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Abstract: As a result of the widespread adoption of hovercraft systems, the path finding of such systems has become 
an essential rule for locating the target with the shortest distance and avoiding collision between the starting point 
and the target locations. The purpose of this paper is to develop a method for path finding by proposing a hybrid 
method of intelligent optimization techniques, including two stochastic approaches. The first one is called the 
Artificial Bee Colony (ABC) algorithm, and it aims to direct the hovercraft toward the target utilizing the behaviour 
of honey bees to reduce the path length required to reach the target. The second approach makes use of the Self 
Perception Particle Swarm Optimization (SP-PSO) algorithm, which is designed to improve particle swarm 
optimization in order to obtain a path that is more effective, smoother, and shorter for the hovercraft to travel in a 
complicated environment. The developed hybrid method is called the Artificial Bee Colony Self Perception Particle 
Swarm Optimization (ABC-SPPSO), which enhances the convergence speed and achieves a trade-off between 
exploration and exploitation in order to generate the shortest path while simultaneously avoiding collisions. The 
simulation results indicate that the performance of the proposed hybrid algorithm surpasses those of the original 
techniques. Moreover, the results demonstrate that the proposed hybrid algorithm outperforms the hybrid Firefly 
Algorithm Modified Chaotic Particle Swarm (HFAMCPSO) by (11.90%) in terms of distance and (56%) in terms of 
iterations. In addition, it outperforms the Quarter Orbit combined with the Particle Swarm Optimization (QOPSO) 
algorithm by (1.89%) in terms of distance and (16.66%) in terms of iterations. Furthermore, compared to the Rapid 
Random Tree Star Particle Swarm Optimization (RRT*PSO), the proposed method achieved enhancement of 
(0.82%) in terms of distance and (33.33%) in terms of iterations in providing the shortest path while avoiding 
collisions and reducing the trajectory tracking error to approximately zero. All the considered approaches were 
simulated in a global environment, utilizing the MATLAB 2022 package. 

Keywords: Hovercraft system, Path finding, Static environment, Artificial bee colony, Self-perception particle 
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1. Introduction 
Hovercrafts, sometimes referred to as air 

cushion vehicles (ACVs), are electromechanical 
vehicles with under-actuated capabilities, enabling 
them to traverse across many terrains, such as water, 
land, and diverse surfaces. In particular, the 
flexibility observed in these vehicles can be 
attributed to the presence of air cushion support, 
which effectively reduces friction with the 
underlying surface [1]. As a result, they are utilized 
for purposes including military, coastguard, rescue 
operations, transportation, searching, assisting flood 

victims, mine sweeping, and penetrating 
inaccessible regions. Due to their wide-ranging 
applications, it is imperative to address and resolve 
the challenges that impede the functionality of these 
vehicles [2]. When examining the applications of 
these vehicles, they can be categorized as 
Unmanned Ground Vehicles (UGVs). These 
vehicles require mapping, localization, and path 
finding for navigation [3]. In order to design a 
collision-free path for vehicles from their starting 
point to their final destination, path finding is 
utilized. In this regard, path finding could be 
categorized into two main types: offline path finding 
and online path finding. The distinction between 
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these two types is based on the degree of knowledge 
available about the environment. Specifically, when 
the vehicle has direct knowledge of all 
environmental data, including the trajectories of 
non-static objects and static obstacles, it falls under 
the first category. Conversely, if this data is 
unavailable or insufficient, the vehicle must assess 
the path throughout the navigation process, which is 
called online path finding [4, 5]. In this context, 
numerous researchers employed path finding for a 
variety of purposes using different methods to solve 
this problem. In this paper, to solve the hovercraft 
path finding issue, three objectives are achieved 
through the use of hybrid techniques in path finding. 
The initial objective was to navigate towards the 
target without encountering any obstacles. The 
minimal distance to the target is the second 
objective, and the third objective is the smoothest 
path. This intelligent hybrid methodology combines 
the artificial bee colony (ABC) method inspired by 
honey bees' intelligent behaviour with Self 
Perception Particle Swarm Optimization (SP-PSO) 
to develop the ABC-SPPSO method, which 
achieved the previously mentioned objectives. The 
structure of this paper is as follows: The hovercraft 
system is shown in Section 2. The types of path 
finding algorithms are covered in Section 3. Our 
hybrid approaches are explained in Section 4, and 
the simulation results and analysis are given in 
Section 5. Lastly, Section 6 represents this paper's 
conclusion. 

2. Hovercraft system 
Hovercraft systems, which are versatile, agile, 

and easily deployable, pose challenges in automatic 
control due to their under-actuated nature [6]. The 
concept of under-actuation refers to systems that 
possess a reduced number of control inputs in 
comparison to the number of independent 
generalized coordinates. This paper presents an 
under-actuated hovercraft featuring two control 
inputs and three degrees of freedom. Fig. 1 
illustrates the hovercraft's configuration. The 
hovercraft is equipped with a pair of high-capacity 
ducted fans, which are responsible for both the 
propulsion and steering of the hovercraft. These fans 
provide two distinct input sources, Fs and Fp, as 
well as the hovercraft direction (x, y, 𝜃𝜃) [7]. Hence, 
the formulation of the motion equations is a crucial 
initial step in the development of the mathematical 
model for the hovercraft. In particular, the kinematic 
equations that describe how the vehicle moves are as 
follows [7]: 

 

 
Figure. 1 Hovercraft model 

 
�̇�𝑥 = 𝑢𝑢 cosψ− v sinψ (1) 
 
�̇�𝑦 = 𝑢𝑢 sinψ+ v cosψ (2) 
 
ψ̇ = 𝑟𝑟 (3) 

 
The dynamic equations of the hovercraft motion 
include Eq. (4), Eq. (5), and Eq. (6) [7]. 
 

𝑚𝑚 �̇�𝑢 − 𝑚𝑚 𝑣𝑣 𝑟𝑟 + 𝑑𝑑𝑣𝑣𝑢𝑢 =  𝐹𝐹𝑠𝑠 + 𝐹𝐹𝑝𝑝 (4) 
 
𝑚𝑚 �̇�𝑣 +𝑚𝑚 𝑢𝑢 𝑟𝑟 + 𝑑𝑑𝑣𝑣𝑣𝑣 =  0 (5) 
 
𝐽𝐽 �̇�𝑟 +  𝑑𝑑𝑟𝑟𝑟𝑟 =  𝐿𝐿(𝐹𝐹𝑠𝑠 − 𝐹𝐹𝑝𝑝)                         (6) 

 
The symbols representing the definitions of 
kinematic and dynamic equations are presented in 
Table 1. 
 

Table 1. Parameters of the kinematic and dynamic 
equations along with their definitions 

Parameter Definition Unit 
u Surge speed m/sec 
v Sway speed m/sec 

x Cartesian coordinates of 
its centre of mass meter 

y Cartesian coordinates of 
its centre of mass meter 

ψ Vehicle’s orientation rad 
r Angular speed rad/sec 
M Vehicle’s mass kg 
J Rotational inertia kg.m2 

dv 
The coefficient of 

viscous kg/sec 

dr Rotational friction Kg.m/sec 
Fs The starboard fan force N. 
Fp Portboard fan force N. 
L Arm of the forces meter 
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Figure. 2 Path finding algorithms 

3. Path finding algorithms 
A key concept in hovercraft operation is path 

finding, which is figuring out the best way to reach 
the target while taking into account things like the 
shortest possible path, an obstacle-free path, and the 
least amount of time needed to reach the target. 
Based on previous research works, path finding 
could be categorized into four main categories: 
Conventional, Deterministic, Stochastic, and 
Artificial Intelligence-based methods, as shown in 
Fig. 2, utilizing these techniques to locate the 
optimal or the near-optimal path. 

3.1 Conventional methods 

Conventional algorithms, developed since the 
1950s, are popular in autonomous navigation due to 
their observable computation outputs and suitability 
for offline path finding in deterministic 
environments. In this regard, there are several 
conventional methods, one of which is referred to as 
cell decomposition (CD). The study in [8] aims to 
analyze the outcomes of previous studies that 
employed the cell decomposition technique, 
utilizing several criteria, such as the shortest path, 
minimal computing time, memory usage, safety, 
completeness, and optimality. 

However, CD may not always be the best option 
for real-time applications and may struggle in more 
complicated contexts, such as those with dynamic 
impediments or ambiguous information. Another 
common method is known as the roadmap approach 
(RA) [9], which is a technique used to move 
between different places, and it is depicted as a 
sequence of one-dimensional arcs that link 
unoccupied areas. This strategy's performance will 
be significantly reduced in complex environments or 
higher-dimensional spaces.  
      In [10], Artificial Potential Field (APF) is the 
other most popular conventional method that 
generates a virtual potential field to create realistic 
scenes, determining vehicle trajectory based on 
opposition and attraction (between the obstacle and 
the target). However, adjusting the potential 
functions can be difficult, and there may be path 
oscillations and local minima. While in [11], the 
authors used a different conventional strategy by 
improving the RRT*(Rapid Random search Tree) 
algorithm to address the challenges of the winding 
path and the time-consuming service robot path-
finding. 

In particular, the primary disadvantages of these 
approaches are their high computational expense 
and the inability to execute new planning or make 
decisions in a dynamic environment. 
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3.2 Deterministic methods 

Deterministic algorithms are considered 
problem-dependent algorithms or methods based on 
graphs, and their primary function is to determine 
the nearest neighbour [12]. One of these algorithms 
is the Dijkstra's algorithm used in [13] to find the 
shortest path in directed graphs with unbounded 
weights by visiting each vertex once and improving 
distances step-by-step, producing a shortest-path 
tree. Nevertheless, the computational cost becomes 
too high when dealing with large-scale graphs. 
     The second deterministic method is the A-star 
method proposed in 1968. In research [14], it was 
utilized with another method due to its efficiency 
and speed in discovering the shortest path, 
surpassing the Dijkstra's algorithm. However, the 
excessive number of nodes, turning points, and path 
smoothness made the algorithm fail to satisfy the 
practical motion demands. The third method [15] is 
the dynamic A* algorithm, also known as the D* 
algorithm, which is a real-time short path generation 
algorithm that utilizes a graph with changing or 
updated arc costs. Finally, the Theta* algorithm 
optimizes the A* path-finding approach, which is 
frequently used to discover the quickest route 
between two graph nodes. However, it causes 
overhead due to the additional computational work 
required [16]. 

3.3 Stochastic methods 

Stochastic methods, which are problem-
independent methodologies, are capable of 
generating solutions for an extensive array of issues. 
In particular, they comprise various algorithms, 
including particle swarm optimization (PSO) in [17], 
which used PSOGWO, resulting in a smoother path 
and overcoming the limitations of other 
conventional techniques. However, the PSO 
algorithm can also fall into local minima. On the 
other hand, the bat swarm optimization was utilized 
in [18], where Xin Yuan et al. proposed an 
improved bat algorithm by combining it with the 
dynamic window approach, producing a collision-
free path, which was shorter, safer, and smoother 
than that produced by the standard BA. Nevertheless, 
the drawback was the bats' slow convergence, 
making it harder to acquire better optimization 
outcomes.  

In another study [19], the ACO technique was 
utilized as a hybrid algorithm to solve the Travelling 
Salesman Problem (TSP) and obtain the shortest 
path. However, the convergence rate of ACO can be 
slow, and the memory requirements can be 

substantial. In [20], an enhanced GWO was 
proposed to alleviate the path finding difficulty that 
UAVs encounter in a difficult 3D environment. In 
[21], Karaboga and colleagues presented a 
comprehensive assessment of research on the 
Artificial Bee Colony (ABC) algorithm, covering its 
enhancement, hybrid approaches, and applications.  

The last method in the stochastic group is the 
genetic algorithm (GA). In [22], the research 
suggested utilizing a hybrid algorithm, which was 
created by merging the GA and the flower 
pollination algorithm (FPA) to discover the most 
optimal route within a contemporary building's 
actual setting. However, this algorithm requires a lot 
of computing power, and the speed of completion 
could become slow for big problems. 

3.4 Artificate intelligence methods 

Recent studies showed that researchers and 
academics are increasingly using AI-powered 
methods. For example, Eyed et al. [23] presented a 
pathfinding method based on fuzzy logic to find the 
optimum path from several paths and give the best 
result, which is characterized by its short length and 
reduced processing time. However, creating suitable 
fuzzy rule sets can be a complex task.  

Moreover, in [24], the authors explored the use 
of artificial neural networks (ANNs) in automatic 
self-navigation, discussing their structures, models, 
and practical applications in forecasting traffic. 
However, ANNs require a large amount of computer 
power as well as training data. As another AI-based 
method, deep reinforcement learning (DRL) 
combines deep learning and reinforcement learning. 
In this regard, the authors in [25] focused on deep 
reinforcement learning in unstructured environments. 
However, the limitation of this method is that it is 
difficult to interpret and understand the learned rules. 

4. Hybrid finding algorithm 
The main goal of this paper is to solve three 

parts of the path finding problem. The first part is to 
prevent the hovercraft from hitting any objects. The 
second part is finding the shortest hovercraft path to 
reach the target in a complicated environment. The 
third part is producing the smoothest path. To this 
end, a hybrid technique was presented to overcome 
these three challenges by combining Artificial Bee 
Colony (ABC) with self-perception particle swarm 
optimization (SPPSO) methods as a proposed hybrid 
stochastic method. 
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4.1 Artificial bee colony 

The ABC algorithm, developed by Karaboga's 
group in 2005 [26], is a computational method that 
draws inspiration from the behaviour of bee colonies. 
This algorithm is specifically designed to handle 
optimization problems. Specifically, the model of 
honey bee colonies comprises three fundamental 
elements, including food sources and bees that are 
employed and unemployed (onlooker and scout 
bees), with two major forms of behaviour, namely 
nectar source recruitment and abandonment [27]. In 
this context, there are three types of bees in the ABC 
algorithm: recruit, onlooker, and scout bees. The 
recruit bees make up half of the hive, and the 
watching (onlooker) bees make up the other half. 

The recruited bees are in charge of using the 
nectar sources that have already been explored and 
informing the other bees in the hive about the 
quality of the food source being used. On the other 
hand, onlooker bees remain within the hive. The 
information provided by the recruited bees is 
utilized to determine which food source to exploit. 
Meanwhile, scouts, motivated by internal motivation 
or external clues, randomly search the environment 
for new food sources to improve their ability to 
avoid local optimums.  

According to Eq. (7) [28], a random sample of 
food source solutions (SN) is used to create the 
initial population. 
 
𝑥𝑥𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑗𝑗(𝑚𝑚𝑖𝑖𝑚𝑚) + 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑(0,1)(𝑥𝑥𝑗𝑗(𝑚𝑚𝑚𝑚𝑚𝑚) − 𝑥𝑥𝑗𝑗(𝑚𝑚𝑖𝑖𝑚𝑚))   (7) 
 
Where xi=1…., is the population size (SN), 
indicating the ith solution in the swarm, and j=1 …., 
D is the number of adjustable parameters.  

The minimum and maximum boundaries of the 
solution position in dimension j are xj(min) and xj(max), 
respectively. 
As indicated in Eq. (8), each recruit bee xi develops 
a new candidate solution vi near its initial position. 
 

𝑣𝑣𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 + φ𝑖𝑖,𝑗𝑗(𝑥𝑥𝑖𝑖,𝑗𝑗 − 𝑥𝑥𝑘𝑘 ,𝑗𝑗)     (8) 
 
Where k is randomly selected from {1,…,SN}, 
where k ≠ i, and φ  is a random number between 
(0,1).  
 
The fitness of each solution is calculated using Eq. 
(9): 
 

𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 = �
1

1+𝑓𝑓(𝑚𝑚𝑖𝑖)
 , 𝑓𝑓𝑓𝑓 𝑓𝑓(𝑥𝑥𝑖𝑖) ≥ 0

1 + |𝑥𝑥𝑖𝑖|  , 𝑓𝑓𝑓𝑓 𝑓𝑓(𝑥𝑥𝑖𝑖) < 0
     (9) 

 

Where, 
 

𝑓𝑓(𝑥𝑥𝑖𝑖) = �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖−1)2  (10) 
 

fiti is the solution fitness and f(xi) is the objective 
function (the Euclidean distance). If the new food 
position (vi,j) is better than the previous one (xi,j), the 
bee's memory swaps the old solution with the new 
one. Otherwise, the prior position is kept (a greedy 
selection process). After searching, the recruit bees 
waggle and dance to alert onlookers about their food 
sources. Onlooker bees choose food sources based 
on nectar abundance collected from recruited bees. 
This is done by calculating the following probability 
[29]: 
 

𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃(𝑓𝑓) = 𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖
∑ 𝑓𝑓𝑖𝑖𝑓𝑓𝑖𝑖𝑆𝑆𝑆𝑆
1

  (11) 
 
The pseudo code of the ABC algorithm is shown in 
Fig. 3. 

 
Figure. 3 Pseudocode of the ABC algorithm 

 

Step1. Initialization  
     Step 1.1. Randomly populate by Eq. (7) 
     Step 1.2: Evaluate initial population  
Repeat 
Step 2. Recruited bee phase: 
         Step 2.1. Create new solution Vi for the  
                           recruited bee using Eq. (8) 
        Step 2.2. Calculate the fitness (fiti) for the  
                          solution Vi using Eq. (9) 
         Step 2.3. Use greedy selection between  
                         old and new solutions.     
Step 3. Generate the probability pi by Eq. (11). 
Step 4. Onlooker bees’ phase: 
         Step 4.1. Select a solution to be updated  
                         based on Eq. (11) then update  
                          them using Eq. (8). 
          Step 4.2. Calculate the fitness (fiti) for the 
                          updated solution. 
          Step 4.3. Apply greedy selection. 
Step 5. Scout bees’ phase 
             Step5.1. Replace abandoned scout 
                            solutions with randomly  
                            generated ones using Eq. (7). 
Step 6. Save the best solution then set  
            iteration=iteration+1, until a termination 
condition is satisfied.   
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Subsequently, any food source that fails to surpass a 
predetermined threshold of trials is discarded, and 
the associated recruited bee will be converted to a 
scout bee to generate a random location throughout 
the entire space using Eq. (7).  
Due to its powerful global search feature, the ABC 
algorithm has attracted a lot of attention among 
experts and students.  
However, there are some problems with the ABC 
algorithm's accuracy and slow convergence speed. 
Moreover, the algorithm works well for exploring 
but not so well for exploiting. 

4.2 Self-perception particle swarm optimization 

Kennedy and Eberhard created the Particle 
Swarm Optimization (PSO) in 1995. Particularly, 
the PSO is a population stochastic optimization 
technique inspired by fish schooling as well as birds’ 
flocks [30], mimicking a particle swarm searching 
across a multidimensional search space in order to 
converge towards the optimal solution, with each 
particle representing a candidate solution.  
After initializing a particular number of random 
particles in the population, the PSO method 
iteratively updates the particle swarm to find the 
optimal or near-optimal solution. Each particle has 
position and velocity that determine its state [31].  
A particle's position indicates a potential solution, 
and its velocity regulates its progress in the search 
space. The particle behaviour depends on its best-
known position (pbest) and the population's (gbest) 
[32].  

However, the standard PSO suffers from the loss 
of population diversity and the premature 
convergence into a local minimum. Therefore, 
methods to further improve the performance of PSO 
have been continuously proposed.  
In this regard, the suggested algorithm modifies the 
usual PSO algorithm by considering particle self-
perception [33].  

In particular, when self-perception is included, 
the evolution process of the whole algorithm is 
improved, which leads to better results in less time. 
The concept is derived from the capacity for self-
regulated and collective learning exhibited by 
humans, wherein the ability to continuously assess 
one’s performance enables individuals to develop 
proficiency in making more informed decisions. As 
the algorithm advances, particles update their 
positions and velocities, moving towards more 
favourable search regions.  

The equations for updating position and velocity 
according to SP-PSO for the ith iteration at the nth 

 

Table 2. Parameters definition of SP-PSO 
Symbols Definition 

Wi,k Inertia weight of the ith particle at 
iteration k 

vi, k Particle speed at iteration k 
pSR The self-cognizance perception factor 
psp The social cognizance perception 

factor 
c1,c2 Acceleration constants ( (c1+c2)<4) 
r1,r2 Random value between [0,1] 

Lbest,k Reflects the best local position 
Gbest,k Reflects the best global position 

xi,k Current position of the ith particle at 
iteration k 

 
 
particle in our proposed method are defined in Eq. 
(12) and Eq. (13), and the parameters’ definitions 
are shown in Table 2.   

 
𝑣𝑣𝑖𝑖,𝑘𝑘+1 = 𝑤𝑤𝑖𝑖,𝑘𝑘𝑣𝑣𝑖𝑖,𝑘𝑘 + 𝑝𝑝𝑆𝑆𝑆𝑆𝑐𝑐1𝑟𝑟1�𝐿𝐿𝑏𝑏𝑏𝑏𝑠𝑠𝑓𝑓,𝑘𝑘 − 𝑥𝑥𝑖𝑖,𝑘𝑘� +

𝑝𝑝𝑆𝑆𝑆𝑆𝑐𝑐2𝑟𝑟2(𝐺𝐺𝑏𝑏𝑏𝑏𝑠𝑠𝑓𝑓,𝑘𝑘 − 𝑥𝑥𝑖𝑖,𝑘𝑘)   (12) 
 
𝑥𝑥𝑖𝑖,𝑘𝑘+1 = 𝑥𝑥𝑖𝑖,𝑘𝑘 + 𝑣𝑣𝑖𝑖,𝑘𝑘+1   (13) 
 

With these two factors, the ideas of self-regulation 
(SR) and self-perception (SP) are added to the 
normal PSO, where PSR= 0 for the best particle and 
PSR= 1 for others. Psp=0 for the best particle and 
Psp=ϒ for others. The ϒ value, ranging from 0 to 1, 
is determined by a threshold value derived from the 
confidence level of a particle. SP-PSO can reach 
optimal or near-optimal solutions through 
population interactions and information exchange. 

The fundamental procedures of the SP-PSO 
algorithm are elucidated in Fig. 4. 

4.3 Hybrid artificial bee colony self-perception 
particle swarm optimization (ABC-SPPSO) 

Although the ABC algorithm is capable of 
locating a path devoid of collisions, it cannot be 
guaranteed to find the optimal path due to its 
susceptibility to improper exploitation when solving 
complex problems. Moreover, its sluggish 
convergence will result in increased power 
consumption. In addition, the particle swarm 
optimization technique can easily get stuck in local 
optimums, leading to poor solutions in limited paths. 
Therefore, in this paper, two approaches are 
combined to create a hybrid algorithm, ABC-SPPSO. 
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Figure. 4 The flowchart of the SP-PSO algorithm 

 
Fig. 5 illustrates the concept of the hybrid 
methodology, which combines the ABC algorithm 
with the SP-PSO algorithm to accelerate 
convergence speed and balance between exploration 
and exploitation search to produce the shortest path 
while also preventing collisions. The ABC 
algorithm possesses a high level of exploration 
capability and requires minimal control parameters.  

 

Figure. 5 The flowchart of the proposed hybrid (ABC-
SPPSO) algorithm 
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value. 

If 
itpso<maxitps

o 
 

If 
itabc<maxitabc 

Based on cost, 
select the best 

path. 

itabc= itabc+1 
Nrec=1 

End 

start 

Y 

N 

Nrec= Nrec +1 

Y 

N 

itpso= itpso+1 
Nrec=1 

Y 

N 

Initialize SP-PSO parameters 
Maxiteration, population size, 

interia weight ,c1=c2=1.57, 
r1=r2=(0-1), Gbest=ꚙ,Lbest=ꚙ 

Create a random population 

Calculate the current Lbest cost 
function (Euclidian) Eq. (10) 

Lbest=the current Lbest 

Y 

N 

Do nothing 

Gbest=(Lbest)min, set the 
value of pSR, and pSP 

 

 
Update velocity using Eq. (12) 
Update position using Eq. (13) 

Iteration = iteration +1 
, n=1 

Obtain the best solution 
(optimal path) 

End 

If  
N<number of 
population? 

If 
the current 

Lbest<Lbest(previous) 

n=n+1 

N 

Y 

Y 

N 

start 

If 
Iteration<Maxiteration 
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As a result, it ensures the discovery of a trajectory 
from the initial position to the target point by 
directing the hovercraft towards the target while 
avoiding obstacles until it successfully reaches the 
destination. Through self-perception, particles can 
undergo diverse modifications to facilitate quick 
detection and intelligent exploitation.  

Consequently, employing both approaches 
yields an optimal or near-optimal path.  

 
𝑥𝑥𝑚𝑚𝑏𝑏𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 + α ×  𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑃𝑃𝑚𝑚(0,1)   (14) 

 
𝑦𝑦𝑚𝑚𝑏𝑏𝑛𝑛 = 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 + α ×  𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑃𝑃𝑚𝑚(0,1)   (15) 

 
ψ𝑚𝑚𝑏𝑏𝑛𝑛 = ψ𝑜𝑜𝑜𝑜𝑜𝑜 + α ×  ψ𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑃𝑃𝑚𝑚(0,1) (16) 
 
Where α is between 0 and 1. 

5. Simulation results and analysis 
This paper examined the effectiveness of the 

proposed hybrid algorithms utilizing the MATLAB 
program (2022) in a controlled environment. The 
environment consists of fixed obstacles of different 
shapes and a map size of [500×500] cm in both x 
and y axes, as depicted in Fig. 6. The computer's 
technical specifications include an Intel Core i5-
5200U processor with 8.00 GB of RAM, and a CPU 
of 2.20GHz. In order to identify a path that is free 
from collisions, three algorithms will be employed: 
Artificial Bee Colony, SP-PSO, and the proposed 
Hybrid ABC-SPPSO algorithm. The objective is to 
determine the shortest-distance path by comparing 
the results obtained from these algorithms, taking 
into account that a safe distance must be maintained 
between the hovercraft and the obstacles. 
 

 
Figure. 6 The proposed environment with different fixed 

obstacles 

Table 3. The proposed parameters of the hybrid ABC-
SPPSO algorithm. 

 
Table 3 shows the set of Hybrid ABC-SPPSO 
algorithm parameters that has been used in the 
simulation. 

5.1 Scenario 1 

The hovercraft's starting point is located at 
coordinates (50, 350) cm, shown by a red triangle. 
The target position, represented by a blue diamond, 
is located at coordinates (350, 450) cm. Using the 
artificial bee colony technique, the shortest path was 
570.87cm at iteration 45. Figure 7 (a) displays the 
outcome of the ABC algorithm in terms of the path 
taken, whereas Fig. 7(b) illustrates the fitness value 
of the path at each iteration. 

Fig. 8(a) illustrates the SP-PSO algorithm used 
to identify the shortest-distance path in the specified 
environment. As demonstrated in Fig. 8(b), the 
optimal cost solution was obtained at iteration 28 
with a maximum of 50 iterations. The value of the 
SP-PSO distance function is 732.46 cm. 

In Fig. (9) the proposed hybrid algorithm was 
applied to find the shortest distance path using the 
suggested environment, finding the best cost 
solution at iteration 11 with a distance function of 
555.36 cm. Compared to artificial bee colony and 
SP-PSO algorithms, it generated a smooth path, 
which is the shortest. Table 4 summarizes all the 
outcomes of scenario 1 comparison. Table 5 
summarizes the enhancement of ABC-SPPSO over 
the original algorithms of scenario 1 comparison. 

 
Table 4. The shortest path comparisons 

Type of 
algorithm Length of path Iteration of best 

path 
ABC 570.87cm 45 

SP-PSO 732.46cm 28 
Proposed hybrid 

ABC-SPPSO 555.36cm 11 

 
Table 5. Enhancement comparison for scenario 1 
Type of 

algorithm 
Enhancement in 

distance 
Enhancement in 

iteration 
ABC 2.71% 75.55% 

SP-PSO 24.17% 60.71% 
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(a) (b) 
Figure. 7 The ABC algorithm: (a) path result and (b) cost function 

 

 
 

(a) (b) 
Figure. 8 The SP-PSO algorithm: (a) path finding and (b) cost function 

 

 
 

(a) (b) 
Figure. 9 The ABC-SPPSO algorithm: (a) path finding and (b) cost function 
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Eq. (16) represents the reference path equation for 
the optimal path of the hybrid ABC-SPPSO. 

𝑌𝑌𝑟𝑟𝑏𝑏𝑓𝑓�𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓� = 1.4305e − 11 × 𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓6 − 1.3195e −
8 × 𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓5 + 4.6824e − 6 ×  𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓4 − 0.0008 ×

 𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓3 + 0.067 ×  𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓2 −  1.9213𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓 + 40    (16) 

The inverse dynamic model of the nonlinear 
hovercraft is used to produce the optimal torque 
actions of the hovercraft to follow the reference path 
to determine the linear velocity Vlinear of the 
hovercraft's platform, in accordance with the 
previous reference path, as given in Eq. (17): 
 

𝑉𝑉𝑜𝑜𝑖𝑖𝑚𝑚𝑏𝑏𝑚𝑚𝑟𝑟 = √𝑢𝑢2 + 𝑣𝑣2 (17) 
 
Where u and v are the surge and the sway speeds of 
the hovercraft, and they can be fined using Eq. (18) 
and Eq. (19): 
 

𝑢𝑢 = �̇�𝑌𝑟𝑟𝑏𝑏𝑓𝑓 × cos(𝑟𝑟) − �̇�𝑋𝑟𝑟𝑏𝑏𝑓𝑓 × sin(𝑟𝑟) (18) 
 

𝑣𝑣 = �̇�𝑋𝑟𝑟𝑏𝑏𝑓𝑓 × cos(𝑟𝑟) + �̇�𝑌𝑟𝑟𝑏𝑏𝑓𝑓 × sin(𝑟𝑟) (19) 
 
where ẋ  represents the hovercraft's velocity along 
the x-axis, and ẏ signifies its velocity along the y-
axis. By utilizing Eq. (20), the angular velocity of 
the hovercraft (r) orientation is computed. From the 
dynamic equations of the hovercraft, Eq.s (21) and 
(22) compute the starbored (Fs) and portbored (Fp) 
hovercraft’ fan forces. 
 
𝑟𝑟 = −�̇�𝑣

𝑢𝑢
 (20) 

 
𝐹𝐹𝑠𝑠 = 0.5 × (𝑀𝑀 ×  �̇�𝑢 − 𝑀𝑀 × 𝑣𝑣 × �̇�𝑟 + (𝐽𝐽/𝐿𝐿) × �̈�𝑟)
 (21) 
 
𝐹𝐹𝑝𝑝 = 0.5 × (𝑀𝑀 ×  �̇�𝑢 − 𝑀𝑀 × 𝑣𝑣 × �̇�𝑟 − (𝐽𝐽/𝐿𝐿) × �̈�𝑟)
 (22) 
 
Where the dimensions of the hovercraft design are 
25.4 cm in depth, 35.6 cm in width, and 18.1 cm in 
height, and the remaining model parameters of the 
hovercraft are shown in Table 6 [7]. 
 

Table 6. Values of the hovercraft parameters [7] 
Parameters Values 

M 5.15 kg 
J 0.047 kg m2 
L 0.123 m 
dv 4.5 kg/sec 
dr 0.41 kg m/sec 

 

 
Figure. 10 The desired and the actual paths 

 
 
Based on the reference path of Eq. (16), Fig. 10 
illustrates how the actual path is identical to the 
desired path.  

The smooth linear velocity of the hovercraft is 
depicted in Fig. 11 (a), whereas the orientation of 
the hovercraft is depicted in Fig. 11(b). 
 

 
(a) 

 
(b) 

Figure. 11 Scenario 1 result: (a) linear velocity of the 
hovercraft and (b) the hovercraft orientation 
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(a) 

 
(b) 

Figure. 12 Scenario 1 result: (a) surge and sway velocities 
of the hovercraft and (b) starboard and portboard fan 

forces. 
 
 

Furthermore, the fast surge and the sway 
velocities of the hovercraft are illustrated in Fig. 12 
(a), and Fig. 12 (b) illustrates the smooth response 
without saturation state starboard and the portboard 
forces of the hovercraft. 

5.2 Scenario 2 

In this scenario, we conducted a comparative 
evaluation of the proposed algorithm against the 
ABC and the SP-PSO algorithms. The evaluation 
involved using different initial points (shown by the 
red triangle) located at (50,200) cm, and a goal point 
(represented by the blue diamond) located at 
(300,450) cm. These evaluations were performed in 
the same environment in Fig. 6.  

The resulting path obtained by employing the 
ABC method is depicted in Fig. 13 (a), while the 
cost function is illustrated in Fig. 13 (b). The best 
outcome for the cost function is achieved at iteration 
46, with a value of 398.48 cm. However, when the  

 
(a) 

 
(b) 

Figure. 13 Scenario 2 simulation result of the ABC 
algorithm: (a) the shortest path and (b) the cost function 

 
 
SP-PSO is applied to the same environment, the 
hovercraft takes a different path, as depicted in Fig. 
14 (a). The cost function of 507.47 cm at iteration 
15 is shown in Fig. 14 (b). 

The proposed hybrid algorithm was utilized to 
determine the shortest-distance path in the 
recommended environment, as depicted in Fig. 15 
(a). The optimal cost solution was identified at the 
10th iteration, as depicted in Fig. 15 (b). The 
maximum number of iterations was set to 50.  

The hybrid algorithm’s distance function has a 
value of 390.46 cm. Compared to the ABC and the 
SP-PSO algorithms; the path produced by the 
suggested hybrid algorithm was the smoothest and 
shortest path from the initial location to the 
destination point, as demonstrated in Table 7. 
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(a) (b) 
Figure. 14 Scenario 2 simulation result of the SP-PSO algorithm: (a) the shortest path and (b) the cost function 

 

 

 

(a) (b) 
Figure. 15 Scenario 2 simulation result of the ABC-SPPSO algorithm: (a) the shortest path and (b) the cost function 

 
The proposed hybrid algorithm was utilized to 
determine the shortest-distance path in the 
recommended environment, as depicted in Fig. 15 
(a). The optimal cost solution was identified at the 
10th iteration, as depicted in Fig. 15 (b). The 
maximum number of iterations was set to 50.  

The hybrid algorithm’s distance function has a 
value of 390.46 cm. Compared to the ABC and the 
SP-PSO algorithms; the path produced by the 
suggested hybrid algorithm was the smoothest and 
shortest path from the initial location to the 
destination point, as demonstrated in Table 7. 
 

Table 8 summarizes the enhancement of the ABC-
SPPSO over the original algorithms for scenario 2 
comparison by using Eqs. (23 and 24). 
 
𝐷𝐷𝑓𝑓𝐷𝐷𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝐷𝐷 𝐸𝐸𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑐𝑐𝐷𝐷𝑚𝑚𝐷𝐷𝑟𝑟𝑓𝑓 (%) = �1−
𝑆𝑆𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑠𝑠𝑏𝑏𝑜𝑜 𝑀𝑀𝑏𝑏𝑓𝑓ℎ𝑜𝑜𝑜𝑜 𝐷𝐷𝑖𝑖𝑠𝑠𝑓𝑓𝑚𝑚𝑚𝑚𝐷𝐷𝑏𝑏
𝑂𝑂𝑓𝑓ℎ𝑏𝑏𝑟𝑟 𝑀𝑀𝑏𝑏𝑓𝑓ℎ𝑜𝑜𝑜𝑜 𝐷𝐷𝑖𝑖𝑠𝑠𝑓𝑓𝑚𝑚𝑚𝑚𝐷𝐷𝑏𝑏

� × 100%  (23) 
 
𝐼𝐼𝑓𝑓𝐷𝐷𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓𝑃𝑃𝑟𝑟 𝐸𝐸𝑟𝑟ℎ𝑟𝑟𝑟𝑟𝑐𝑐𝐷𝐷𝑚𝑚𝐷𝐷𝑟𝑟𝑓𝑓 (%) = �1−
𝑆𝑆𝑟𝑟𝑜𝑜𝑝𝑝𝑜𝑜𝑠𝑠𝑏𝑏𝑜𝑜 𝑀𝑀𝑏𝑏𝑓𝑓ℎ𝑜𝑜𝑜𝑜 𝐼𝐼𝑓𝑓𝑏𝑏𝑟𝑟𝑚𝑚𝑓𝑓𝑖𝑖𝑜𝑜𝑚𝑚
𝑂𝑂𝑓𝑓ℎ𝑏𝑏𝑟𝑟 𝑀𝑀𝑏𝑏𝑓𝑓ℎ𝑜𝑜𝑜𝑜 𝐼𝐼𝑓𝑓𝑏𝑏𝑟𝑟𝑚𝑚𝑓𝑓𝑖𝑖𝑜𝑜𝑚𝑚

� × 100%               (24) 
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Table 7. Comparison results for scenario 2 
Type of 

algorithm Best path length Iterations 
ABC 398.48cm 46 

SP-PSO 507.47cm 15 
Proposed hybrid 

ABC-SPPSO 390.46cm 10 
 

Table 8. Enhancement comparison for scenario 2 

Type of algorithm Enhancement 
in distance 

Enhancement 
in iteration 

ABC 2.01% 78.26% 
SP-PSO 23.05% 33.33% 

 
Eq. (25) represents the reference path equation for 
the optimal path of the hybrid ABC-SPPSO for 
scenario 2. 
 
𝑌𝑌𝑟𝑟𝑏𝑏𝑓𝑓�𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓� = 3.2290e − 11 × 𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓6 − 3.1256e −
8 × 𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓5 + 1.2014e − 5 ×  𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓4 − 0.002326 ×
 𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓3 + 0.23663 × 𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓2 −  11.193756𝑋𝑋𝑟𝑟𝑏𝑏𝑓𝑓 +
394.64                 (25) 
 
For scenario 2, the desired and the actual paths of 
the hybrid ABC-SPPSO algorithm are illustrated in 
Fig. 16, while the hovercraft's linear velocity is 
represented in Fig. 17 (a). On the other hand, Fig. 17 
(b) displays the hovercraft orientation.  
Additionally, Fig. 18 (a) displays the hovercraft's 
surge and sway velocities, while Fig. 18 (b) shows 
the starboard and the portboard forces acting on the 
hovercraft.  
 

 
Figure. 16 Represent desired and actual path 

 
 

 
(a) 
 

 
(b) 

Figure. 17 Scenario 2 result: (a) the linear velocity of the 
hovercraft and (b) the hovercraft orientation 

 
In order to demonstrate the effectiveness of the 

ABC-SPPSO hybrid algorithm in finding the 
shortest path, a comparative study was done with 
other researchers who utilized other algorithms in a 
static environment. Initially, the hybrid approach 
was evaluated against the hybrid firefly and the 
modified chaotic particle swarm optimization 
(FAMCPSO) algorithms in the identical congested 
environment described in [34], with a workspace 
measuring [600×800] cm. The simulation result, 
utilizing the hybrid ABCSP-PSO algorithm depicted 
in Fig. 19 (a) and (b), yields a path length of 649.58 
cm at iteration 22.  

Tables 9 and 10 show that the proposed hybrid 
method gives a path with a shorter distance and 
consumes less time in finding the best path 
compared to PSO, CPSO, MCPSO, FA, and 
HFAMCPSO in the literature [34]. 
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(a) (b) 

Figure. 18 Scenario 2 result: (a) surge and sway velocity of the hovercraft and (b) the starboard and the portboard fan 
forces. 

 

  
(a) (b) 

Figure. 19 Comparison with [34]: (a) simulation result of the shortest path of the hybrid (ABC-SPPSO) algorithm and (b) 
the cost function 

 
Tables 9 and 10 show that the proposed hybrid 
method gives a path with a shorter distance and 
consumes less time in finding the best path 
compared to PSO, CPSO, MCPSO, FA, and 
HFAMCPSO in the literature [34]. The issue with 
the method in [34] lies in its weakness in selecting 
an optimal number of the Fireflies direction. In 
 

Table 9. Comparison of the hybrid algorithm with the 
literature [34] 

Algorithms Best path 
distance(cm) Iterations 

PSO [34] 750.834 73 
CPSO [34] 739.168 60 

MCPSO [34] 738.507 58 
FA [34] 743.555 65 

HFAMCPSO 
[34] 737.399 50 

ABC-SPPSO 649.58 22 

particular, it only considers a 2D Fireflies direction. 
However, better results can be achieved by 
increasing the directions over 5D. This restriction 
limits the effectiveness of the path in terms of 
consuming more time, where the increase in the 
number of Fireflies directions leads to an increase in 
the number of iterations. 
 

Table 10. Enhancement comparison of the hybrid 
algorithm with the literature [34] 

Algorithms Enhancement in 
distance 

Enhancement in 
iteration 

PSO  13.48% 69% 
CPSO  12.12% 63.33% 

MCPSO  12.04% 62.06% 
FA  12.63% 66.15% 

HFAMCPSO  11.90% 56% 
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(a) (b) 
Figure. 20 A comparison with [35]: (a) simulation result of the shortest path of the hybrid (ABC-SPPSO) algorithm and 

(b) the cost function 
 

 
 

(a) (b) 
Figure. 21 A comparison with [11]: (a) simulation result of the shortest path of the hybrid (ABC-SPPSO) algorithm and 

(b) the cost function 
 
 

Furthermore, the ABC-SPPSO algorithm was 
compared to the QOPSO algorithm proposed in [35]. 
The comparison was conducted in a static 
environment with a workspace measuring 
[700×700] cm. The starting point was located at 
coordinates (60, 460) cm and the target point was 
located at coordinates (590, 110) cm. 

Figure 20 (a) and (b) displays the outcomes of 
the simulation conducted in the environment using 
the ABC-SPPSO algorithm. The algorithm generates 
a path with a length of 644.69 cm at the 10th 
iteration. 

Furthermore, the ABC-SPPSO algorithm was 
compared to the QOPSO algorithm proposed in [35]. 
The comparison was conducted in a static 
environment with a workspace measuring 
[700×700] cm. The starting point was located at 
coordinates (60, 460) cm and the target point was 
located at coordinates (590, 110) cm. 

Figure 20 (a) and (b) displays the outcomes of 
the simulation conducted in the environment using 
the ABC-SPPSO algorithm. The algorithm generates 
a path with a length of 644.69 cm at the 10th 
i teration.  The comparative analysis and the 
enhancement percentages are presented in Table 11,  
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Table 11. A comparison of the hybrid algorithm with the 
literature [35] 

Algorithms 
The best 

path 
distance(cm) 

Iterations 

QO [35] 659.420 - 
PSO [35] 757.1048 20 

QOPSO [35] 657.1271 12 
Proposed hybrid 

ABC-SPPSO 644.69 10 

 
Table 12. Enhancement comparison of hybrid algorithm 

with literature [35] 

Algorithms Enhancement 
in distance 

Enhancement 
in iteration 

QO  2.23% - 
PSO  14.84% 50% 

QOPSO 1.89% 16.66% 
 

Table 13. Comparison of the hybrid algorithm with the 
literature [11] 

Algorithms Best path 
distance(cm) Iterations 

RRT [11] 665.4 - 
RRT* [11] 649.6 - 
PSO [11] 660 15 

RRT*PSO 
[11] 615.3 12 

ABC-SPPSO 610.21 8 
 

Table 14. Enhancement comparison of the hybrid 
algorithm with the literature [11] 

Algorithms Enhancement 
in distance 

Enhancement 
in iteration 

RRT 8.29% - 
RRT* 6.06% - 
PSO 7.54% 46.66% 

RRT*PSO 0.82% 33.33% 
 
 
and Table 12 demonstrates the efficacy of our 
suggested hybrid algorithm in comparison to the 
Quarter Orbit and the PSO algorithms. In [35], the 
number of orbits is not ideal because as the number 
of orbits increases, the path becomes shorter and 
smoother. As a result, one of the limitations of this 
strategy is that more iterations are required when the 
number of orbits is not optimal. 

Finally, the ABC-SPPSO algorithm was 
evaluated against RRT, RRT*, PSO, and the hybrid 
RRT*PSO algorithm proposed in [11]. The 
evaluation was conducted in a static environment 
with a workspace measuring [500×500] cm. The 
simulation results obtained using the ABC-SPPSO 
method are displayed in Fig. 21 (a) and (b). The 

algorithm produces a path with a length of 610.21 
cm at the 8th iteration. 

Tables 13 and 14 show the comparison results of 
our proposed ABC-SPPSO with RRT, RRT*, PSO, 
and RRT*PSO, confirming the effectiveness of the 
proposed algorithm in requiring less time to find the 
best path. In [11], due to generating a limited 
number of random points, there were no more than 
14, where the quality of the path improves as the 
quantity of random points increases. However, this 
necessitates a substantial number of iterations. 

6. Conclusion 
This study presented a hybrid method designed 

to address three problems, namely (1) reaching the 
target without hitting any obstacles, (2) producing a 
path with the minimum distance to the goal, and (3) 
achieving the smoothest trajectory. A stochastic 
approach was suggested for resolving the 
pathfinding issue for the hovercraft. This technique 
was employed to identify the optimal path within an 
obstructed environment. In particular, the hybrid 
method combines the strengths of both the Artificial 
Bee Colony and the SP-PSO algorithms. Based on 
the MATLAB simulation results, it was evident that 
the proposed hybrid algorithm outperforms the 
original algorithms in finding the optimal path for 
the hovercraft in obstacle-filled environments in two 
scenarios (with different start and target points). In 
the first scenario, the hybrid algorithm enhanced the 
path length compared to ABC by (2.71%) in terms 
of distance and by (75.55%) in terms of iterations, 
and compared to SP-PSO, it enhanced the path by 
(24.17%) in terms of distance and by (60.71%) in 
terms of iterations. In the second scenario, the 
hybrid algorithm enhanced the path length compared 
to ABC by (2.01%) in terms of distance and by 
(78.26%) in terms of iterations. Furthermore, 
compared to SP-PSO, it enhances the path by 
(23.05%) in terms of distance and by (33.33%) in 
terms of iterations. Then, the hybrid algorithm was 
compared to the hybrid firefly algorithm modified 
with chaotic particle swarm optimization 
(HFAMCPSO), and it enhanced the path length by 
(11.90%) in terms of distance and (56%) in terms of 
iterations. Subsequently, the hybrid algorithm was 
further compared to the Quarter Orbit combined 
with particle swarm optimization technique, and the 
proposed method enhanced the distance to reach the 
goal by (1.89%) and by (16.66%) in terms of 
iterations. Finally, the hybrid algorithm was 
compared with the rapidly random tree star particle 
swarm optimization (RRT*PSO), achieving 
enhancement in distance and iterations by (0.82%) 
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and (33.33%), respectively. After considering the 
hovercraft's path length in comparison to other 
studies, we found that the proposed hybrid ABC-
SPPSO algorithm produced the best combination of 
the shortest path and collision avoidance with fewer 
iterations to obtain the best path because the 
proposed algorithm has high convergence speed and 
it achieves a trade-off between exploration and 
exploitation.  

As a future endeavour, we recommend adapting 
the proposed hybrid algorithm to function 
effectively in a dynamic environment. 
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