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Abstract: Industrial 4.0 technological breakthroughs highly impact healthcare 4.0 and enable transformative impact 

on the healthcare system by shifting towards efficient, patient-centric, data-driven, and robust global healthcare 

services. This paper presents a robust security framework; federated learning (FL) based RPL vulnerability analysis 

and attack detection (FRVA), for ensuring secure Healthcare 4.0. The FRVA is proposed to defend the RPL-

healthcare 4.0 against multiple attacks by applying deep learning-based fuzzing and FL-enabled hybrid learning. 

RPL vulnerabilities are analyzed using randomly generated inputs by deep learning-based fuzzing. Further, it feeds 

the RPL vulnerability-rich fuzzed output dataset to the FL-hybrid learning model. The second model improved the 

customized local learning models using globally shared information according to FL, resulting in high learning 

accuracy with precise attack detection. The proposed FRVA runs the vulnerability analysis and attack detection at 

the edges to prolong the network lifetime with high security. Moreover, the performance of the FRVA is validated 

through Python-based simulations using different metrics. The simulation results demonstrate that the proposed FL-

based hybrid CNN-LSTM strategy enhances the accuracy by 5.55% and 12.9%, respectively, compared with the 

individual CNN and LSTM methods. It also enhances the accuracy by 25.83% and 5.97% than the other 

conventional FL-based detection strategies.  

Keywords: Healthcare 4.0, RPL security, Vulnerability analysis, Dataset construction, Cooja simulator, Deep 

learning-based fuzzing, Federated learning (FL), Attack detection.  

 

 

1. Introduction 

The global economy is transitioning to Industry 

4.0, symbolizing the move towards digitalization 

and automated environments connected with cyber-

physical systems. By utilizing the technological 

advancements in information and communication 

technologies, Healthcare 4.0 creates a significant 

shift towards enhanced healthcare delivery, enables 

global collaboration, improves patient outcomes, 

and enables potential innovations in healthcare by 

opening avenues for continual adaptation of 

advancements in future technology. Medical 4.0 

envisions a highly linked healthcare system that 

provides more efficient and timely medication 

services to patients by making healthcare services 

available anytime to everyone. The Internet of 

Things (IoT) is important in connecting smart 

healthcare devices anytime and anywhere through 

any network [1]. It allows a patient to be connected 

to the wireless network and collect sensitive patient 

data through IoT. The advancement of Medical 4.0 

technology allows healthcare providers to make 

better and more informed decisions [2]. Thus, it 

saves time, improves accuracy, and increases 

efficiency by creatively employing the latest 

information and communication technologies. 

Routing protocol for low-power and lossy networks 

(RPL) is a distant vector protocol supporting the 

6LoWPAN adaptation layer for wireless sensor 

networks and resource-constrained devices by 

proficiently managing the limited power, memory, 

and processing capacities. This protocol yields 

substantial benefits in the healthcare domain that 

enable patient care, operational efficiency, and data-

driven decision-making processes by establishing 

dependable and efficient communication routes 

among IoT devices. However, security is the major 
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concern in such types of protocols. The 

interconnectivity of IoT devices creates a 

vulnerability that can be exploited by malicious 

entities, leading to man-in-the-middle attacks where 

attackers can manipulate and intercept critical 

patient data during transmission. Within the IoT 

environment, the RPL protocol is vulnerable to 

various kinds of internal and external attacks [3]. 

Apart from that, some novel attacks highly impact 

the security of healthcare 4.0 and lead to life-

threatening impacts on patient care. 

Implementing robust defenses against this 

spectrum of attacks is crucial to guaranteeing 

accessibility, privacy, and security of healthcare 

services and patient data [4]. Conventional security 

solutions based on cryptography are not well-suited 

for ensuring the security of RPL-based networks 

owing to poor security keys and heavyweight 

operations [5]. The rise of resource-constrained 

devices and their integration with the internet has 

brought about significant cybersecurity 

vulnerabilities. These vulnerabilities pose threats to 

the security of users, potentially exposing them to 

various malicious threats [6]. A finite state machine 

(FSM) vulnerability was discovered that effectively 

identifies security vulnerabilities like sinkholes, 

selective-forwarding, and hello flood attacks in RPL 

[7]. RPL contains many exploitable vulnerabilities 

when an unauthorized node joins the IoT-low power 

lossy network, allowing attackers to launch insider 

attacks that drain or deplete resources from the 

network and decrease performance [8]. Federated 

learning (FL) plays a crucial role in medical 

healthcare due to its unique attributes aligning with 

the sector-specific demands for providing 

distributed intelligence for IoT devices capable of 

detecting a broad spectrum of attacks and assisting 

with network defense solutions. Improving the 

accuracy and reliability of ML models used in 

medical applications is essential. By combining data 

from numerous sources, models can be trained on 

multiple representative and diverse datasets for 

improving disease prediction, diagnostic accuracy, 

and treatment recommendation. FL has become a 

potential solution, offering globally shared 

knowledge from disparate healthcare sources while 

upholding patient data and privacy processing. FL 

addresses some demand by spreading machine and 

deep learning models to local devices, using the 

computing power of all clients, like routers, to 

develop a powerful attack defense mechanism with 

a higher detection rate [9, 10]. This paper aims to 

propose federated learning (FL) based RPL 

vulnerability analysis and attack detection (FRVA), 

a novel vulnerability analysis and attack detection 

method for RPL-healthcare 4.0 by utilizing deep 

learning fuzzing and new-generation FL algorithms. 

1.1 Contributions 

The main contributions of the proposed work are 

as follows. 

 

➢ The primary objective of this work is to 

enhance the security and efficiency of RPL-

based communication in Healthcare 4.0 by 

integrating deep learning-fuzzing-based 

vulnerability analysis and new-generation FL-

based vulnerability detection. 

➢ Firstly, the deep learning-fuzzing model 

integrates the RNN algorithm to analyze the 

vulnerabilities in the collected raw dataset. It 

generates different random attack patterns by 

determining wider RPL-Healthcare 4.0 

vulnerabilities. 

➢ Secondly, the proposed work applies a new 

generation FL model over the generated dataset 

and neglects the current data updating issues 

through incremental learning in which the 

recent attack data is partially updated to the 

established dataset. Thus, it enhances 

vulnerability detection accuracy in a distributed 

hospital 4.0 environment. 

➢ The vulnerability detection integrates the 

combination of CNN-LSTM for vulnerability 

detection at the edges, resulting in efficient 

resource management and various attack 

detection. The globally shared model-based 

relearning of CNN-LSTM also improves 

learning accuracy.  

➢ Finally, the efficacy of the vulnerability and 

attack model is analyzed using the 

Contiki/Cooja simulator. The proposed work 

utilizes various metrics with different nodes 

and attacker scenarios for analysis. 

1.2 Paper organization 

The remaining part of the paper is organized as 

follows. Section 2 briefly surveys the works related 

to RPL vulnerability analysis and detection to 

analyze the gaps. Further, section 3 describes the 

problem statement, system architecture, and attack 

model. Section 4 provides an overview of the 

proposed work with two methods: vulnerability 

analysis and attack detection. Consequently, section 

5 shows the performance settings and results 

obtained using various metrics and scenarios. 

Finally, section 6 concludes this paper. 
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2. Literature survey 

Attack detection enhances cybersecurity by 

identifying and mitigating threats from 

interconnected devices and is crucial in improving 

the integrity and operational continuity of IoT 

ecosystems. This section surveys the latest research 

on machine learning, deep learning, and FL 

techniques for attack detection in RPL using IoT 

networks. 

2.1 Vulnerability analysis in RPL-based 

approaches  

A vulnerability discovery method based on finite 

state machines (FSM) is presented to assess the 

security vulnerabilities within RPL [7]. This 

approach effectively identifies sinkhole attacks, 

selective-forwarding attacks, and hello flood attacks. 

In work [11], Industrial Internet of Things (IIoT) 

protocols and associated vulnerabilities are 

presented. It conducts an IIoT system vulnerability 

assessment and discusses using ML to combat 

susceptibility. Also, the literature studies on 

effective ML-based IDS for SCADA systems are 

reviewed. In paper [12], an ensemble learning-based 

IDS (E-ADS) using a fog cloud architecture was 

presented in an IoMT environment. To tackle 

heterogeneous and dynamic networks, a framework 

for implementing secure systems has been proposed 

as Software as a Service (SaaS) on the fog side and 

Infrastructure as a Service (IaaS) on the cloud side. 

However, feature selection techniques need to be 

considered to optimize and design a prototype of 

this model to verify its performance in a real-time 

fog cloud scenario. In paper [13], the research 

focuses on assessing the vulnerability of an 

objective function (OF) within the RPL protocol, 

which involves investigating rank attack 

manipulation and two widely used OFs, namely 

objective function zero (OF0) and minimum rank 

with hysteresis objective function (MRHOH). An 

analysis of energy consumption and packet delivery 

ratio is done in both malicious and non-malicious 

scenarios. The conventional vulnerability analysis 

strategies incur high false positives due to the 

utilization of a single strategy for analysis. Hence, 

designing hybrid algorithms to improve 

vulnerability analysis accuracy jointly is crucial.  

The article [14] presents some observations that 

could serve as a basis for developing methods to 

prevent the misuse of rank property vulnerabilities. 

A solution to a significant security weakness in RPL 

fabricated parent change is introduced through an 

effective intrusion detection system (IDS) [15]. The 

parental change control RPL (PCC-RPL) mitigates 

unauthorized parent changes by implementing a 

trust-based mechanism. In PCC-RPL, each parent 

consistently monitors the behavior of its child nodes. 

Any malicious activity detected by a parent reduces 

the trust level associated with the child and alerts the 

root node by transmitting a suspicious message. The 

article [16] addresses the security of IoT networks 

by exploiting vulnerabilities in the message queuing 

telemetry transport (MQTT) protocol. To discover 

new security vulnerabilities in MQTT, a fuzzy 

attack approach was proposed to detect security 

breaches. Using a fuzzing approach on Docker at a 

modest scale is effective in detecting a variety of 

MQTT security issues. However, a plan is required 

to improve the automatic generation of additional 

dangerous situations. A fuzzing test approach [17] 

was proposed and implemented in a heterogeneous 

environment. A fuzzing framework is developed to 

identify new program regions in a black box-based 

input, output, and delta time test. However, a 

hypothesis-test-based method is needed to reduce 

the testing time. Albeit, the existing fuzzing-based 

vulnerability analysis models lack the ability to 

determine novel attacks with wider knowledge. 

Thus, it diminishes the vulnerability distribution 

data in fuzzy outputs, a major concern in I4.0 

applications. 

2.2 Federated learning-based IoT attack 

detection approaches 

In [18], an optimized FL model called optimized 

FL-securing RPL (OFL-SRPL) was introduced to 

enhance the security of RPL in advanced metering 

infrastructure (AMI) devices. OFL-SRPL employs 

an ensemble of classifiers sequentially, each with its 

unique loss function, to improve the final decision 

quality while reducing the communication overhead 

of FL. An FL framework [19] was utilized to 

enhance learning estimation in IoT networks. An 

optimization problem was formulated to generate 

RL-based Q-values for DODAG construction. The 

federated routing learning (FRL) paradigm was 

introduced to avoid overestimating collision 

information. A federated transfer-learning-assisted 

customized distributed IDS (FT-CID) was proposed 

in [20] to detect RPL intrusions within 

heterogeneous IoT environments. The FT-CID 

design process is decomposed into three steps: 

dataset collection and preprocessing, FTL-assisted 

edge-enabled IDS learning, and final intrusion 

detection. In [21], a federated learning architecture 

was introduced to detect intruders. Similarly, FL-

based learning for detecting zero-day botnet attacks 

[21] was proposed to enhance the data privacy 
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concept in IoT edge devices. It did not investigate 

advanced FL algorithms' potential to enhance attack 

detection. The existing works utilize a centralized 

single machine learning strategy for training, which 

often fails to create consistent global knowledge due 

to a lack of multiple algorithm-based decision-

making. 

Consequently, as exemplified by HT-Fed-GAN 

[28], a federated generative model employs a novel 

model called federated variational Bayesian 

Gaussian mixture to tackle the challenge of 

multimodal distributions. It introduces privacy-

preserving decentralized data modeling by utilizing 

the federated conditional GAN. For proactive 

intrusion recognition within IoT networks using 

decentralized on-device data, an FL-based anomaly 

detection approach [29] has been proposed. The 

smart healthcare framework in [30], named FRESH, 

shares physiological data collected from wearable 

devices by applying FL and ring signature defense 

from the attacks. Edge computing devices process 

these data. This architecture in [31] formulates the 

data sharing challenge as a machine learning 

problem while integrating privacy-preserving FL. 

However, the decentralized nature of FL poses novel 

security challenges that are not effectively addressed 

in the existing works. Therefore, careful design of 

FL approaches with precise vulnerability analysis 

strategies is essential to improve the performance of 

healthcare I4.0. 

2.3 Research gaps 

There are two main gaps in the survey. Firstly, 

most existing fuzzing methods exploit general 

fuzzer and boxing fuzzing methods for vulnerability 

analysis. Since the general fuzzer and other fuzzing 

techniques incur high manual analysis and minimize 

the distributions of vulnerability data in fuzzy 

outputs, thus, it leads to creating many errors owing 

to misunderstandings of protocol specifications. 

Learning-based fuzzing methods can improve the 

vulnerability data distributions in its output with 

high automation. Secondly, despite advances in deep 

learning algorithms for RPL attack detection and 

identification of evolving attackers, crafting an 

effective FL model for medical devices requires 

careful consideration. FL performance balances 

accuracy and communication rounds, with excessive 

message transmission causing data loss and decision 

inaccuracies. Using a single classifier for training 

often falls short of creating a harmonized global 

learning model that ensures consistent knowledge. 

Most FL schemes adopt the FedAvg approach, 

increasing communication rounds and inefficiently 

allocating computation resources regardless of client 

data accuracy. It can lead to prolonged FL training 

sessions with minimal accuracy gains. Additionally, 

the weighted average favours clients with larger 

local training sets, potentially missing short attacks 

with out-of-distribution features. Moreover, the 

existing works jointly consider the vulnerability 

analysis and FL attack detection strategies, resulting 

in poor detection performances due to a lack of 

wider attack knowledge distribution. Also, they 

increase the error due to the ineffective vulnerability 

knowledge. To ensure secure communication in 

Healthcare 4.0, there is a critical need for combined 

vulnerability analysis and attack detection in RPL 

routing. Therefore, the proposed model integrates 

vulnerability analysis and an FL-based attack 

detection model to accomplish seamless I4.0 

performance with high security. 

3. Preliminaries 

This section defines the preliminary information 

like the RPL introduction, system model and threat 

model related to the proposed model.  

3.1 An introduction to RPL 

The proactive RPL routing protocol is mainly 

designed for resource-constrained, low-power, and 

lossy IoT environments. The RPL protocol design 

primarily supports devices with limited processing 

capabilities and the network environment 

characterized by unreliable links, high packet loss, 

and low bandwidth. The RPL routing proactively 

builds and maintains DODAGs to ensure a loop-free 

routing path based on the specific objectives to 

fulfill the IoT needs. RPL utilizes the DODAG 

structure to organize from the single root node to 

multiple leaf nodes. The rank metric used to 

represent the position of nodes, nodes close to the 

root node have a lower rank. The objective Function 

(OF) guides the nodes to make routing decisions, 

potential parent selection and rank calculation. The 

destination advertisement and route discovery take 

place by using control messages. The control packet 

types are described in Table 1.  

RPL routing supports multiple instances on the 

network with different objective functions to 

flexibly support diverse application requirements. 

The local repair mechanism detects a problem with a 

link and initiates a local repair operation without 

altering the existing DODAG structure. 

3.2 Problem formulation 

Vulnerability analysis is considered a  
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Table 1. Control packet types of RPL 

Name Direction of 

flow 

Description 

DODAG 

Information 

Solicitation (DIS) 

Node to 

Root node 

Connection 

request 

DODAG 

Information 

Object (DIO) 

Root node 

to Nodes 

Advertise 

information about 

DODAG 

Destination 

Advertisement 

Object (DAO) 

Node to 

parent node 

Child node 

Request 

Destination 

Advertisement 

Acknowledgment 

(DAO-ACK) 

Parent node 

to node 

The child node 

requests 

acknowledgment 

Control 

Information 

(CON) 

Parent node 

to node 

Control message 

 

classification problem. The primary aim is to design 

a fuzzer to classify the data using the information 

learned from labeled datasets. The process involved 

is described as follows: Let n be the number of 

hospitals, and the medical data be defined as (dj, yj) 

where dj ∈ D and lj ∈ L, where D represents the set 

of medical data/patient information and L = {0,1}j 

represents the label of the patient information, 0 for 

legitimate and 1 for vulnerable, and j represents the 

number of instances in datasets. Each domain 

collects the information from its environment and 

forms a private dataset Dn. Further, it exploits Dn to 

train a local L model at each aggregation round k. 

Local models are updated for σ FL local updates. 

For each k, the Federated aggregator (FA) randomly 

selects a subset of the local model Sn and aggregates 

all the parameters from Sn to generate an updated 

global model Gt, where t is the present aggregation 

round. The aggregation server sends Gt to all local 

models, and the local models update the Gt with 

their local dataset at k + 1. The problem of RPL 

attack detection in federated environments can be 

formulated as the maximization of detection 

accuracy (DA) of Gt on unbalanced, non-

independent and identically distributed data across 

hospitals while minimizing total FL time. The 

objective function Θ is described as follows. 

 

Θ = DA − α ∗ Error  

3.3 System model 

Various IoT medical devices, like wearable 

sensors, generate medical data. Electronic health 

record (EHR) systems, health information exchange 

(HIE) platforms, and hospital networks provide 

access to patient data and network traffic. These 

local data from N hospitals are sent to the nearby 

base station using RPL routing. In the network layer, 

many routing attacks may affect the data. The 

architecture of the proposed model is shown in Fig. 

1. When the local data from different sources reach 

the edge layer, two operations are performed on the 

edge: vulnerability analysis and attack detection. An 

analyzer is employed to keep track of their network 

data for vulnerability analysis and to check whether 

the local data has any vulnerability. Once the 

vulnerability analysis is completed, the dataset is 

created for training the local models collaboratively 

without sharing sensitive data. A central server 

coordinates the federated learning process.  

Each medical device or data source is a local 

client with its own dataset. Local clients train their 

models on their respective datasets in the edge layer 

while keeping the data decentralized and secure. The 

FL server periodically aggregates model updates to 

create a global model. To integrate the models and 

develop a better attack detection system with 

optimum parameters, the federated aggregator is 

used in a cloud server to aggregate and combine 

model updates from multiple participating clients to 

create a global model without centralizing the raw 

data. It ensures that learning across decentralized 

devices occurs effectively while preserving data 

privacy. When vulnerabilities or attacks are detected, 

the system can take various actions, including 

generating alerts and notifications, isolating 

compromised devices or network segments, and 

logging and reporting incidents for further 

investigation.  

3.4 Threat model 

Various security concerns exist in RPL routing, 

including the potential for malicious nodes to 

execute disruptive actions. Additionally, there is the 

risk of spoofing attacks, wherein nodes impersonate 

legitimate devices or routers to manipulate routing 

decisions. Therefore, safeguarding RPL routing 

involves mitigating these risks to ensure dependable, 

efficient, and secure routing in IoT environments. 

The proposed work aims to detect eight types of 

vulnerabilities like rank, version number, OF, Sybil, 

worst parent, DoS, zero-day, and novel attacks over 

RPL-enabled healthcare 4.0. 

Rank: The malicious device aims to increase or 

decrease the rank value, intending to disrupt the 

RPL routing functions. 
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Figure. 1 FL-based attack detection for healthcare 

 

Version number: It is highly related to DoS, 

which is inaugurated by escalating the RPL control 

traffic during the global repair mechanism. 

OF: The malicious nodes target to launch 

various types of attacks like rank and parent by 

disrupting the normal OF-based DODAG 

construction process. 

Sybil: In this type, the malicious node spoofs 

different real identities of various devices to inject 

malicious healthcare data into the network. 

Worst parent: The malicious node aims to 

select sub-optimal RPL paths for data transmission, 

and thus, it creates improper network resource 

utilization. 

DoS: The malicious device denies the network 

services to the legitimate devices by supporting the 

attacking behaviors. 

Zero-day: It is unknown to the RPL security 

mechanisms, and it happens first time in the network. 

Novel: It does not match the well-known 

vulnerabilities and is very different in the network 

system. 

4. Design overview of proposed model 

The main intention of the proposed work is to 

improve vulnerability detection accuracy with eight 

numbers of attacks through effective vulnerability 

analysis and FL deep learning models. The proposed 

work design is explained using two steps: RNN-

fuzzing-based vulnerability analysis and NGFL-

based vulnerability detection. Firstly, the RNN-

fuzzing in edge healthcare 4.0 devices analyses 

different vulnerabilities with a deep learning 

strategy. Further, it generates a sub-dataset at each 

device to construct a novel RPL-Healthcare 4.0 

dataset. Secondly, the NGFL model utilizes the  
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Figure. 2 Design overview of proposed methodology 

 

advantages of CNN-LSTM to generate the local 

models at the edges. The generated local models are 

shared with the cloud server for generating a global 

model using a contextual weighted aggregation 

model. By combining the various local models of 

different edges in a distributive manner, the 

proposed work optimizes the learning accuracy of 

customized CNN-LSTM of edges and maximizes 

vulnerability detection accuracy. Moreover, the 

proposed work improves the multiple vulnerability 

detection accuracy by integrating a fuzzing 

vulnerability analysis and FL deep learning-based 

detection model, as shown in Fig. 2. By executing 

the proposed algorithms at edges, this work 

effectively manages the resource consumption 

efficiency and improves the lifetime of healthcare 

4.0. 

4.1 RNN-fuzzing-based vulnerability analysis 

With the resource limitation nature of healthcare 

4.0 devices and the minimum fundamental security 

nature of RPL routing protocol, RPL-healthcare 4.0 

is vulnerable to different attacks. To enhance the 

attack detection accuracy and minimize the 

computation burden associated with large datasets, 

analyzing such vulnerabilities is crucial before 

straightly inputting the collected healthcare 4.0 data 

into attack detection. Fuzzing is a suitable method 

that produces random inputs to determine the 

vulnerabilities or unexpected behavior through 

better analysis of the raw input data Healthcare 4.0. 

Therefore, the proposed FRVA utilizes the recurrent 

neural network fuzzing model based fuzzing to 

analyze the various types of RPL vulnerabilities and 

to generate a vulnerability-rich fuzzing dataset for 

attack detection. The deep learning-based fuzzing 

model can analyze or detect the network 

vulnerabilities in the healthcare 4.0 scenario with 

minimum cost and computations. Therefore, the 

proposed FRVA integrates the RNN-fuzzing method 

to generate the RPL vulnerability-rich data for deep 

learning-based attack detection. 

4.1.1. Raw dataset construction 

Generally, the benchmark IoT datasets comprise 

well-known vulnerabilities like Rank, Version 

number, OF, Sybil, and worst parent. However, they 

are outdated and lack recent normal and attack 

traffic related to Healthcare 4.0. Hence, zero-day 

and novel vulnerabilities are created by considering 

the current network traffic to evaluate Healthcare 

4.0 precisely. Zero-day and novel attacks have a 

high impact on the performance of healthcare 4.0, 

and it is very difficult to detect such attacks. Thus, 

the proposed work intends to construct the RPL-

healthcare 4.0 dataset with normal and vulnerability 

information Rank, Version number, Worst parent, 

Sybil, DoS zero-day, and novel. The proposed 

model constructs the dataset by running the Contiki 

NG, shown in Fig. 3.  

4.1.2. RNN-fuzzing method 

The RNN-fuzzing is a deep neural network 

fuzzing model that exploits multiple layers of deep 

learning strategy to generate the output fuzzing 

RPL-healthcare 4.0 data. The RNN strategy for 

fuzzing bypasses the constructing protocol 

specification process of fuzzing by improving the 

automata level, and thus, it reduces the workload. It 

does not produce logic errors or human negligence, 

which are majorly caused by protocol specification  
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Figure. 3 RPL-Healthcare 4.0 fuzzed dataset generation 

 

misunderstandings. Moreover, the proposed 

vulnerability analysis model adjusts the parameters 

of the RNN and fine-tunes the structure of the 

fuzzing output generation. Thus, it also fine-tunes 

the similarities between the fuzzing test cases and 

adjusts the legal healthcare 4.0 raw input data as 

vulnerability-rich data by generating different 

unknown behaviors. The designing process of the 

RNN-fuzzing model includes four main steps: 

determination of the target system, determination of 

raw RPL-healthcare 4.0 inputs, RNN-fuzzing-based 

vulnerability analysis, and vulnerability-rich fuzzed 

output data. RNN-fuzzing is a deep neural network 

fuzzing model that exploits multiple layers of deep 

learning strategy to generate the output fuzzing 

RPL-healthcare 4.0 data. The RNN strategy for 

fuzzing bypasses the constructing protocol 

specification process of fuzzing by improving the 

automata level, and thus, it reduces the workload. It 

does not produce logic errors or human negligence, 

which are majorly caused by protocol specification 

misunderstandings. Moreover, the proposed 

vulnerability analysis model adjusts the parameters 

of the RNN and fine-tunes the structure of the 

fuzzing output generation. Thus, it also fine-tunes 

the similarities between the fuzzing test cases and 

adjusts the legal healthcare 4.0 raw input data as 

vulnerability-rich data by generating different 

unknown behaviors. The designing process of the 

RNN-fuzzing model includes four main steps: 

determination of the target system, determination of 

raw RPL-healthcare 4.0 inputs, RNN-fuzzing-based 

vulnerability analysis, and vulnerability-rich fuzzed 

output data.  

Step 1: Determination of target system 

In this step, the RNN-fuzzing determines its 

target system, RPL-healthcare 4.0. The proposed 

FRVA executes RNN-fuzzing at the edges of the 

healthcare 4.0 architecture. It effectively handles the 

resource restriction issues of healthcare 4.0 devices 

in the device layer. After determining the target 
 

Table 2. Features of RPL-Healthcare 4.0 dataset 

Sl 

no 

Feature Name Notations 

1 Identity of Healthcare 4.0 devices Device_Id  

2 Source Identity S_ID 

3 Destination Identity D_ID 

4 Type of the Device DT  

5 Type of the Packet Packet  

6 Rank Value R 

7 Version Number VN 

8 Packet Sending Time TPS  

9 Energy Consumption Level ECL 

10 Sending Rate SR  

11 Time Difference TD  

12 Number of Sending Packets Ns 

13 Number of Received Packets NR 

14 Packet Dropping Count PDC  

15 New Fields NF 

16 Day Value for Attacks For instance, 

zero 

 

 

 
Figure. 4 Preprocessing and normalization 

 

entity, the FRVA initiates the RNN-fuzzing process. 

Step 2: Determination of raw RPL-

Healthcare 4.0 fuzzing input 

The legitimate and malicious Healthcare 4.0 

devices are simulated with the Contiki NG platform 

and generate the normal and vulnerable traffic 

patterns for Healthcare 4.0. The features of the 

constructed RPL-healthcare 4.0 dataset are listed in 

Table 2. 

Dataset preprocessing and normalization: 

After generating the raw RPL-Healthcare 4.0 dataset, 

the RNN-fuzzing considers the raw data as its input 
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for analysis. The raw dataset consists of normal and 

different attack-related information. The RNN-

fuzzing exploits the generated raw RPL-healthcare 

4.0 dataset for vulnerability analysis with data 

preprocessing and feature normalization 

initialization. The preprocessing starts with the RPL 

data cleaning and normalizing the features by 

filtering the relevant features. A few features in the 

constructed dataset are number and version 

consisting of a wide range of values. The data 

normalization process is applied to scale the 

normalized range from their wider range. The 

proposed model employs the min-max 

normalization method to normalize the feature 

values in the RPL-healthcare 4.0 dataset, as shown 

in Fig. 4. Consequently, the preprocessed and 

normalized data is input for RNN-fuzzing-based 

vulnerability analysis. 

Step 3: RNN-fuzzing-based vulnerability 

analysis 

The proposed fuzzing model integrates the RNN 

deep learning structure to analyze the vulnerabilities, 

as shown in Fig. 5. The deep learning model can 

produce accurate vulnerability analysis output data 

and improve the learning efficiency of the RPL-

Healthcare 4.0 attack detection algorithm. Initially, 

the Fuzzing model takes the preprocessed and 

normalized dataset as its input for vulnerability 

analysis, which is also the input of the RNN model. 

The RNN model comprises three different layers 

according to the nature of neural networks: input, 

hidden, and output. The RNN input layer consists of 

i input units, represented as a sequence of vectors 

with different time t that are x (t) {x1, x2, ..., xi). As 

per the RNN structure, the n numbers of input units 

are fully connected and are connected with the j 

number of hidden units in the hidden layer in which 

the weighting metric is used to define the hidden 

units. The hidden layer is represented as h (t) = (h1, 

h2, ..., hj). Hence, the hidden layers utilize recurrent 

connections to establish connections. The proposed 

model exploits small non-zero elements to initialize 

the hidden units that can enhance the entire 

performance and network stability. The proposed 

RNN model utilizes rectified linear units (ReLU) as 

an activation function for hidden layers. 

Consequently, the hidden layer exploits recurrent 

connections to establish the connection with the 

output layer. The output layer comprises k numbers 

of units and is represented as y(t) = (y1, y2, ..., yk). 

The RNN model exploits the sigmoid and tan h 

functions as activation of the output layer between 0 

and 1. Finally, the RNN fuzzing computes the 

output y(t) using the following Eq. (1). 

 

y(t) = max(𝜎(𝑥), 0)         (1) 

 

Where, 

 

σ(x) = fo (
(tan h (

x

2
) + 1

2
⁄ ) + b0        (2) 

 

In Eq. (2), the term σ(x)  is the sigmoid 

activation function, and the term fo represents the 

tanh activation functions of RNN. The term b0  is 

the bias value. By adjusting the hidden layer number 

for the fuzzing input dataset size, the proposed RNN 

fuzzing minimizes the computational complexity 

with minimum or acceptable overhead. 

Step 4: Vulnerability-rich fuzzed output data 

The RNN-fuzzing can analyze and determine the 

security vulnerabilities in RPL-healthcare 4.0 by 

feeding a large amount of unexpected input to the 

attack detection model. The final stage of RNN 

fuzzing is vulnerability-rich output generation. The 

proposed FRVA intends to identify eight types of 

vulnerabilities: rank, version number, OF, Sybil, 

worst parent, DoS, zero-day, and novel attacks. The 

CNN algorithm starts the feature selection based on 

the vulnerability-rich fuzzed output data. The CNN 

algorithm selects the attack-rich features like OF, 

rank, version number, and random zero-attack 

values from the fuzzed output data. Finally, it feeds 

the CNN-based feature-selected dataset to the FL-

CNN-LSTM-based attack detection model. 

4.2 FL-CNN-LSTM-based attack detection 

Healthcare 4.0 comprises different smart sensing 

devices to obtain the healthcare 4.0 information of 

patients. Further, they report the information to the 

cloud server via edges. Hence, the devices are 

limited in power, memory, and bandwidth, whereas 

the edges have adequate resources compared to the 

devices. To manage the constrained resources of 

network devices effectively, the proposed model 

only executes the FL-CNN-LSTM-based attack 

detection at the edge of healthcare 4.0 devices. To 

elaborate on the efficiency of the attack detection 

model, the proposed work utilizes the globally 

shared parameters of the FL model to optimize the 

customized learning parameters of the local models 

of edges. Hence, the edges generate the local models 

using CNN-LSTM deep learning algorithms.  

4.2.1. CNN-LSTM-based LM generation  

The proposed model selects the CNN-LSTM 

combination of deep learning strategy to attack 

detection. The CNN is highly suitable for extracting  
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Figure. 5 RNN-fuzzing vulnerability analysis 

 

Algorithm 1 LM generation using CNN-LSTM 

 
 

RPL attack-rich data features, and the LSTM is 

suitable for processing the time series data. Thus, it 

effectively rectifies the dependency between time-

series data and enhances the attack detection 

accuracy. The proposed model consolidates the 

advantages of the two deep learning algorithms in 

attack detection. 

Firstly, the CNN algorithm can learn the 

vulnerability-rich features better and improve the 

attack detection accuracy compared with 

conventional feature selection models. The CNN 

model is more appropriate for large-scale healthcare 

4.0 environments. The structure of CNN is divided 

into three layers: convolution, pooling, and fully 

connected. The primary functionality of the 

convolution layer is to extract the salient features 

from RPL-healthcare 4.0, and the pooling layer 

samples the features. Finally, the fully connected 

layer connects the extracted features and obtains the 

final classification results. Secondly, the LSTM is 

an enhanced recurrent neural network (RNN) 

method that intends to rectify the explosion gradient 

problem of RPL-healthcare 4.0. Compared with the 

conventional RNN algorithm, LSTM exploits a 

wider set of gate functions to mitigate feedback and 

minimize short-term errors. The process of LSTM is 

shown in the figure in which the LSTM abstracts 

into four subnets: p-net, g-net, f-net, and q-net. Such 

subnets are a collection of gate controllers and a link 

to the memory component. The vector size x (t), 

which intimates the present learning state, controls 

the input and output of LSTM. Moreover, the CNN-

LSTM combination has the ability to express both 

temporal and spatial information. Moreover, the 

proposed model utilizes the combination of CNN-

LSTM to generate the local models, which are the 

initial learning output values of the learning 

algorithms at the edges.  

Each edge device generates its initial local 

models for its local dataset through the CNN-LSTM 

learning process. The edge devices have a dataset 

that is a subset of the constructed RPL-healthcare 

4.0 dataset. They initialize the local learning process 

by exploiting the local dataset of edge devices 1 to n. 

Hence, n number of local models are generated 

through CNN-LSTM. The initial learning outputs of 

CNN and LSTM algorithms are combined to 

generate the final LM of the edge. The local model 

generation process is explained in the figure.  

4.2.2. Contextual weighted aggregation-based global 

model generation 

Consequently, each edge updates its local model  
 

//LM Generation// 

Input: Local datasets of edges 

Output: n number of LMs for FL aggregation 

Each edge do { 

Construct the sub dataset obtained in its area; 

Initialize the CNN-LSTM learning process; 

CNN do { 

Parameter learning with local dataset (d) 

using  

multiple hidden layers; 

 Generate the output to the corresponding 

input; 

 Feeds the output to hybrid learning model; 

 } 

LSTM do { 

Learns the parameters in the dataset using 

various subnets and gate controllers; 

Generates the n number outputs; 

Feeds the output to hybrid learning; 

CNN-LSTM do { 

 Consolidates the outputs of CNN and 

LSTM to generate the final output; 

𝐺𝑡 = ∑ 𝐿𝑀𝑛

𝑛

𝑖=1

 

 Feeds the output as a LM to cloud server 

}}; 
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Figure. 6 GM generation process of FRVA 

 

to the cloud server for aggregated global model 

generation. Each device has a context value obtained 

according to its behaviours. The initial context value 

of each edge is one. After some rounds, the context 

value is increased or decreased according to the 

behavior and resource consumption rates of edges. 

The local model update process is shown in the 

following algorithm 1. After receiving the global 

models of n edges, the cloud server initiates the 

initial global model generation process. 

The proposed work generates the global shared 

model with the assistance of the contextual weighted 

aggregation model. Initially, the cloud server 

receives different local models (LMs) of various 

RPL-healthcare 4.0 edges. The weighted 

aggregation model provides different importance of 

weights to the LMs of each edge. Hence, each edge 

has an initial context value of 1. Consequently, 

according to local model updating behaviors, each 

edge receives various importance values. Therefore, 

the weighted aggregation model computes the 

contextual values using the standard importance 

degree of each edge in the hospital scenario. Further, 

it generates the global model using weighted 

aggregation. The global model generation process of 

the cloud server is shown in the following Fig. 6 and 

algorithm 2. 

The local model of the edges receives high 

weights if the edge has many attack patterns. Hence, 

the cloud server aggregates the LMs by considering 

the contextual weights of edges. The central server 

receives different LM updates from n number edges 

in the figure, represented as LM= {LM1, LM2, 

LM3,…..LMn}. Further, it applies the weighted  
 

Algorithm 2 GM generation process 

//GM Generation// 

Input: Local datasets of high-context edges 

Output: GM generation using weighted aggregation 

FL model 

Each edge do { 

 Feeds Gt as a LM input to cloud server; 

Cloud server do { 

 Assigns weights to each edge based on its 

behaviour and resource level; 

 For each (LM=n; n=1, n++) { 

GM = ∑ (Cw)LMn
∗ ELMn

n
LM=1 ; 

  Generates the GM with different attack 

patterns; 

  Feeds the GMs to each edge ; 

}}; 

 

aggregation on LM to generate the global model 

GM= {GM1, GM2, GM3,…GMn}. The proposed 

model exploits the following Eq. (3) to local model 

aggregation at the cloud server. 

 

GM = ∑ (Cw)LMn
∗ ELMn

n
LM=1       (3) 

 

In Eq. (3), the term GM represents the global 

model generated at the cloud server. The term 
(Cw)LMn

 refers to the contextual weighting value of 

edge n and the term ELMn
 represents the local 

model of edge n. Using this equation, the proposed 

model combines the local models of different edges 

without increasing the computational complexity 

and overhead in the network. Finally, the global 

models are shared to the edges, as shown in Fig. 6. 
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Algorithm 3 Attack detection process using FL 

hybrid deep learning 

\\Attack Detection\\  

Input: Cooja based Simulated RPL-Healthcare 4.0 

Dataset 

Output: Attack detection 

Edges do { 

 Initiates the CNN-LSTM local learning using 

its local dataset; 

 Generates the corresponding LM; 

 Updates the LM to the cloud server; 

  LM (LM==n, n=1; n++) 

  Cloud server do { 

  GM = ∑ (Cw)LMn
∗ ELMn

n
LM=1 ; 

  Aggregates the LMs using contextual 

weighted aggregation; 

  Generates the GM with wider attack 

patterns; 

  Sends the GMs to the Edges; 

}; 

 Customize the LMs using novel attack patterns; 

 Improves the attack detection accuracy; 

 Achieves the Θ 

 }; 

 

4.2.3. Attack detection 

Utilizing the globally shared knowledge of the 

cloud server, the proposed work customizes the 

initial local learning parameters of CNN-LSTM at 

each edge. The global model comprises different 

attack patterns of various edges. Hence, the 

proposed model effectively utilizes the vulnerability 

analysis knowledge obtained at different edges to 

detect the vulnerabilities in distributed edges 

without impacting privacy and network performance. 

Thus, it increases the local learning accuracy of 

deep learning strategies through a distributed FL 

model. Moreover, the edges detect the 

vulnerabilities and classify them under different 

classes based on the local learning knowledge of 

CNN-LSTM. The following algorithm 3 explains 

the vulnerability detection process of the proposed 

model. 

5. Performance evaluation 

The FRVA exploits Python libraries and Contiki 

NG-based simulation to analyze its effectiveness. 

The personal computer with Intel i5 2.5GHZ CPU 

and 8 GB memory is utilized to experiment. The 

FRVA builds the RPL-Healthcare 4.0 dataset, 

constructed using the attack and normal data 

obtained through analysis. Further, it is used for 

learning and attack detection using CNN-LSTM at  

 

Table 3. Simulation parameters of FRVA 
Parameter Values 

Simulator Contiki NG 

Protocol RPL-Healthcare 4.0 

Fuzzing Model RNN-Fuzzing 

Deep Learning Model Hybrid with CNN and 

LSTM 

Dataset RHD 

Simulation Area 500m*500m 

Number of Nodes 50 

Number of Edges 5 

Physical Layer  IEEE 802.15.4 

Radio Medium  UDGM 

Transmission Range  50 m 

Simulation Time 5 Minutes 

 

 

the edges. The Contiki is highly fit to simulate the 

healthcare environment, as it is a reliable and widely 

used open-source network simulator that enables 

internet connections between tiny minimum-cost 

and low-power medical sensing devices. It also 

provides support to the RPL protocol for low-power 

IPv6 networking. Moreover, the proposed FRVA 

analyzes the efficacy of the vulnerability detection 

model with a hybrid CNN-LSTM deep learning 

strategy by comparing it with various existing 

algorithms such as federated semi-supervised 

learning (FSSL) [24] and FL based anomaly 

detection (FLAD) [29]. It also compares with 

baseline learning algorithms that are LSTM [32], 

CNN, ANN [33], MLP [34], simple-RNN (S-RNN) 

[32], logistic-reg (L-Reg) [35], naive-bias (NV), and 

KNN.The simulation parameters of FRVA are 

shown in the following Table 3.  

5.1 Performance metrics:  

The effectiveness of the proposed FRVA is 

analysed in terms of various performance metrics, 

which are as follows. 

Accuracy: It is the percentage of attackers that 

are correctly identified as attackers. 

 

Accuracy =  
Number of correctly identified attackers

total number of attackers
∗ 100  

 

file://///Vulnerability
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Precision: It is the percentage of correctly 

identified attacks. 

 

Precision =
TP

TP+FP
  

 

TP-true positive, FP-false positive 

Recall: It is the percentage of correct positive 

attack detection to the total number of attackers. 

 

Recall =
TP

TP+FN
  

 

FN-false negative 

F1-Score: It is the combination of precision and 

recall. The F-score is calculated by taking harmonic 

mean to precision and recall. 

 

F1 − Score =
TP

TP+
1

2
(FP+FN)

  

 

Specificity: It is the ratio of true negatives to the 

summation of true negatives and false positives. 

 

Specificity =
TN

TN+FP
  

 

TN-true negative 

MAE: It is the summation of the exact 

difference between actual and observed values of 

attack detection. 

AUC-Score: It represents the probability that is 

estimated using the trapezoidal rule. 

Log-Loss: It represents a cross-entropy loss 

value computed using the actual and identified 

values of attackers. 

5.2 Simulation results 

The simulation results are presented for the FL-

based hybrid learning models. 

5.2.1. Contiki NG-based attack dataset generation and 

Labeling 

Initially, the proposed FRVA utilizes the Contiki 

NG simulator to gather the data from the healthcare 

4.0 environment and construct the raw RPL-

healthcare 4.0 with eight vulnerabilities. During 

network initialization, by running the RPL-

healthcare 4.0 code Contiki NG, the proposed 

FRVA gathers the RPL traces as raw packet capture 

(PCAP) files from the I4.0 environment. To conduct 

experimental evaluation and generate the dataset 

with normal and attack information, the FRVA 

conducts Contiki NG-based simulations. The FRVA 

system considers Eight different RPL-healthcare 

topologies with 50 wireless healthcare devices, in 

which sixteen devices (32% of total density) are 

considered attackers. Each topology comprises 

different attacker devices. Among 32% of attackers 

over 50 devices topology, every 2% represents the 

rank, version number, OF, Sybil, worst parent, DoS, 

zero-day, and novel. Algorithm 4 explains the 

different dataset conditions to label such eight 

attacks. 

5.2.2. Deep learning results 

Table 4 demonstrates the performance 

comparison results of various deep learning 

algorithms like hybrid, FSSL, FLAD, LSTM, CNN, 

ANN, MLP, S-RNN, L-Reg, NB, and KNN. 

Fig. 7 illustrates the accuracy, precision, recall, 

F1-core, and sensitivity results of various hybrid 

deep learning algorithms, FSSL, FLAD, LSTM, 

CNN, ANN, MLP, S-RNN, and L-Reg. The results 

show that the proposed hybrid CNN-LSTM model 

improves the detection accuracy than the other FL 

models, that are FSSL, FLAD and single baseline 

deep learning models such as LSTM, CNN, ANN, 

MLP, S-RNN, L-Reg, NB, and KNN. The main 

reason behind this is that the proposed hybrid deep 

learning model combines the results of CNN and 

LSTM in attack detection, thereby reducing false 

positives and error rates. In addition, the FRVA 

considers the NGFL concept to be precise 

customized learning models in every healthcare 4.0 

environment. Optimizing the local learning models 

by exploiting the advantage of the FL global model 

maximizes the learning accuracy significantly and 

enhances the attack detection accuracy of the hybrid 

model in FRVA. For instance, the FL-enabled 

hybrid model improves the accuracy by 25.83% and 

5.97% than the existing FL-based attack detection 

models like FSSL and FLAD, respectively. Unlike 

the proposed FRVA, the existing FSSL and FLVA 

exploit baseline algorithms for attack detection. 

Thus, it leads to minimizing the accuracy due to 

learning errors. Furthermore, the proposed FRVA 

shows superior results compared to single baseline 

models. The reason is that the hybrid models take 

the attack detection decisions by considering the 

outputs of two various learning strategies, resulting 

in high accuracy. For example, the proposed FL-

base hybrid CNN-LSTM combinations improve 

accuracy by 5.55% and 12.9% compared to the 

baseline LSTM and CNN algorithms.   

Similarly, the proposed hybrid FRVA improves 

the precision values by 5.69%, 12.33%, and 7.61% 

compared to the fundamental LSTM, CNN, and 

MLP algorithms. Unlike the two existing models,  
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Table 4. Performance results comparison of hybrid model 

Metrics Hybrid FSSL FLAD LSTM CNN ANN MLP S-

RNN 

L-Reg NB KNN 

Accuracy 

(%) 

98.19 72.36 92.22 92.64 85.29 84.44 90.38 86.14 75.25 75.54 72.83 

Precision 

(%) 

98.31 70.3 91.97 92.62 85.98 85.46 90.7 85.58 79.88 73.56 85.69 

Recall (%) 98.02 75.15 92.83 92.36 84.17 77.55 86.63 81.34 61.71 65.28 56.7 

F1-Score (%) 98.15 70.53 92.11 92.48 84.7 79.94 88.28 82.96 61.8 66.54 53.57 

Specificity 

(%) 

97.9 73.11 92.29 91.6 83.25 75.6 84.2 79.4 60.2 63.1 54.8 

MAE 0.018 0.276 0.078 0.074 0.147 0.155 0.096 0.139 0.248 0.245 0.272 

AUC-Score 98.02 73.11 92.29 92.36 84.17 77.55 86.63 81.34 61.71 65.28 56.7 

Log-Loss 0.6504 9.9621 2.8052 2.6525 5.2994 5.6058 3.4651 4.9931 8.092 8.8159 9.792 

 

 

 
Figure. 7 Performance results of different algorithms 

 

the proposed FRVA combines the results of CNN 

and LSTM in making attack detection decisions and 

improves detection accuracy. The FSSL and FLAD 

comprise single learning models, resulting in 

minimum recall values. For example, the proposed 

hybrid model enhances the recall by 22.87% and 

5.19% than the existing FSSL and FLAD, 

respectively. The high precision and recall results 

obtained by the proposed model also improve the 

F1-Score and sensitivity value. The proposed FRVA 

neglects such an issue by including the hybrid 

learning strategy in which the attack detection 

decisions are taken using different learning results. 
Also, the attack detection decision-making with a 

hybrid model enhances the specificity of the single 

baseline models like CNN and LSTM. Thus, it also 

assists in maximizing the sensitivity. For instance, 

the proposed hybrid model improves the F1-score 

by 5.67% and 13.45% compared to the single LSTM 

and CNN models. Also, the proposed hybrid models 

enhance the specificity by 22.3% and 34.8% than 

the baseline ANN and NB algorithms, respectively. 

Fig. 8 illustrates the MAE, AUC-score, and log-

loss comparison results of different deep learning 

algorithms. The MAE is obtained by taking the 

average to the absolute error values produced by the 

deep learning models. Compared with existing 

FSSL and FLAD, the proposed hybrid CNN-LSTM 

minimizes the MAE in attack detection by 

incorporating the advantages of CNN fuzzing-based 

vulnerability analysis, FL-based customized local 

model update, and hybrid deep learning-based attack 

detection, as shown in Fig. 8 (a). The vulnerability 

analysis improves the novel attack distributions in 

the learning dataset, and the hybrid model 

minimizes the error rates in detection. For instance, 

the hybrid, FSSL, and FLAD obtain 0.018, 0.276, 

and 0.078 MAE values, respectively. By taking the 

attack detection decision using two deep learning 

algorithms like CNN and LSTM, the proposed  
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(a) 

 
(b) 

 
(c) 

Figure. 8: (a) Algorithms Vs MAE, (b) Algorithms Vs 

AUC score, and (c) Algorithms Vs log loss 

 

FRVA also shows its superiority over the baseline 

learning models. For example, the MAE error rates 

of hybrid FRVA, LSTM, and CNN are 0.018, 0.074, 

and 0.147, respectively. Also, the advantages of 

using fuzzing vulnerability analysis, FL-based 

distributed learning, and hybrid deep learning-based 

attack detection improve the AUC-Score of the 

proposed model when compared with baseline 

algorithms, as demonstrated in Fig. 8 (b). The 

reason is that the high attack pattern distribution and 

the attack decision-making with the hybrid learning 

strategy diminish errors, resulting in AUC-Score 

values enhancement. For example, the proposed 

hybrid CNN-LSTM improves the AUC-Score by 

5.66%, 13.85%, 11.39%, and 41.32% than the 

LSTM, CNN, MLP, and KNN, respectively. 

Consequently, Fig. 8 (c) shows that the log-loss 

value of the proposed hybrid FRVA is minimal 

compared to other existing FSSL and FLAD models. 

Compared with FSSL and FLAD, the FRVA 

includes the vulnerability analysis that enhances the 

learning efficiency of the hybrid FRVA. Thus, the 

proposed model minimizes the log-loss effectively. 

The vulnerability analysis also improves the 

learning accuracy by distributing large attack 

patterns. For example, the Log-loss values of hybrid, 

FSSL, and FLAD are 0.6504, 9.9621, and 2.8052, 

respectively. 

6. Conclusion 

This paper proposes a security framework, 

FRVA, to defend against multiple RPL-healthcare 

4.0 attacks. By integrating the RNN-fuzzing-based 

vulnerability analysis and FL-enabled CNN-LSTM-

based attack detection, the FRVA improves security 

without impacting the RPL-healthcare 4.0 

performance. The proposed FRVA improves 

security against eight attacks by considering the 

fuzzed output data and FL-based global parameters. 

Moreover, the execution of vulnerability analysis 

and attack detection at edges manages the network 

resources efficiently and prologs the network 

lifetime. Finally, the Python-based simulation 

results show the superiority of hybrid CNN-LSTM 

in terms of different performance metrics. The 

simulation results prove that the proposed FRVA 

accomplishes superior detection accuracy by 5.55% 

and 12.9%, respectively than the baseline CNN and 

LSTM methods. The accuracy of FRVA also 

improves by 25.83% and 5.97% when compared 

with existing FSSL and FLAD. 
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