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Abstract: The integration of 5G New Radio (5G-NR) and Wi-Fi networks in heterogeneous environments holds 
significant promise for delivering critical services with relatively high reliability and low latency. In this paper, we 
tackle the critical challenge of establishing robust multi-connectivity within heterogeneous systems integrating 5G NR 
and Wi-Fi systems. In this context, our focus is on optimizing a new, distributed multi-Connectivity solution, with a 
main emphasis on identifying the ideal base stations (BSs) and Wi-Fi access points (APs) with their respective 
spectrum associations. This solution is essential for ensuring low-latency and reliable communication required, 
particularly for mission-critical services. The simulation results demonstrate the significant advantages of the proposed 
algorithm compared to reference schemes. It leads to network performance improvements by enhancing system utility 
function, reducing service access time, and increasing packet success rates, through high-quality connectivity with 
relatively low interference probability. In particular, for mission-critical services, the proposed algorithm leads to a 
16 % and 41% increase in effective network throughput when the offered load is 190 Mbps, which outperforms the 
benchmark approaches. Furthermore, it improves the utility function by approximately 0.12, and 0.19 compared to the 
reference approaches. This reflects a substantial improvements in success delivery rates for mission-critical services 
by 10 % and 18 %, respectively, when compared to the reference approaches, particularly evident at an offered load 
of approximately 190Mbps. 
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1. Introduction 
The increasing demand for mission-critical 

communication services such as public safety, 
transportation, and healthcare that require consistent 
and efficient communications during emergencies 
and mission-critical situations has been experienced 
over the past few years [1, 2]. The mission-critical 
services require persistent connectivity, low latency, 
and high reliability to guarantee a safe environment, 
and the smooth operation of critical systems. While 
the cellular networks available for these services are 
expensive and restricted, Wi-Fi systems are 
becoming increasingly congested and susceptible to 
interference.  

The problem addressed in this study is lies in the 
limitations closely associated to systems that rely on 
a single radio access technology (RAT) and a single 

specific spectrum band used for data transmission. As 
a result, this approach is unable to manage 
communications among users effectively and 
appropriately, exposing the reliability of services to 
be relatively low, and ultimately leading to network 
congestion, service outages, and greatly increased 
delay [3, 4]. In response to addressing this issue, the 
heterogeneous networks (Het-Nets) turns out to be a 
practical strategic solution, which are made possible 
by multi-connectivity and incorporate a variety of 
access technologies, such as wifi and cellular systems. 
The coexistence of Wi-Fi with mobile cellular 
networks that enable multi-connectivity has the 
potential to reduce the inefficiencies associated to 
single-spectrum radio access technology and meet 
the growing needs for high data rates and low latency. 
Potential multi-connectivity, which uses multiple 
links over mobile cellular systems and Wi-Fi 
networks, opens up new opportunities and 
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capabilities for reliable communications [5]. The 
capability of  Wi-Fi systems have proven to 
significantly impact the data exchange process by 
providing enhanced radio beams for secure 
communications, reinforcing their position as an 
effective option for a wide range of applications. The 
cost effectiveness and flexibility offered by Wi-Fi 
systems improve their ability to survive in a dynamic 
scalable communications environment. 

The coexistence of multi-connectivity-enabled 
cellular and Wi-Fi communications systems is 
receiving increasing attention, driven by the demand 
for more efficient, adaptive and robust 
communications solutions. Multi-connectivity 
provides dynamic load balancing and traffic 
optimization. Since traffic is distributed across 
multiple connections, congested networks are 
avoided, communications interference is mitigated, 
and network outages are reduced [6, 7].  This means 
that mission-critical services are able to access the 
bandwidth and resources they need even in high 
demand scenarios. Multi-connectivity also supports 
seamless transition between networks or technologies 
when switching between the base station and access 
point. Furthermore, seamless switching between 
different technologies is supported when moving 
between base stations or access points. However, 
implementing multi-connectivity in mission-critical 
communications is crucial and can pose challenges. 
These challenges include optimal allocation of 
spectrum bands, coordination and management of 
network interference, maintaining network 
compatibility and interoperability, and addressing 
spectrum utilization and regulatory constraints.  

To tackle these challenges and ensure the 
reliability of mission-critical services across multiple 
networks, different solutions have been proposed 
including spectrum allocation [8, 9], capacity 
management strategies [10, 11], and interference 
control strategies [12, 13]. 

These thoughtful solutions aim to facilitate 
optimize resource utilization; minimize interference, 
and appropriate spectrum allocation among users. In 
addition, strict restrictions on the use of unlicensed 
frequencies in safety-critical communications have 
been suspended, ensuring the reliability of these 
services, while also taking considering the proposal 
and development of various regulatory frameworks. 
For instance, the European telecommunications 
guidelines institute (ETSI) and the US federal 
communications commission (FCC) released 
guidelines for the use of unlicensed spectrum in 
industrial applications and public safety applications, 
respectively [14, 15]. Nevertheless, despite these 
initiatives, the ongoing challenge lies in the process 

of choosing the most appropriate communication 
technology to meet the unique requirements of 
various services.  

The motivation behind the call for proposing 
multi-communication strategy driven by the need to 
effectively address these challenges. The proposed 
Multi-connectivity is rooted in the pursuit of 
reliability and enhanced the user requirement 
especially in terms of throughput and latency. 
Through the utilization multiple communication links 
and diverse technologies, multi-connectivity ensures 
reliable service performance, provides flexibility to 
address scalable demands, and enhances system 
resilience against the interference and the effects of 
network outages even in challenging situations. 
Indeed, multi-connectivity is emerging as the 
preferred choice for mission-critical applications 
where the imperatives of high-quality data 
transmission, congestion prevention through load 
balancing, reliability, and reduced latency are crucial.  

The remaining sections of this paper are arranged 
as follows: in section 2, a comprehensive review of 
existing works in the relevant field is presented. 
Section 3 provides a system model based on different 
considerations. A proposed solution for Multi-
Connectivity within heterogeneous 5GNR and Wi-Fi 
Networks is presented in section 4. In section 5, the 
performance evaluation of the proposed solution is 
conducted. Finally, based on the insights and 
contributions of the research, section 6 draws 
conclusions. 

2. Related works 
In heterogeneous environments involving 5G-NR 

and Wi-Fi, extensive research has been conducted to 
achieve seamless integration between WiFi and 
cellular networks. The researchers have particularly 
focus on critical parameters such as throughput, 
interference, and latency, which significantly impact 
network performance. Considering a connectivity 
solutions for 5G NR heterogeneous cellular networks, 
the authors in [16] proposed an improved sleep 
control solution for new heterogeneous radio (NR) 
5G cellular networks (HetNets) consisting of 
different base stations, including macro and small 
utilize licensed spectrum for transmission. The 
proposed solution is applied to enhance wireless 
coverage and network capacity, and energy 
efficiency. Similarly, a seamless communication 
solution is proposed in [17, 18] to enhance the quality 
of service (QoS) of heterogeneous wireless networks 
(HWNs) involving various applications using 
licensed spectrum. However, the solutions proposed 
in [16-18] face scalability issues particularly 
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challenges when scaling up to a larger network or a 
more complex environment, especially since it relies 
on the use of a single radio spectrum band, which 
may be insufficient, causing service outages as user 
requests increase. Furthermore, an approach based on 
utility-based handover decisions involves selecting 
the network with a lower load is proposed in [19] to 
provide better performance for vehicular network, 
particularly in terms of throughput and handover rate. 
The utility is designed based on network traffic load 
and SINR using licensed spectrum. An aspect that has 
not been widely included in their proposed solution is 
its susceptibility to challenges in dynamic 
environments, due to the assumption of network 
stability that may not hold. This could pose potential 
challenges to facility capacity management and affect 
the adaptability and effectiveness of the considered 
approach. In addition, a RAT selection scheme is 
proposed in [20], which involves efficient multiple 
communication (MC) configuration to enhance 
reliability. By incorporating distributed 
reinforcement learning (RL), each device has the 
capability to learn the policy for configuring an 
effective MC and selecting RATs appropriately. 
However, the work in [20] does not thoroughly 
explore the potential benefits and challenges 
associated with RAT selection and dynamic 
spectrum access. Incorporating dynamic spectrum 
sharing of different spectrum bands could 
significantly enhance resource utilization and 
contribute to the overall efficiency.  

On the other hand, in [21], an optimization model 
for LTE-LAA/WiFi coexistence in both 5GHz and 
5GHz NR-U (6GHz) bands is proposed and then 
analyzed. Although the proposed optimization model 
is effective within its scope, it exhibits limitations 
because it relies on a simplified indoor environment. 
This simplification introduces unrealistic scenarios, 
overlooking crucial factors including varying user 
densities, interference conditions, and mobility 
patterns. Furthermore, [22] explores recent 
improvements to LTE-LAA coexistence with WiFi 
systems, and compares the performance for different 
access priority classes. Nevertheless, the study does 
not thoroughly explore the influence of coexistence 
on quality of service (QoS) metrics i.e., the impact of 
coexistence on parameters such as latency, packet 
loss, and other QoS factors that would enhance a 
comprehensive understanding of LTE-LAA 
coexistence with WiFi systems.  The impact of a 
unique phenomenon related to Physical Cell Id (PCI) 
on integrated system including LTE, LAA, and Wi-
Fi is demonstrated in [23] using machine learning 
algorithms. Although [23] contributes significantly to 
enhance LTE-LAA coexistence with WiFi systems, 

the study does not explicitly examine the impact of 
varying user densities on the observed PCI scenarios. 
Particularly in scenarios marked by high traffic 
density, fluctuations in the dynamics of coexistence 
and PCI-related effects may vary, which may 
potentially affect the robustness of identified 
solutions.  

Following the conventional LBT introduced by 
3GPP, the coexistence performance between 5G and 
Wi-Fi operators is demonstrated in [24] to provide 
optimal performance in terms of latency and 
throughput. However, the work may not extensively 
address the dynamic nature of resource sharing 
among different RATs, including varying levels of 
spectrum contention and adaptability RATs to 
dynamic spectrum conditions. This investigation is 
essential, since it affects the optimization of resources 
and effectively enhances the overall performance of 
the system. The authors in [25] proposed two 
solutions for a dynamic sharing of multiple radio 
resources to mobile network operators (MNOs) 
involving cellular technologies and Wi-Fi systems. 
Although it is noted that the solutions are scalable to 
5G NR-U, the specific challenges in implementing 
5G NR-U scenarios are not explicitly addressed in the 
study. Clearly addressing the unique characteristics 
of 5G NR-U, including factors such as delay and 
packet drop, would greatly contribute to enhancing 
the relevance and completeness of the proposed 
solutions. Considering system fairness constraints, 
the overall throughput of integrated LTE-LAA and 
Wi-Fi networks is maximized in [26] based on 
reinforcement learning strategies applied to 
intelligently adjust the size of the contention window 
for both LTE-LAA and Wi-Fi users. Similarly, the 
authors in [27, 28] proposed a reinforcement learning 
(RL) based subchannel selection strategy that allows 
users to make informed decisions about the 
appropriate subchannels, BSs, and access points 
(APs) while considering physical layer 
characteristics and media access control (MAC) 
channel protocols. Notably, the study in [26-28] lacks 
a sustained exploration of these algorithms in 
dynamic and complex network environments.  This 
includes scenarios with multiple RATs involving a 
number of cells, where users can seamlessly switch 
to work within the best cells and take advantage of 
different spectrum bands. In addition, considering 
user mobility, changing interference conditions, and 
combining heterogeneous deployment settings may 
significantly impact system performance.  

A dynamic transmission opportunity period 
(TxOP) is introduced in [29] to provide better fairness 
and higher total aggregate throughput for LTE- 
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Figure. 1 System model enabled multi-connectivity 

capabilities 
 
LAA/Wi-Fi coexistence networks. The coexistence 
of Wi-Fi/ LAA networks operating in dense 
deployment scenarios is investigated in [30, 31] when 
the authors presented a solution to maximize 
throughput and avoid session interruption. 
Additionally, in order to analyze the collision 
probability, system throughput, and the access 
probability of LTE and Wi-Fi networks, two 
coexistence strategies based on the Markov model are 
investigated in [32]. However, the study in [30-32], 
mainly focuses on throughput LTE license assisted 
access (LAA), and overlooks other critical metrics 
such as resource utilization, delay, and packet loss 
that are crucial to evaluate the overall QoS for 
vehicular scenarios.   

Different from the aforementioned works, this 
study addresses the intricate dynamics of 
implementing a multi-connectivity strategy for 
mission-critical communications within vehicular 
scenarios. In particular, a heterogeneous scenario 
involving 5GNR and Wi-Fi networks with multiple 
cells facilitating multi-connectivity across various 
technologies is considered, efficiently utilizing 
various spectrum bands involving licensed and 
unlicensed spectrum resources.  

In this context, the key contributions of this paper 
in addressing the identified gap contributions can be 
outlined as: 
1- We propose a new strategy to address the 

challenge of determining the most appropriate 
connectivity option for mission-critical 
communication in a multi-connectivity scenario 
involving 5GNR cells and Wi-Fi Networks. This 
strategy combines Q-learning and softmax 

decision-making methods to improve the 
decision-making process. In this scenario, users 
have the ability to be connected to a high-quality 
BSs/APs and utilize both licensed and unlicensed 
spectrum. 

2- The proposed multi-connection mechanism is 
optimized to achieve high utility function 
efficiently and ensure reliable communication 
with high probability of success rate. This 
optimization reduces delays while effectively 
meeting the unique needs of safety-critical 
services under varying traffic loads.  

3- We conduct an evaluation of the effectiveness of 
the proposed mechanism across a range of system 
parameters through extensive simulations. This 
evaluation mainly focuses on utility function, 
network throughput, and packet success rate.  

3. System model 
The scenario considered in this paper is 

demonstrated in Fig. 1. It assumes a heterogeneous 
radio access network (RAN) made up of multiple 
radio access technologies (Multi-RAT) includes N 
individual cells per RAT, represented by the index n 
= {1, 2, ..., N}. Similar to [7,33], these RATs 
incorporates of 5G NR cells and the existence of 
potential Wi-Fi access points distributed within the 
network coverage area. The scenario involves the 
provision of a mission-critical service support 
specific set of vehicular users, denoted by an index m 
that ranges from 1 to M given access to these RATs. 
Each user m generates video session traffic following 
a Poisson process with an arrival rate density, λs . 
This paper assumes communication in the uplink 
direction, meaning the transmission is from users to 
BSs or APs. However, it can be easily extended and 
applied to include considerations of downlink 
direction. In the considered scenario, 5G NR cells are 
expected to be localized at higher carrier frequencies 
such as the 5 GHz band considered by 3GPP [34].  
The frequency band of bandwidth B is divided into a 
set of  orthogonal channels, denoted as f = {1, 2,….F}. 
At a given time t, a specific set of sub channels is 
allocated to cell n. On the other hand, the access 
points operate in the unlicensed 5.8GHz band.  

Additionally, our model operates under the 
assumption that mission-critical users have multi-
connectivity capabilities. This enables them to 
simultaneously establish connections across various 
RATs and multiple cells per RAT. Additionally, 
mission-critical users have the ability to utilize the 
available licensed and unlicensed channels, sharing 
them with Wi-Fi networks. The achievable bit rate for 
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each user m in cell n, indexed by  𝐷𝐷𝑛𝑛,𝑚𝑚
(𝑡𝑡) , can be 

determined as follows: 
 

                   𝐷𝐷𝑛𝑛,𝑚𝑚
𝑡𝑡   = ∑ 𝐿𝐿𝑚𝑚,𝑠𝑠(𝑛𝑛)  . 𝛿𝛿𝑠𝑠

𝑇𝑇𝑠𝑠
                      𝑠𝑠 (1) 

 
Where 𝐿𝐿𝑚𝑚,𝑠𝑠  is the number of session generated by 
mission-critical user m in cell n, and 𝛿𝛿s is the size of 
each session s generated by user m in cell n. 𝑇𝑇𝑠𝑠 is the 
duration of each session s  generated by user m.  The 
total traffic demand for cell n, given by 𝐷𝐷𝑛𝑛

(𝑡𝑡) can then 
be determined as the aggregate of the traffic demands 
of all users accessing cell n as follows: 
 
                 𝐷𝐷𝑛𝑛,𝑚𝑚

(𝑡𝑡) = ∑ ∑ 𝜌𝜌𝑚𝑚,𝑓𝑓 .  𝐷𝐷𝑛𝑛,𝑚𝑚
𝑡𝑡                      𝑓𝑓𝑚𝑚 (2) 

 
𝜌𝜌𝑚𝑚,𝑓𝑓 = 1 if the channel f  is assigned to the mission-
critical user m, and zero otherwise.  In order to meet 
traffic requirements and ensure satisfactory service 
quality for mission-critical users, it is essential to 
optimize a utility function that incorporates key 
parameters such as delay and achieved data rate for 
each cell. Therefore, the utility function for mission-
critical users in cell n, denoted by 𝑈𝑈𝑛𝑛, is considered 
and defined as follows: 

 
U𝑛𝑛 = ∑ �𝛼𝛼.𝑀𝑀𝑀𝑀𝑀𝑀�C𝑛𝑛,𝑚𝑚 ,  𝐷𝐷𝑛𝑛,𝑚𝑚

𝑡𝑡  �. �𝛽𝛽.∑ 𝐷𝐷𝑚𝑚,𝐿𝐿 (𝑛𝑛)
𝑃𝑃𝑚𝑚,𝐿𝐿 

𝐿𝐿 ��𝑚𝑚  
(3) 

 
Where Cn,m is the capacity of  user m provided by the 
total capacity of  user m when connected to BS n 
denoted by 𝐶𝐶𝑛𝑛,𝑚𝑚

(𝐿𝐿)   and the capacity of  user m when 
connected to wifi access points j, denoted by 𝐶𝐶𝑗𝑗,𝑚𝑚

(𝑈𝑈) i.e., 
𝐶𝐶𝑛𝑛,𝑚𝑚 = 𝐶𝐶𝑛𝑛,𝑚𝑚

(𝐿𝐿) + 𝐶𝐶𝑗𝑗,𝑚𝑚
(𝑈𝑈). Then, 𝐶𝐶𝑛𝑛,𝑚𝑚

(𝐿𝐿)  and 𝐶𝐶𝑗𝑗,𝑚𝑚
(𝑈𝑈) are given 

by the Shannon- theorem as follows:  
 

     𝐶𝐶𝑛𝑛,𝑚𝑚 
(𝑈𝑈) = ∑ 𝜌𝜌𝑚𝑚,𝑢𝑢 𝑢𝑢  .𝐵𝐵𝑛𝑛 

(𝑈𝑈) �1 + 
𝑃𝑃𝑚𝑚,𝑢𝑢

(𝑈𝑈) . 𝐺𝐺𝑚𝑚,𝑗𝑗
(𝑈𝑈)

𝐵𝐵𝑛𝑛 
(𝑈𝑈).𝑁𝑁𝑜𝑜 

�      (4) 

 𝐶𝐶𝑛𝑛,𝑚𝑚 
(𝐿𝐿) = �𝜌𝜌𝑚𝑚,𝑓𝑓 

𝑓𝑓

 .𝐵𝐵𝑛𝑛 
(𝐿𝐿). 

 

    �1 +  
𝑃𝑃𝑚𝑚,𝑓𝑓

(𝐿𝐿) . 𝐺𝐺𝑚𝑚,𝑛𝑛
(𝐿𝐿)

∑ 𝜌𝜌𝑚𝑚���,𝑓𝑓 𝑚𝑚���=1
𝑚𝑚���≠𝑚𝑚

𝑃𝑃𝑚𝑚��� ,𝑓𝑓 
(𝐿𝐿) . 𝐺𝐺𝑚𝑚���,𝑛𝑛

(𝐿𝐿) + 𝐵𝐵𝑛𝑛 
(𝐿𝐿).𝑁𝑁𝑜𝑜

�      (5) 

 
where 𝑃𝑃𝑚𝑚,𝑓𝑓

(𝐿𝐿)   and 𝑃𝑃𝑚𝑚,𝑢𝑢
(𝑈𝑈) are the transmission power 

of mission critical user m ∈ M when connected to BS 
n on licensed subchannel f , and when connected to 
AP j on unlicensed subchannel u, respectively.  
𝐺𝐺𝑚𝑚,𝑛𝑛

(𝐿𝐿)  is the channel gain between mission critical user 

m and BS n , and  𝐺𝐺𝑚𝑚,𝑗𝑗
(𝑈𝑈) is the channel gain between 

mission critical user m and Wifi access point j. No is 
the noise power spectrum density. 𝐺𝐺𝑚𝑚� ,𝑛𝑛

(𝐿𝐿)  is the 
interference link gain from the transmitter 𝑚𝑚� ≠ m to 
BS n. 𝐵𝐵𝑛𝑛

(𝐿𝐿)  and  𝐵𝐵𝑛𝑛
(𝑈𝑈)   are  licensed bandwidth and 

unlicensed bandwidth that can be allocated to users 
in cell n, respectively. 𝜌𝜌𝑚𝑚,𝑢𝑢 are channel assignment 
indicator i.e.,  𝜌𝜌𝑚𝑚,𝑢𝑢= 1 if  the unlicensed channel u is 
assigned to the user m otherwise its value is zero. The 
notations utilized in this paper are organized and 
indexed in Table1. 

4. The proposed multi-connectivity strategy 

The proposed distributed multi-connectivity 
solution is designed to address the selection of the 
optimal co 

 -nnectivity option by identifying the best BSs 
and APs along with their associate licensed and 
unlicensed sub-bands for uplink transmission.  
To achieve these objectives, we adopt a distributed 
approach based on a reinforcement learning (RL), 
where each user m independently selects the most 
appropriate BSs/APs and spectrum based on their 
communication requirements. In particular, our RL-
based solution enables an agent, seamlessly 
integrated within the user equipment, to actively 
interact with the network environment as depicted in 
Fig. 2. This environment consists of multiple BSs and 
APs with the capability to access licensed/unlicensed 
spectrum resources. At each time step t, the agent of 
each user m, evaluates the current state,  𝑠𝑠𝑡𝑡 . 
Subsequently, it initiates a decision to take an 
action,  𝑎𝑎𝑡𝑡 . This process involves the selection of 
optimal BSs and APs along with their associate 
licensed and unlicensed sub-bands for uplink 
transmission based on a softmax policy [35], which 
allows for probabilistic selection of actions based on 
the Q-values. Following the selected action 𝑎𝑎𝑡𝑡 , the 
environment state,  𝑠𝑠𝑡𝑡 ∈  S  transits to a new state, 
𝑠𝑠𝑡𝑡+1 and the agent receives a reward, 𝑅𝑅(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡), which 
is determined by the respective link capabilities and 
response time constraints. In our system, the state 
observed by each link, which characterizes the 
environment between transmitters and receivers, 
consists of several components. These include the 
user location, the instantaneous received signal to 
noise ratio when user m connected to BS and AP, and 
the set of available Licensed and unlicensed sub 
channels for UL transmissions of user m denoted 
respectively as 𝑟𝑟𝑓𝑓  ∈  𝑓𝑓 and  𝑊𝑊𝑢𝑢 ∈  𝑈𝑈 . Hence, the 
state can be expressed as 𝑠𝑠𝑡𝑡  = [UE location, , 𝑟𝑟𝑓𝑓,
𝑊𝑊𝑢𝑢,   𝜆𝜆𝑛𝑛,𝑢𝑢

(𝑇𝑇)  , 𝜆𝜆𝑛𝑛,𝑓𝑓
(𝑇𝑇) )]  ∈  S.  
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Table1. List of notations 
Definition Notation 
𝛿𝛿s The size of each session s generated 

by user m. 
Ts The duration of each session s  
Lm,s Number of sessions generated by user 

m 
𝐷𝐷𝑛𝑛,𝑚𝑚

(𝑡𝑡)  The achievable bit rate for each user m 
in cell n. 

𝐷𝐷𝑛𝑛
(𝑡𝑡) The average number of required RBs 

by the IoT service 
𝜌𝜌𝑚𝑚,𝑓𝑓, 𝜌𝜌𝑚𝑚,𝑢𝑢 Channel assignment indicators 

𝐶𝐶𝑛𝑛,𝑚𝑚
(𝐿𝐿)  the total capacity of user m when 

connected to BS n. 
𝐶𝐶𝑗𝑗,𝑚𝑚

(𝑈𝑈) the capacity of user m when connected 
to wifi access points j 

𝑃𝑃𝑚𝑚,𝑓𝑓
(𝐿𝐿)  The transmission power of user m on 

licensed subchannel f 
𝑃𝑃𝑚𝑚,𝑢𝑢

(𝑈𝑈) The transmission power of user m on 
unlicensed subchannel u 

𝐺𝐺𝑚𝑚,𝑛𝑛
(𝑈𝑈)  Channel gain between mission-critical 

user m and BS n  
𝐺𝐺𝑚𝑚,𝑗𝑗

(𝑈𝑈) Channel gain between mission-critical 
user m and AP j 

𝐵𝐵𝑛𝑛
(𝐿𝐿) Licensed bandwidth of cell n 

𝐵𝐵𝑛𝑛
(𝑈𝑈) Unlicensed bandwidth of cell n 

𝑟𝑟𝑓𝑓  The set of available licensed sub 
channels.  

𝑊𝑊𝑢𝑢 The set of available unlicensed sub 
channels. 

α  , β Weight parameters 

θ Learning rate 

λ𝑠𝑠 Session arrival rate 
 

 
Figure. 2 Reinforcement learning model 

 
To facilitate learning and decision-making of RL 

following Algorithm 1, each UE m maintains a record 
of its experiences when connecting to each of the BSs 
and APs through the available sub 
channels  𝑟𝑟𝑓𝑓  and 𝑊𝑊𝑢𝑢 . Whenever a user m utilizes a 
specific BS n using sub channel 𝑟𝑟𝑓𝑓  and wifi access 
point j using 𝑊𝑊𝑢𝑢 , the corresponding Q(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) value 
is updated for a given state-action pair (𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡), with 
a null discount rate (line 19). This update process 

allows the UE m to continuously learn and improve 
its decision-making regarding the choice of BSs/APs 
and associated with their subchannels 𝑟𝑟𝑓𝑓  and  𝑊𝑊𝑢𝑢 , 
based on the historical experiences stored in the Q 
( 𝑠𝑠𝑡𝑡 ,  𝑎𝑎𝑡𝑡 ) values. The computation of Q( 𝑠𝑠𝑡𝑡 ,  𝑎𝑎𝑡𝑡 ), 
involves updating the value based on the rewards 
received and the learning rate. Specifically, the new 
value of Q(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡), is calculated as follows: 
 
𝑄𝑄(𝑠𝑠𝑡𝑡 .𝑎𝑎𝑡𝑡) ← (1 −  𝜃𝜃 ).𝑄𝑄(𝑠𝑠𝑡𝑡 .𝑎𝑎𝑡𝑡) +  𝜃𝜃.𝑅𝑅(𝑠𝑠𝑡𝑡 .𝑎𝑎𝑡𝑡) (6) 

 
In this eq. (6), a= {(Select BS n , Select AP j) ∣ , n ∈ 
Base Stations, j ∈  Access Points}, θ ∈  (0, 1) 
represents the learning rate. The rewards, denoted 
by  𝑅𝑅(𝑎𝑎𝑡𝑡) , is designed to reflect the degree of 
achievement in meeting the optimization goal and 
constraints. Specifically, our objective is to achieve  
high data rate and minimize delay. The reward is 
determined based on the achieved capacity, 𝐶𝐶𝑛𝑛,𝑚𝑚 and 
actual required bitrate, 𝐷𝐷𝑛𝑛,𝑚𝑚  obtained since the last 
BS and AP selection. 

BSs and APs that contribute to less delay and 
greater achieved capacity receive higher rewards, 
leading to larger values for Q(𝑠𝑠𝑡𝑡 ,  𝑎𝑎𝑡𝑡 ).Taking into 
account the above considerations, the reward 
function when establishing a connection between  
user m to BS n is determined as follows: 
 
𝑅𝑅(𝑠𝑠,𝑎𝑎) =  

⎣
⎢
⎢
⎢
⎢
⎡ 1 −  �𝑚𝑚𝑚𝑚𝑚𝑚��C𝑛𝑛,𝑚𝑚 (𝑎𝑎)− D𝑛𝑛,𝑚𝑚 �,0�

D𝑛𝑛,𝑚𝑚 
  �            

                                           
 

           C𝑛𝑛,𝑚𝑚 ≥ D𝑛𝑛,𝑚𝑚  
                                                                  
𝑚𝑚𝑚𝑚𝑚𝑚��C𝑛𝑛,𝑚𝑚 (𝑎𝑎)− D𝑛𝑛,𝑚𝑚 �,0�

D𝑛𝑛,𝑚𝑚 
   𝑂𝑂𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   ⎦

⎥
⎥
⎥
⎥
⎤

 (7) 

 
The reward function, as given in Eq. (7), captures the 
performance of the system by assigning a value 
between 0 and 1. It exhibits an exponential increase 
when the achieved bit rate, 𝐶𝐶𝑛𝑛,𝑚𝑚 is below the required 
bit rate, 𝐷𝐷𝑛𝑛,𝑚𝑚. Conversely, if the service requirement 
is not met, the reward decreases. It provides a 
feedback to the agent, influencing its decision-
making process throughout the system operation 
(lines 8-13). Once the Q-values are computed, the 
agent can use them to choose the action with the 
highest Q-value, indicating the optimal choice in that 
particular state (lines 14-18). This selection process, 
based on maximizing the Q-values, allows the agent 
to make more effective and informed decisions. 
Mathematically, this can be expressed as: 
 

                       𝑎𝑎𝑡𝑡 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎∈𝐴𝐴

𝑄𝑄(𝑠𝑠𝑡𝑡 .𝑎𝑎𝑡𝑡)               (8) 
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The probability of selecting a particular action is 
determined by its Q-value relative to other available 
actions.  
 

𝑃𝑃𝑟𝑟 � �𝐵𝐵𝐵𝐵𝑛𝑛,𝐴𝐴𝐴𝐴𝑗𝑗�𝑠𝑠𝑡𝑡�� =  

𝑒𝑒𝑄𝑄�𝑠𝑠𝑡𝑡.𝐵𝐵𝐵𝐵𝑛𝑛,𝐴𝐴𝐴𝐴𝑗𝑗�/𝜏𝜏

∑ 𝑒𝑒𝑄𝑄�𝑠𝑠𝑡𝑡, 𝐴𝐴𝐴𝐴𝑗𝑗�/𝜏𝜏+∑ 𝑒𝑒𝑄𝑄(𝑠𝑠𝑡𝑡, 𝐵𝐵𝐵𝐵𝑛𝑛)/𝜏𝜏 𝑁𝑁
𝑛𝑛�=1  𝐽𝐽

𝚥𝚥�=1

        (9) 

 
Specifically, the probability of selecting action 𝑎𝑎𝑡𝑡 , 
P(𝐵𝐵𝐵𝐵𝑛𝑛 ,𝐴𝐴𝐴𝐴𝑗𝑗)  is defined as,Where τ is the temperature 
parameter that plays a crucial role in balancing 
exploration and exploitation. Actions associated with 
higher Q values, including the selection of the 
corresponding APs or BSs and spectrum, are 
assigned higher probabilities. This prioritizes the 
exploitation of proven successful actions, as per Eq. 
(8). To identify the sets of available unlicensed 
channels, users actively measure the received power 
and perform channel sensing. This process follows to 
the Category 4 listen-before-talk (LBT) approach 
specified in [36].  

5. Results and discussion 
In the given scenario, we consider a simulation model 
with an urban environment characterized by 5G NR 
cells and Wi-Fi access points randomly distributed 
across their coverage areas. The essential simulation 
parameters are detailed in Table 2. In this configured 
environment, we simulate mission-critical traffic 
generated by users that are enabled by the multi-
connectivity feature, and actively maintain Video 
sessions. The generation of these sessions occurs 
randomly, following a Poisson process at a rate of λs. 
It is worth noting that these UEs have the ability to 
connect to a maximum of two RATs, and within each 
RAT, they can establish a connection to a single cell. 
To facilitate our comparative analysis, we compare 
our proposed multi-connectivity strategy based on 
RL (MCS-RL) with two reference approaches. The 
first reference approach, denoted as Dynamic-Based 
access strategy (D-BAS) inspired by [18], enforces 
exclusive connectivity to multiple BSs of different 
RATs, with dynamic sharing of resources using only 
licensed spectrum. The second approach, referred to 
as Random access strategy (RAS) and inspired by 
[20], enables users to autonomously select their radio 
access technology and resources based on signal 
strength.  

Fig. 3 shows the utility function versus offered 
load which clearly demonstrates the superior 
performance of the proposed MCS-RL approach 
compared to RAS and D-BAS. In Fig. 3, we can see  
 

Algorithm: Multi-connectivity based RL strategy 

1. Data:  𝑟𝑟𝑓𝑓
(𝑇𝑇) , W𝑢𝑢

(𝑇𝑇),  𝜆𝜆𝑛𝑛,𝑢𝑢
(𝑇𝑇)  , 𝜆𝜆𝑛𝑛,𝑓𝑓

(𝑇𝑇) , γ, ε. 
2.Initialization: 
3.  Choose an initial state, 𝑠𝑠0. 
4.  Initialize  BSs /APs  allocation 𝑃𝑃𝑟𝑟(s , a) 
5.  Initialize approximated Q-value 𝑄𝑄( 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡); 
6. Iteration 
7. While learning period is active do 
8.  for each selection epoch t do 
9.      Evaluate the current state, 𝑠𝑠 =  𝑠𝑠𝑡𝑡. 
10.  Compute the softmax probabilities 

for                                      .    selecting each 
action 𝑎𝑎𝑡𝑡  ∈ 𝐴𝐴  based on 

  .        Eq.(9) 
11.     Generate a random number between 0 and 1. 
12.     Select 𝑎𝑎𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑎𝑎∈𝐴𝐴
𝑄𝑄( 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) according to   

              𝑃𝑃𝑟𝑟(s , a) in Eq. (9) ; 
13.       Connect to the selected BS n  or AP j : 𝑎𝑎𝑡𝑡.   
14.     If  𝐶𝐶𝑛𝑛,𝑚𝑚> 𝐷𝐷𝑛𝑛,𝑚𝑚  

15.     𝑅𝑅(𝑠𝑠,𝑎𝑎) =  1 −  �𝑚𝑚𝑚𝑚𝑚𝑚��C𝑛𝑛,𝑚𝑚 (𝑎𝑎)− D𝑛𝑛,𝑚𝑚 �,0�
D𝑛𝑛,𝑚𝑚 

  � 

16.    Else  

17.         𝑅𝑅(𝑠𝑠,𝑎𝑎) =  �𝑚𝑚𝑚𝑚𝑚𝑚��C𝑛𝑛,𝑚𝑚 (𝑎𝑎)− D𝑛𝑛,𝑚𝑚 �,0�
D𝑛𝑛,𝑚𝑚 

  �      

18.    End 
19.  Update  𝑄𝑄( 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡) based on equation (6) 
20.  Update State:  

        𝑠𝑠𝑡𝑡 ← 𝑠𝑠𝑡𝑡+1 
21.    Update Iteration Index: 
        𝑡𝑡 ← 𝑡𝑡 + 1 
22.  End 
23.End 
Output:  BSs n and APs  j associated for UE m 

 
that the proposed MCS-RL strategy achieves 
significantly higher utility improvement, with 
approximately 129 at the offered load of 225 Mbps. 
On the other hand, the D-BAS approach achieves a 
utility of about 119 Mbps when the offered load is 
225 Mbps, which is significantly lower than that of 
the proposed strategy.  

The RAS approach performs less than the 
proposed RL-BCS strategy and D-BAS approach, 
achieving a utility of about 108 Mbps when the 
offered load is 225 Mbps. Compared with the 
proposed strategy, the different utilities achieved by 
the RAS and D-BAS approaches indicate that it is 
less effective in providing utility improvements than 
the proposed strategy, as detailed in Table 3. The 
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Table 2. Network configuration parameters 
Parameter Value 
Number of Cells 5 
Cell radius 600m 
Licensed Channel bandwidth  50 MHz 
RBs per cell 100 RBs 
UE antenna gain  10 dB 
UE noise figure 9 dB 
height of the BS 10m 
UE height 1.5 m 
Subcarrier separation 60kHz 
Spectral Efficiency (Seff)  5.6 b/s/Hz. 

Path loss model for  licensed 
Network 

128.1+37.6log10(d[
km]) 

Path loss model for Unlicensed 
Network 

148.1+αx 
10log10(R) , α = 4 

Number of UEs 80 
λa , session  arrival rate  1 session/s  

 𝑤𝑤𝑡𝑡ℎ 30 ms 

Session size,  𝛿𝛿s   5 Mbit/s 
Transmit power of CU 23 dBm 
Number of WiFi  APs 6 
Unlicensed Channel bandwidth 400MHz 

α 0.4 

β 0.6 

Learning rate, θ 0.1 
Temperature parameter τ 0.1 

 
Table 3. System utility of the proposed MCS-RL and 

reference approaches 
Offered 

Load RAS D-BAS MCS-RL 
System Utility 

21.645 20.23 19.87 20.928 
77.1134 52.26 58.06 68.91 

120 75.83 83.78 98.78 
143.2075 84.03 94.14 107.62 

190 98.86 112.12 122.67 
225 108.45 119.71 129.42 
300 117.61 129.92 140.25 

 
notable improvement in the utility function realized 
by our proposed MCS-RL solution can be attributed 
to its ability to adeptly accommodate large user 
requests even under heavy network loads. Achieving 
this in the shortest time is made possible by the 
proposed strategy, which consistently selects the 
optimal radio access technology and spectrum band. 
This strategic selection not only allows for more 
efficient radio spectrum utilization but also ensures a 

reliable communication between users, contributing 
to enhanced user experience and overall network 
performance significantly. 

In turn, Fig. 4 makes use of cumulative 
distribution functions (CDFs) of the utility function 
to give significant insight into the system's 
performance for transmissions of mission critical 
services. These outcomes unequivocally demonstrate 
the superiority of our proposed MCS-RL strategy 
compared to the RAS and D-BAS approaches. In 
particular, the proposed MCS-RL strategy stands out 
by consistently maintaining a higher utility function. 
The analysis shows that the proposed strategy 
achieves a remarkable utility of up to 143 Mb/s with 
a probability of 95%.   

The D-BAS comes with a utility of only 100 Mb/s, 
whereas the RAS reference system manages to obtain 
a lower value of 80 Mb/s. 

In Fig. 5, the throughput measured in megabits 
per second (Mbits/sec) is presented for the proposed 
MCS-RL strategy against the RAS and D-BAS 
approaches.   

The results unequivocally demonstrate that the 
MCS-RL strategy performs better than the RAS and 
D-BAS approaches. In particular, we can observe that 
the proposed MCS-RL strategy performs superbly, 
reaching a maximum throughput of around 255 MB/s 
when the offered load is 318 MB/s. 

In contrast, the D-BAS approach achieves a 
maximum throughput of 203 Mb/s when the load is 
318 MB/s. This constitutes a significant benefit for 
the proposed strategy. Furthermore, when the offered 
load is 318 MB/s, the system achieves a maximum 
throughput of 180 Mb/s when the RAS approach is 
considered. The proposed MCS-RL strategy 
outperforms both RAS and D-BAS approaches in this 
scenario, showing a noteworthy relative increase of 
21% and 27%, respectively. Our proposed MCS-RL 
technique has consistently demonstrated superior 
throughput performance compared to the RAS and D-
BAS reference methods. This observation indicates 
improved data transfer efficiency and its ability to 
accommodate higher data loads seamlessly. The 
significant improvement in throughput not only 
exceeds current standards, but also positions our 
proposed solution as a promising innovation, 
enhancing overall network performance and data 
transfer rates.  Table 4 provides a comprehensive 
performance comparison of the proposed MCS-RL 
strategy with the RAS and D- BAS reference 
approaches, specifically with respect to throughput 
under various offered loads. The improvement results 
in Fig. 5 can be attributed to the ability of the 
proposed MCS-RL strategy to establish 
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Figure. 3 The system utility versus the offered load 

 

 
Figure. 4 The CDF of the utility system 

 

 
Figure 5. The network throughput versus the offered load 
 
highly reliable communications with high signal-to-
noise ratio (SINR), which is a key factor in achieving 
larger capacity and thus higher data rates. This 
feature solidifies it as an effective solution for 
enhancing network performance in data 
transmissions. 

On the other hand, Fig. 6 illustrates the use of 
CDF to perform a comprehensive throughput 
analysis. These findings clearly highlight the superior 
performance of our proposed MCS-RL strategy when 
placed alongside the RAS and D-BAS schemes. In 
particular, our proposed approach consistently 
outperforms by maintaining higher throughput. The 
figure demonstrates that, with a probability of 98%, 
our proposed scheme achieves a remarkable 
 

 
Figure. 6 The CDF of the network throughput 

 
throughput of up to 120 Mb/s. Instead, D-BAS 
approach only manages a throughput of 100 MB/s, 
while RAS approach only manages a lower 
throughput of 80 MB/s. 

In Fig. 7, the performance of the proposed MCS-
RL solution is compared with the RAS and D-BAS 
reference approaches, with particular emphasis on the 
packet success rate. This rate depicts the percentage 
of packets that are successfully delivered while 
considering their delivery in time before reaching the 
threshold,  𝑤𝑤𝑡𝑡ℎ . In particular the proposed strategy 
effectively maintains a greater packet success rate 
than the RAS and D-BAS approaches i.e., the 
proposed strategy yields a remarkable packet success 
rate of about 98% when the offered load reaches 120 
Mbps. This indicates that a large number of packets 
with high probability are almost delivered 
successfully and satisfied the requisite requirements.  
On the other hand, for the D-BAS reference approach, 
the packet success rate experiences a slight drop, 
reaching around 89%, under the offered load of 120 
Mbps. The RAS reference approach showed a lower 
packet success rate, around 81% when the offered 
load reaches 120 Mbps. The proposed solution 
consistently outperforms reference schemes, 
ensuring a higher rate of successful packet delivery, 
which is crucial for reliable communication. The 
significant increases in packet success rate observed 
in our proposed MCS-RL, which are attributed to 
improved network congestion management and 
efficient error handling by our proposed solution as a 
result of exploiting different radio access 
technologies and spectrums which frees up more 
available resources and also increases overall 
communication reliability. This validation further 
solidifies the effectiveness of our proposed MCS-RL  
in different scenarios with different loads and 
conditions, as detailed in Table 5. 
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Figure. 7 The packet delivery rate versus the offered load 
 

 
Table 4. System throughput of the proposed MCS-RL and 

reference approaches 
Offered 

Load RAS D-BAS MCS-RL 

Network Throughput (Mbps) 
21.645 20.4 20.6 21.8 

77.1134 53.60 61.85 74.10 
120 81.25 93.75 112.25 

143.2075 94.25 111.75 131.19 
190 119.64 148.50 170.37 
225 145.3 174.76 202.23 
300 160.75 203.34 255.12 

 
Table 5. Packet delivery rate of the proposed MCS-RL 

and reference approaches 
Offered 

Load RAS D-BAS MCS-RL 

Packet Delivery Rate 
21.64 0.93 0.96 0.99 
77.11 0.87 0.92 0.97 
120 0.81 0.88 0.96 

143.20 0.76 0.84 0.92 
190 0.7 0.78 0.87 
225 0.64 0.73 0.82 
300 0.55 0.64 0.72 

6. Conclusion  
In our study, we proposed a novel multi-

connection strategy to optimize the selection of the 
most efficient connectivity option. This strategy 
involves identifying and selecting the optimal BSs 
and APs along with their associate licensed and 
unlicensed sub-bands for uplink transmission. To 
achieve this, the proposed strategy incorporates RL 
and softmax decision-making methods, which 
enhance the overall decision-making process. This 
strategy is compared with a reference scheme that 
imposes exclusive connectivity to multiple base 
stations from different RATs, with dynamic sharing 

of resources using only licensed spectrum. In 
addition, the strategy has been compared against a 
reference scheme enables users to randomly select 
their radio access technology and resources based on 
signal strength. Our simulation outcomes validate the 
effectiveness and ability of the proposed multi-
connection strategy to in efficiently allocating 
BSs/APs along with their associated sub-bands. This 
contributes to enhanced network performance in 
terms of in terms of utility function, network 
throughput, and packet success rate. Significantly, 
our proposed MCS-RL strategy outperforms 
reference schemes, exhibiting gains of up to 0.12, and 
0.19 in achieved utility compared to the RAS and D-
BAS schemes, respectively. The results also show 
substantial bit rate improvements, up to 16 % and 
41% in our proposed MCS-RL approach compared to 
RAS and D-BAS, respectively. Moreover, the 
proposed algorithms effectively mitigate outage 
probability associated with increased traffic demands, 
achieving success delivery rates of approximately 
0.10 and 0.18 compared to RAS and D-BAS, 
respectively. 
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