. Tao, “Data locality
optimization based on data migration and
hotspots prediction in geo-distributed cloud
environment”, Knowledge-Based Systems, Vol.
165, 2018

[10] M. Hammoud and F. Sakr, “Locality-aware
reduce task scheduling for MapReduce,” In:

Received: January 2, 2023. Revised: February 8, 2024. 584

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024 DOI: 10.22266/ijies2024.0430.46

Proc. of the IEEE Third International Conference
on Cloud Computing Technology and Science,
pp. 570-576, 2011.

[11] Y. Yao, H. Gao, J. Wang, B. Sheng and N. Mi,
“New Scheduling Algorithms for Improving
Performance and Resource Utilization in Hadoop
YARN Clusters”, IEEE Transactions on Cloud
Computing, Vol. 9, No. 3, pp. 1158-1171, 2021.

[12] G. Kousiouris, T. Cucinotta and T. Varvarigou,
“The effects of scheduling, workload type and
consolidation scenarios on virtual machine
performance and their prediction through
optimized artificial neural networks”, Journal of
Systems and Software, Vol. 84, pp. 1270-1291,
2011.

[13] W. Wang, K. Zhu, L. Ying and J. Tan,
“MapTask scheduling in mapreduce with data
locality: throughput and heavy traffic
optimality”, IEEE/ACM Transactions on
Networking, Vol. 24, pp. 190-203, 2016.

[14] A. Yang, J. Wang, Y. Mao and Y. Yao,
“Optimizing Internal Overlaps by Self-Adjusting
Resource Allocation in Multi-Stage Computing
Systems”, IEEE Access, pp. 88805-88819, 2021.

[15] Y. Liu, Y. Zeng and X. Piao, “High-Responsive
Scheduling with MapReduce Performance
Prediction on Hadoop YARN”, In: Proc. of IEEE
International Conference on Embedded and
Real-Time Computing Systems and Applications,
pp. 238-247,2016.

[16] X. Zhang, Y. Feng, S. Feng, J. Fan and Z. Ming,
“An effective data locality aware task scheduling
method for MapReduce framework in
heterogeneous environments”, In: Proc. of
International Conference on Cloud and Service
Computing, pp. 235-242, 2011.

[17] Y. Chen, W. Wei, F. Wei, and. J. Chen, “LaSA:
A locality-aware scheduling algorithm for
Hadoop-MapReduce resource assignment”, In:
Proc. of International Conference on
Collaboration Technologies and Systems, pp.
342-346, 2013.

[18] H. Wei, H., Wu, Y. Lee, C. Hsu, “Shareability
and Locality Aware Scheduling Algorithm in
Hadoop for Mobile Cloud Computing”, J. Inf.
Hiding Multim. Signal Process, Vol. 6, pp.1215-
1230, 2015.

[19] A. Gandomi, M. Reshadi and A. Movaghar,
“HybSMRP: a hybrid scheduling algorithm in
Hadoop MapReduce framework”, J Big Data,
Vol. 6, No.106, 2019.

[20] D. Choi, M. Jeon, N. Kim and D. Lee, “An
Enhanced Data-Locality-Aware Task Scheduling
Algorithm for Hadoop Applications”, IEEE
Systems Journal, Vol. 12, No. 4, pp. 3346-
3357,2018.

[21] M. Convolbo, J. Chou, H. Hsu and C. Chung,
“GEODIS: towards the optimization of data
locality-aware job scheduling in geo-distributed
data centers”, Computing, Vol. 100, No. 12, pp.
21-46,2018.

[22] Q. Xie, M. Pundir, Y. Lu and Y., Abad, “Pandas:
Robust Locality-Aware Scheduling with
Stochastic Delay Optimality”, IEEE/ACM
Transactions on Networking, Vol.25,No.2,pp.
662-675,2017.

[23] Y. Li, T. Li and P. Shen, “PAS: Performance-
Aware Job Scheduling for Big Data Processing
Systems”, Security and Communication
Networks, Vol. 2022, pp. 14 pages, 2022.

[24] N. Lim, S. Majumdar and P. Ashwood-Smith,
“MRCP-RM: A Technique for Resource
Allocation and Scheduling of MapReduce Jobs
with Deadlines”, IEEE Transactions on Parallel
and Distributed Systems, Vol. 28, No. 5, pp.
1375-1389, 2017.

[25] N. Lim, S. Majumdar and P. Ashwood-Smith,
“Techniques for Handling Error in User-
Estimated Execution Times During Resource
Management on Systems Processing MapReduce
Jobs”, In: Proc. of IEEE/ACM International
Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pp. 788-793, 2017.

[26] Y. Chen, W. Wei, F. Wei and J. Chen, “LaSA:
A locality-aware scheduling algorithm for
Hadoop-MapReduce resource assignment”, In:
Proc. of International Conference on
Collaboration Technologies and Systems, pp.
342-346, 2013.

[27] D. Tao, Z. Lin and B. Wang, “Load Feedback-
Based Resource Scheduling and Dynamic
Migration-Based Data Locality for Virtual
Hadoop Clusters in OpenStack-Based Clouds”,
Tsinghua Science and Technology, Vol. 22, No.
2, pp. 149-159, 2017.

[28] https://www.dbpedia-spotlight.org/
[29] S. Sharma, A Afthanorhan, C. Barwar, S. Singh

and H. Malik, “A Dynamic Repository Approach
for Small File Management with Fast Access
Time on Hadoop Cluster: Hash Based Extended
Hadoop Archive”, IEEE Access, Vol. 10, pp.
36856-36867, 2022.

[30] Y. Li and X. Hei, “Performance optimization of
computing task scheduling based on the Hadoop
big data platform”, Neural Comput&Applic,
2022.

about:blank

