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Abstract: Constructing a multi-day travel itinerary is a notable challenge, particularly for individuals planning 

extended trips. This study addresses the complexity by aiming to automatically generate an optimal multi-day travel 

itinerary that satisfies user interests. The problem is framed as a Capacitated Vehicle Routing Problem with Time 

Window (CVRPTW), and user interests are shaped by attributes such as rating and cost of points of interest (POIs), 

travel duration, the number of POIs in the itinerary, and penalty attributes (POI penalty and time penalty). The 

generated solution must adhere to constraints like daily travel duration limits and the operational hours of POIs. To 

ensure alignment with user interests, the Multi-Utility Attribute Theory (MAUT) is employed as the fitness function. 

This study proposes a VRP approach utilizing the hybrid Ant Colony System (ACS) and Brainstorm optimization 

(BSO) algorithm (the hybrid ACS-BSO) for multi-day travel itinerary generation, addressing the Traveling Salesman 

Problem (TSP) approach limitations. The hybrid ACS-BSO outperforms conventional algorithms, such as Genetic 

Algorithm (GA), Tabu Search (TS), and Simulated Annealing (SA), across 5 sets of random POIs with an average 

fitness value of 0.6704. moreover, the hybrid ACS-BSO outperforms the other conventional algorithms in optimizing 

each attribute. In terms of travel duration attribute, the hybrid ACS-BSO generate an itinerary requiring only 6 days 

to visit 40 POIs, while the other algorithms need 7 days. In terms of cost and rating attributes, the hybrid ACS-BSO 

achieves the best fitness values compared to the others. Furthermore, the hybrid ACS-BSO outperforms the 

standalone algorithms (ACS and BSO) across varying numbers of POIs, but it faces a maximum 311 seconds 

running time for 87 POIs, indicating a time complexity weakness. Comparatively, ACS, BSO, and the hybrid ACS-

BSO in VRP approach surpass their TSP counterparts, affirming the effectiveness of the VRP approach. 

Keywords: Multi-day travel itinerary, Recommender system, Ant colony system algorithm, Hybrid ant colony 

system and brainstorm optimization, Multi-attribute utility theory. 

 

 

1. Introduction 

The hustle of city life makes people, especially 

urbanites, need tourism to fulfil their psychological 

needs. Typically, tourists prefer destinations that 

align with their interests for a satisfying vacation 

experience [1]. However, the profusion of available 

points of interest (POIs) and the constraints 

confronted by tourists, such as limited budgets and 

time restrictions, give rise to new challenges [2]. 

Tourists need to create an itinerary that satisfies 

their interests, influenced by attributes like POIs 

ratings, the number of POIs included in the itinerary, 

cost, and travel duration [3]. In addition, they often 

require more than one day to visit the desired POIs 

[4]. Creating an itinerary can be done with the help 

of a travel agent but at a high cost. Therefore, it is 

necessary to have a system that can help tourists by 

generating a travel itinerary for several days 

automatically [5-7]. 

Generating a travel itinerary is a part of the 

Tourist Trip Design Problem (TTDP) which is 

known as an NP-Hard. Thus, an approximation 

method, such as the metaheuristic method, is needed 

in its generation process [8, 9]. Liao & Zheng [10] 

and Yochum et al. [11] have developed travel 

itinerary generation methods, but they focused only 

on single-day itinerary. Studies on the multi-day 

travel itinerary problem have been carried out by 
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assuming the problem to be the Traveling Salesman 

Problem (TSP) [5-7]. However, TSP is considered 

unsuitable for multi-day travel itinerary generation 

as it is designed to generate a travel route in single 

trip [12]. The implementation of TSP for multi-day 

travel itinerary generation problem (TSP approach) 

is done by creating an itinerary that visits all POIs in 

a single trip and then dividing the itinerary 

according to the number of travel days and the daily 

travel duration limit. This implementation causes the 

itinerary to be not optimal. 

The multi-day travel itinerary generation 

problem can be assumed as the vehicle routing 

problem (VRP), an advancement from the TSP [13]. 

The VRP addresses challenges in delivering goods 

to customers with multiple vehicles, ensuring each 

customer is visited only once and by a single vehicle 

[14]. VRP has several variations such as the 

Capacitated VRP (CVRP) and the VRP with Time 

Windows (VRPTW). In the CVRP, each vehicle has 

a load limit of the same amount. The load can be the 

total weight of goods delivered or the number of 

customers served by each vehicle (capacity 

constraint) [15]. On the other hand, VRPTW is a 

VRP with the condition that each vehicle must 

deliver goods to customers within a certain 

timeframe which can be different for each customer 

(time window constraint) [16]. The multi-day travel 

itinerary generation problem has several constraints 

such as the travel duration limit per day and the 

opening and closing hours for each POI. It can be 

assumed as the Capacitated VRP with Time 

Windows (CVRPTW). The number of travel days is 

assumed to be the number of vehicles in the VRP, 

travel duration limit per day is assumed to be the 

capacity constraint, and the POI’s opening and 

closing hours are assumed to be the time window 

constraint. 

This study is about generating a multi-day travel 

itinerary by assuming it to be the CVRPTW (VRP 

approach). The system created in this study can 

generate a travel itinerary for several days that 

satisfies user interests. Attributes considered in this 

study include the rating and cost of POIs, the 

number of POIs included in the itinerary, and the 

travel duration. In addition, this study introduces 

two penalty attributes, addressing cases where 

desired POIs are not included in the itinerary and 

instances where daily travel duration surpasses the 

specified daily travel duration limit. The generated 

travel itinerary is evaluated using the Multi-

Attribute Utility Theory (MAUT) as the fitness 

function to estimate user interests based on the 

attributes. This study uses the hybrid Ant Colony 

System (ACS) and Brainstorm Optimization (BSO) 

with local search techniques such as 2-opt and 2-

interchange (the hybrid ACS-BSO algorithm) that 

has been proven to work well in VRPTW [17]. This 

study uses a dataset containing POIs and hotels in 

Yogyakarta as a city with many popular POIs in 

Indonesia [7].  

Several contributions have been made in this 

study. Firstly, generating a more optimal multi-day 

travel itinerary with the VRP approach using the 

hybrid ACS-BSO algorithm. This algorithm has 

advantages to avoid local optima and improves both 

the exploitation and exploration of the solution 

space [17]. Secondly, to ensure that the generated 

multi-day travel itinerary satisfies user interests, this 

study introduces new considered attributes, i.e., the 

number of POIs included in the itinerary and the 

penalty attributes. 

The rest of the paper is organized as follows. 

Section 2 discusses some works related to travel 

itinerary generation and VRP. Next, section 3 

outlines the methods used in this study. Section 4 

discusses the experimental results of our proposed 

algorithm. Finally, section 5 provides conclusions of 

the study. 

2. Related work 

Investigations into the generation of travel 

itinerary have been undertaken in recent years. Liao 

& Zheng conducted the study in the travel itinerary 

generation for a single-day itinerary using heuristic 

algorithms such as Genetic Algorithm (GA) and 

Differential Evolution Algorithm (DEA) [10]. 

Similarly, Yochum et al. employed an adaptive 

genetic algorithm, considering the popularity, travel 

time, visit duration, cost, and rating of POIs [11]. 

Generating a multi-day travel itinerary can be 

done by using clustering techniques. K-Means is a 

clustering method that can be employed in this 

problem [18, 19]. Firstly, each POI is divided into N 

clusters representing N travel days. Subsequently, 

the optimization process is carried out for each 

cluster. Optimization can be performed using 

various algorithms such as brute force [18] and 

genetic algorithm (GA) [19]. However, in the K-

means clustering method, the number of clusters is 

static and must be determined in advance. This 

limitation results in the inability to minimize the 

number of travel days. 

Several studies on generating a multi-day travel 

itinerary have solely relied on optimization 

algorithms without incorporating clustering [20-22]. 

Promising algorithms, including Global Local and 

Near-Neighbour Particle Swarm Optimization 

(GLNPSO) [20], a combination of GA, Variable 



Received:  December 13, 2023.     Revised: January 10, 2024.                                                                                         225 

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024           DOI: 10.22266/ijies2024.0430.20 

 

Neighbourhood Search (VNS), and Differential 

Evolution (DE) [21], and Ant Colony System (ACS) 

with two ant colonies [22], have shown 

effectiveness. However, these studies lack 

consideration for user interests, particularly 

concerning attributes such as the cost and rating of 

POIs. 

A more suitable approach to generate a multi-

day travel itinerary is shown in [5-7] by assuming 

the problem as the TSP and utilizing MAUT as the 

fitness function. Tabu Search (TS) [5] and 

Simulated Annealing (SA) [6, 7] produced 

promising results. These studies use the MAUT as 

the fitness function to ensure that the generated 

solution satisfies user interests. However, the main 

weakness of those studies is the assumption that the 

problem is a TSP which is unsuitable for generating 

a multi-day travel itinerary as it causes the itinerary 

to be not optimal. 

The multi-day travel itinerary generation 

problem can be assumed as a Capacitated Vehicle 

Routing Problem with Time Windows (CVRPTW). 

Previous studies have explored various aspects of 

VRP, such as multi-depot capacitated VRP using 

stable marriage and k-means clustering [23], CVRP 

considering traffic density with GA [24], VRP of 

bulk product shipment with hybrid metaheuristics 

[25], VRP with soft time windows using the hybrid 

of improved BSO and ACO (IBSO-ACO) [26], 

CVRP utilizing the hybrid of Chicken Swarm 

Optimization (CSO) and tabu search [27], VRPTW 

employing the hybrid of ACS and BSO [17], and 

VRP with the hybrid of ACO and DEA [28]. Ant 

colony-based algorithms (ACO and ACS) are 

frequently used in VRP highlighting their efficacy 

[17,26,28,29]. The combination of the ant colony 

and BSO also shows good results for VRPTW [17, 

26]. Furthermore, Shen et al. enhanced ACS 

performance by integrating it with modified BSO 

and employing local search techniques, including 2-

opt for intra-route improvement and λ-interchange 

for inter-route improvement, thereby enhancing 

exploration and exploitation [17]. 

The related works highlights two crucial 

findings. Firstly, diverse approaches exist for multi-

day travel itinerary generation, including clustering 

[18, 19] and reliance on optimization algorithms 

only [5-7, 20-22]. In this context, the approach in [5-

7] emerges as the most suitable approach. However, 

the limitation of TSP approach in [5-7] lies in the 

absence of constraints and itinerary separation 

during optimization, resulting in suboptimal solution. 

Secondly, ant colony-based algorithms, notably 

ACS, are prevalent in VRP [17, 26, 28, 29]. The 

performance of ACS can be enhanced by integrating 

BSO (the hybrid ACS-BSO) [17]. This study 

contributes by proposing the VRP approach with the 

hybrid ACS-BSO to overcome the limitation of TSP 

approach and introduces additional attributes in 

MAUT, including the number of POIs included in 

the itinerary and penalty attributes, for an improved 

solution. To demonstrate the proposed algorithm’s 

effectiveness, the study compares it with 

conventional algorithms (GA, TS, SA), standalone 

algorithms (ACS, BSO), and compares the VRP and 

TSP approaches. 

3. Methodology 

This study focuses on generating an optimal 

multi-day travel itinerary using the VRP approach, 

assuming users already know their desired POIs and 

hotel, the DOI of attributes that influence their 

interests, and how many days they will travel. The 

system generates a travel itinerary in less than or 

equal to the desired number of travel days based on 

the list of POIs and the DOI of each attribute 

provided by the users. This study only considers the 

opening and closing hours of each POI on Sunday. 

In addition, the only transportation considered in 

this study is car. The itinerary starts at 08.00 AM 

and ends at 08.00 PM each day. Notations that are 

used in this study are as follows, 

 

𝑉 vertex set {𝑣0, 𝑣1, … , 𝑣𝑛} 

𝐸 edge set {(𝑣𝑖 , 𝑣𝑗)|𝑣𝑖 , 𝑣𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} 

𝑣𝑖 vertex 𝑖 (hotel 𝑖 = 0, POI if  𝑖 ≥ 1) 

𝐷 travel day set 

𝑄 daily travel duration limit 

𝑄0 departure time 

𝑄1 time limit for returning to hotel 

𝑜𝑖 opening hour of 𝑣𝑖 

𝑐𝑖 closing hour of 𝑣𝑖 

𝑁 maximum number of travel days 

𝑡𝑖𝑗 travel time from 𝑣𝑖 to 𝑣𝑗 

𝑤𝑡𝑖 waiting time at 𝑣𝑖 

𝑠𝑖 time spent on 𝑣𝑖 

𝑎𝑡𝑖 arrival time at 𝑣𝑖 

𝑇 total travel duration 

𝑇𝑑 travel duration on day 𝑑 

𝑥𝑖 value of attribute 𝑖 
𝑥𝑖𝑚𝑎𝑥

 maximum value of attribute 𝑖 

𝑥𝑖𝑚𝑖𝑛
 minimum value of attribute 𝑖 

𝑥𝑖𝑛𝑜𝑟𝑚
 normalized value of attribute 𝑖 

𝑈(𝑥)𝑛𝑜𝑟𝑚 MAUT value with the normalized 

attributes 

𝑤𝑖 degree of interest (DOI) of attribute 𝑖 
𝑞0 probability parameter for transition 

rule in ACS 
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𝐽𝑘(𝑖) the subset of set 𝑉  that is still 

possible to be visited by ant 𝑘 

𝜏𝑖𝑗 pheromone concentration along the 

path from 𝑣𝑖 to 𝑣𝑗 

𝜂𝑖𝑗 heuristic value from 𝑣𝑖  to 𝑣𝑗 , 

equivalent to 𝑈𝑗(𝑥)𝑛𝑜𝑟𝑚 

𝑈𝑗(𝑥)𝑛𝑜𝑟𝑚 MAUT value for 𝑣𝑗  considering 

attributes such as the cost and rating 

of 𝑣𝑗, along with the travel time from 

𝑣𝑖 to 𝑣𝑗 

𝛼𝑡 relative influence of 𝜏𝑖𝑗 

𝛽 relative influence of 𝜂𝑖𝑗 

𝜌 pheromone evaporation rate within 

the range of [0,1]  for local 

pheromone update 

𝑈(𝑥)𝑛𝑜𝑟𝑚𝑘
 fitness value by ant 𝑘 

𝛼 pheromone evaporation rate for 

global pheromone update 

𝑈(𝑥)𝑛𝑜𝑟𝑚𝑏𝑒𝑠𝑡
 fitness value for the best solution 

 

3.1 Dataset 

The dataset used in this study is POIs and hotels 

in Yogyakarta which are obtained using SerpAPI 

and Google Maps API [7]. The data consist of 

information on 88 hotels and 87 POIs. The detailed 

information in the dataset are as follows. 

a. The name of POIs and hotels 

b. The location of POIs and hotels 

c. Travel time between hotels and POIs 

d. Travel time between POIs 

e. Average spend time at each POI 

f. Opening and closing hours of POIs 

g. Rating of POIs and hotels 

h. Cost needed to visit each POI 

3.2 Problem modeling and fitness function 

The multi-day travel itinerary is defined as a 

complete graph 𝐺(𝑉, 𝐸). The travel itinerary divided 

into |𝐷|  days. The generated travel itinerary in 𝐷 

departs from 𝑣0 and returns to 𝑣0 with a duration of 

𝑄  hours within the time range [𝑄0, 𝑄1]  (capacity 

constraint). Each POI 𝑣𝑖 is visited for certain hours 

and has opening and closing hours [𝑜𝑖 , 𝑐𝑖]. The user 

must wait if the POI 𝑣𝑖 is visited before 𝑜𝑖 and the 

user must finish visiting the POI 𝑣𝑖 before 𝑐𝑖  (time 

window constraint). Furthermore, the generated 

itinerary must adhere to multiple constraints which 

are defined in Eq. (1), (2), (3), (4), and (5). 

 
|𝐷| ≤ 𝑁 (1) 

∑ ∑ 𝑥𝑖𝑗𝑑𝑖∈𝑉,𝑖≠𝑗𝑑∈𝐷 = 1 (∀𝑗 ∈ 𝑉) (2) 

∑ ∑ 𝑥𝑖𝑗𝑑𝑗∈𝑉,𝑗≠𝑖𝑑∈𝐷 = 1 (∀𝑖 ∈ 𝑉) (3) 

∑ ∑ (𝑡𝑖𝑗 + 𝑤𝑡𝑗 + 𝑠𝑗) ∙ 𝑥𝑖𝑗𝑑𝑗∈𝑉𝑖∈𝑉 ≤ 𝑄 (∀𝑑 ∈ 𝐷,
𝑗 ≠ 0) (4) 

𝑜𝑖 ≤ 𝑎𝑡𝑖 + 𝑤𝑡𝑖 + 𝑠𝑖 ≤ 𝑐𝑖  (∀𝑖 ∈ 𝑉, 𝑖 ≠ 0) (5) 
 

Eq. (1) ensures that the number of travel days 

does not surpass the specified maximum number of 

travel days. Eq. (2) and (3) ensure that each POI is 

visited only once along |𝐷| travel days. Eq. (4) is 

the capacity constraint which states that for each 

travel day, it is not possible to visit POI beyond the 

specified time limit. Whereas, if the time to return to 

the 𝑣0 surpasses the time limit, it is still allowed. Eq. 

(5) is the time window constraint which states that 

each POI has opening and closing hours. 

This study aims to generate a multi-day travel 

itinerary that satisfies user interests. User interests is 

influenced by several attributes such as the rating 

and cost of POIs, the number of POIs included in 

the itinerary, and the travel duration. Travel duration 

is affected by the travel time between the POIs, 

waiting time if POIs are visited before the opening 

hour, and the time spent at the POIs. The travel 

duration is defined in Eq. (6) and (7). The 𝑤𝑡𝑗 and 𝑠𝑗 

values are set to 0 if 𝑣𝑗 = 𝑣0.  

 
𝑇 = ∑ ∑ ∑ (𝑡𝑖𝑗 + 𝑤𝑡𝑗 + 𝑠𝑗) ∙ 𝑥𝑖𝑗𝑑𝑗∈𝑉𝑖∈𝑉𝑑∈𝐷  (6) 

𝑥𝑖𝑗𝑑 =

{
1, 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑡𝑟𝑖𝑝 𝑓𝑟𝑜𝑚 𝑣𝑖 𝑡𝑜 𝑣𝑖  𝑖𝑛 𝑑𝑎𝑦 𝑑
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

 

This study added penalties as additional 

attributes that affect user interests. There are two 

penalties, i.e., the POI penalty and the time penalty. 
POI penalty is the number of desired POIs that are 

not included in the itinerary. Time penalty, defined 

in Eq. (8), is applied if 𝑇𝑑 > 𝑄. 

 
𝑇𝑖𝑚𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = ∑ max (|𝑇𝑑 − 𝑄|,0)𝑑∈𝐷  (8)  
 

To ensure uniformity in attribute values, a 

normalization process was applied, employing min-

max normalization. This transformation aligns the 

attribute values within the standardized range of 

[0,1]. The min-max normalization is defined in Eq. 

(9). 

 

𝑥𝑖𝑛𝑜𝑟𝑚
=

𝑥𝑖−𝑥𝑖𝑚𝑖𝑛

𝑥𝑖𝑚𝑎𝑥−𝑥𝑖𝑚𝑖𝑛

 (9) 
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There are two types of attributes, i.e., attributes 

that positively influence user interest (positive 

attributes) and those that negatively influence it 

(negative attributes). The positive attributes include 

the number of POIs included in the itinerary and the 

rating of POIs, while the negative attributes include 

the penalties, travel duration, and the cost of POIs. 

To satisfy user interests, positive attributes must be 

maximized, and negative attributes must be 

minimized. Therefore, MAUT [30] with normalized 

attributes is applied as a fitness function to evaluate 

the generated multi-day travel itinerary as defined in 

Eq. (10) and (11). 

 

𝑈(𝑥)𝑛𝑜𝑟𝑚 =
∑ 𝑤𝑖∙𝑥𝑖𝑛𝑜𝑟𝑚

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 (10) 

𝑥𝑖𝑛𝑜𝑟𝑚
=

{
𝑥𝑖𝑛𝑜𝑟𝑚

, 𝑥𝑖 ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

1 − 𝑥𝑖𝑛𝑜𝑟𝑚
, 𝑥𝑖 ∈ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

 (11) 

 

In this study, the DOI of the number of POIs 

included in the itinerary and the penalties (POI 

penalty and time penalty) are set to 1 which shows 

that these attributes are important. On the other hand, 

the DOI of rating, cost, and travel duration can have 

values in the range [0, 1]. 

3.3 Ant Colony System (ACS) 

Ant colony system (ACS) is a variation of ant 

colony optimization (ACO) which is one of the 

swarm intelligence methods [31]. It was created to 

find the shortest path in a graph inspired by the 

behaviour of ants leaving pheromone trails to direct 

the other ants to the food. 

ACS starts by initializing a set of ants, and each 

ant constructs the solution. Ant 𝑘 moves from 𝑣𝑖 to 

𝑣𝑗 based on the transition rule defined in Eq. (12). 

This rule employs a random number 0 ≤ 𝑞 ≤ 1 , 

enabling ant 𝑘 to emphasize exploitation when 𝑞 ≤
𝑞0 and exploration otherwise. 

 

𝑠 = {
𝑎𝑟𝑔𝑚𝑎𝑥𝑗∈𝐽𝑘(𝑖)𝜏𝑖𝑗 ∙ 𝜂𝑖𝑗

𝛽
, 𝑖𝑓 𝑞 ≤ 𝑞0

𝑆, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12) 

 

𝑆  is determined using the roulette wheel rule, 

employing the probability distribution specified in 

Eq. (13). 

 

𝑃𝑖𝑗
𝑘 = {

(𝜏𝑖𝑗
𝑎𝑡)∙(𝜂𝑖𝑗

𝛽
)

∑ (𝜏𝑖𝑗
𝑎𝑡)∙(𝜂𝑖𝑗

𝛽
)𝑘∈𝐽𝑘(𝑖)

, 𝑖𝑓 𝑗 ∈ 𝐽𝑘(𝑖)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (13) 

 

The pheromones in each edge are updated based 

on the solutions constructed by each ant. Two types 

of pheromone update, local and global, are 

employed in ACS algorithm. In this study, the 

pheromone update utilizes MAUT instead of relying 

on the total distance derived from the nearest 

neighbour method [32] as presented in [31]. Local 

pheromone update, described in Eq. (14), is 

performed every time an ant completes solution 

construction. 

 
𝜏𝑖𝑗 = (1 − 𝜌) ∙ 𝜏𝑖𝑗 + 𝜌 ∙ 𝑈(𝑥)𝑛𝑜𝑟𝑚𝑘

 (14)  

 

Global pheromone update is carried out based on 

the best solution after all ants have finished 

constructing the solutions. It is defined in Eq. (15) 

and (16). 

 
𝜏𝑖𝑗 = (1 − 𝛼) ∙ 𝜏𝑖𝑗 + 𝛼 ∙ ∆𝜏𝑖𝑗 (15)  

∆𝜏𝑖𝑗 =

{
𝑈(𝑥)𝑛𝑜𝑟𝑚𝑏𝑒𝑠𝑡

,  𝑖𝑓 (𝑖, 𝑗) ∈ 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (16)  

 

ACS operates with two loops: the outer loop 

generates ants, and the inner loop constructs the 

solutions. Local pheromone update is applied within 

Algorithm 1 Ant Colony System 

Initialize ACS parameters 

Set initial pheromone 𝜏0 to all edges 

Let 𝑁 be the maximum iteration 

for 𝑖 ≔ 1 to 𝑁 do {outer loop} 

for all 𝑘 in set of ants do {inner loop}  

𝑣𝑘 ≔ 𝑣0 {set initial position for ant 𝑘} 

for each travel day do 

𝐽𝑘 ≔ set of available next vertex for ant 𝑘 

if 𝐽𝑘 = ∅ then  

continue to next day 

else 

𝑞 ≔ rand(0,1) 

𝑣𝑙 ≔ next vertex according to Eq. (12) 

add (𝑣𝑘 , 𝑣𝑙) to ant 𝑘’s solution 

𝑣𝑘 ≔ 𝑣𝑙 

end for 

local pheromone update based on Eq. (14) 

end for 

𝑆𝑖 ≔ best solution generated by the ants 

global pheromone update based on Eq. (15) 

if 𝑆𝑖 outperforms previous solution then 

𝑆𝑏𝑒𝑠𝑡 ≔ 𝑆𝑖 

end for 

Output 𝑆𝑏𝑒𝑠𝑡 
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the inner loop, while global pheromone update is 

implemented in the outer loop. Algorithm 1 provides 

a comprehensive view of the ACS procedure in this 

study. 

3.4 Intra-itinerary improvement (2-opt) 

2-opt is a local search heuristic algorithm to 

solve TSP. It works by swapping two edges (𝑖, 𝑗) 

and (𝑘, 𝑙) into (𝑖, 𝑘) and (𝑗, 𝑙) or (𝑘, 𝑖) and (𝑙, 𝑗). For 

example, assume a TSP with a sequence of nodes 0-

1-2-3-4-5-6-7-0 and then the swapping (2,3) and 

(5,6) to become (2,5) and (3,6) will form a new 

sequence 0-1-2-5-4-3-6-7-0. The process will be 

carried out for each pair of 𝑛 edges against the other 

𝑛 − 1 edges iteratively [33]. 

This study applies two improvements strategies 

in 2-opt, i.e., first and best improvement. In the first 

improvement, iterations end when a better solution 

is found. On the other hand, best improvement 

concludes the iterations when no further 

improvements are possible. 

3.5 Inter-itinerary improvement (2-interchange) 

2-interchange (λ-interchange with λ = 2 ) is a 

heuristic method that works by swapping vertices 

between two solutions [34]. There are eight possible 

interchange operators, i.e., (0,1), (1,0), (1,1), (0,2), 

(2,0), (1,2), (2,1), and (2,2). The (𝑛1, 𝑛2) operator 

means that for a pair of solutions (𝐼𝑝, 𝐼𝑞) there 𝑛1 

vertices from 𝐼𝑝  that move to 𝐼𝑞  and 𝑛2  vertices 

from 𝐼𝑞 that move to 𝐼𝑝. The process explores every 

possible pair in each operator. Therefore, this study 

uses the first improvement strategy to minimize the 

time complexity. 

3.6 Brainstorm Optimization (BSO) 

Brainstorm Optimization (BSO) is a swarm 

intelligence optimization algorithm inspired by the 

process of human brainstorming [35,36]. This study 

applies the BSO at the itinerary level instead of 

solution level as shown in Algorithm 2. In VRP 

approach, BSO starts by randomly dividing the 

itineraries into two clusters, A and B. The best 

itinerary in each cluster is chosen as the cluster 

center. Four probability parameters (𝑝1, 𝑝2, 𝑝3, and 

𝑝4) are employed in the randomization process to 

determine the method used for generating a new 

solution in each iteration. Conversely, the TSP 

approach optimizes the solution by creating a single 

trip itinerary. In this case, clustering divides the 

itinerary into two equally sized parts, each cluster 

containing only one 

 

member. Consequently, only a single probability 

parameter 𝑝1 is employed to choose between 2-opt 

and 2-interchange as methods for generating a new 

solution. 

This study integrates the 2-opt and 2-interchange 

algorithms into BSO as methods to produce a new 

solution. Moreover, 2-opt with the best 

improvement strategy is used in the standalone BSO, 

while 2-opt with the first improvement strategy is 

utilized in the hybrid ACS-BSO. 

3.7 Hybrid ACS-BSO 

The hybrid ACS-BSO works by incorporating 

BSO into the ACS algorithm before global 

pheromone update. This approach helps circumvent 

local optima and enhances both the exploitation and 

exploration of the solution [17]. additionally, this  

Algorithm 2 Modified BSO for VRP approach 

Initialize BSO parameters 

Let 𝑆 be the initial solution of BSO 

Let 𝑁 be the maximum iteration 

for 𝑖 ≔ 1 to 𝑁 do 

perform itinerary clustering in 𝑆 

find the centers for each cluster 

if rand(0,1) < 𝑝1 then 

randomly pick a cluster 𝐶𝑗 

if rand(0,1) < 𝑝2 then 

𝑛𝑖𝑖 ≔ 2-opt(𝑐𝑗) {𝑐𝑗: center of 𝐶𝑗} 

else 

𝑛𝑖𝑖 ≔  2-opt( 𝑟𝑗 ) { 𝑟𝑗:  random itinerary in 

𝐶𝑗} 

else 

if rand(0,1) < 𝑝3 then 

randomly pick a cluster 𝐶𝑗 

if rand(0,1) < 𝑝4 then 

𝑛𝑖𝑖 ≔ 2-interchange(𝑐𝑗, 𝐶𝑟𝑒𝑠𝑡) 

else 

𝑛𝑖𝑖 ≔ 2-interchange(𝑟𝑗, 𝐶𝑟𝑒𝑠𝑡) 

{𝐶𝑟𝑒𝑠𝑡  is the set of POI vertices that not 

included in the itinerary} 

else 

pick two clusters 𝐶𝑗, 𝐶𝑘 

if rand(0,1) < 𝑝4 then 

𝑛𝑖𝑖 ≔ 2-interchange(𝑐𝑗, 𝑐𝑘) 

else 

𝑛𝑖𝑖 ≔2-interchange(𝑟𝑗, 𝑟𝑘) 

𝑆′ ≔ update 𝑆 with 𝑛𝑖𝑖 

if 𝑆′ outperforms 𝑆 then 

𝑆′ ≔ 𝑆 

end for 

Output 𝑆 
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study introduces a probability parameter 𝑝0  to 

determine whether BSO will be implemented in 

each iteration. The algorithm’s procedure is detailed 

in Algorithm 3. 

4. Experimental results 

 This study evaluated the generated multi-day 

travel itinerary and the reliability of each algorithm 

through various experiments. Firstly, a comparison 

experiment was conducted between the hybrid ACS-

BSO conventional optimization algorithms such as 

GA, TS, and SA in the VRP approach. This aimed 

to assess the general performance and demonstrate 

the effectiveness of the proposed algorithm against 

other conventional algorithms. Secondly, a detailed 

analysis evaluated the effectiveness of each 

algorithm for individual attributes. Thirdly, an 

experiment comparing the hybrid ACS-BSO, ACS, 

and BSO algorithms in the VRP approach aimed to 

prove the superiority of the hybrid algorithm over 

standalone algorithms. Finally, another experiment 

compared the hybrid ACS-BSO in VRP and TSP 

approaches to demonstrate the superiority of the 

VRP approach over the TSP approach. Metrics 

utilized included fitness value as the primary metric 

and the values of each attribute. All experiments 

were implemented in Python on a 12th Gen Intel 

Core i7-12700H ~2.3GHz processor with 16GB 

RAM. 

4.1 Parameter setup 

The parameters for each algorithm used in this 

study were tuned to balance solution quality and 

computational cost. The hybrid ACS-BSO combines 

parameters from both ACS and BSO. For the VRP 

approach, the hybrid ACS-BSO has ACS parameters 

set as follows: 𝛼𝑡 = 1, 𝛽 = 1, 𝑞0 = 0.1, 𝜏0 = 0.1, 𝜌 = 

0.1, 𝛼 = 0.1, 𝑛𝑢𝑚_𝑎𝑛𝑡 = 30, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟_𝑎𝑐𝑠 = 200, 

and 𝑚𝑎𝑥_𝑖𝑑𝑒𝑚_𝑎𝑐𝑠 = 30. The BSO parameters for 

VRP approach are set as follows: 𝑝1 = 0.4, 𝑝2 = 0.4, 

𝑝3  = 0.5, 𝑝4  = 0.5, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟_𝑏𝑠𝑜  = 15, and 

𝑚𝑎𝑥_𝑖𝑑𝑒𝑚_𝑏𝑠𝑜  = 10. In TSP approach, the ACS 

parameters for the hybrid ACS-BSO mirror those of 

the standalone ACS – TSP, while the BSO 

Algorithm 3 Hybrid ACS-BSO 

Initialize parameters 

Set initial pheromone 𝜏0 to all edges 

Let 𝑁 be the maximum iteration 

for 𝑖 ≔ 1 to 𝑁 do {outer loop} 

for all 𝑘 in set of ants do {inner loop}  

set initial position for ant 𝑘 

construct solution 

local pheromone update based on Eq. (14) 

end for 

𝑆𝑖 ≔ best solution generated by the ants 

if rand(0,1) > 𝑝0 then 

Optimize 𝑆𝑖 using BSO 

global pheromone update based on Eq. (15) 

if 𝑆𝑖 outperforms previous solution then 

𝑆𝑏𝑒𝑠𝑡 ≔ 𝑆𝑖 

end for 

Output 𝑆𝑏𝑒𝑠𝑡 

Table 1. General performance using VRP approach 

Metrics Algorithm 
Set of random POIs 

Average 
1 2 3 4 5 

Fitness (primary 

metric) 

GA 0.5952 0.6560 0.6484 0.6542 0.6146 0.6337 

TS 0.6227 0.6781 0.6569 0.6574 0.6192 0.6469 

SA 0.6436 0.6853 0.6738 0.6736 0.6365 0.6626 

Hybrid ACS-BSO 0.6486 0.6925 0.6748 0.6901 0.6459 0.6704 

The number of POIs 

included 

GA 21 20 22 23 22 21.6 

TS 20 22 22 23 21 21.6 

SA 21 23 22 21 22 21.8 

Hybrid ACS-BSO 20 23 22 24 23 22.4 

Average rating 

GA 4.56 4.56 4.59 4.58 4.57 4.57 

TS 4.57 4.55 4.59 4.57 4.58 4.58 

SA 4.57 4.56 4.60 4.57 4.56 4.57 

Hybrid ACS-BSO 4.57 4.56 4.60 4.57 4.58 4.58 

Total cost (rupiahs) 

GA 116500 23500 127980 73000 118500 91896 

TS 54500 20000 58000 58000 91500 56400 

SA 35000 29000 38000 8000 66500 35300 

Hybrid ACS-BSO 27000 25500 38000 43000 91500 45000 

Total travel duration 

(hours) 

GA 34.82 34.85 35.55 35.28 35.65 35.23 

TS 34.53 35.05 33.63 36.80 35.17 35.04 

SA 34.98 34.97 32.67 35.57 34.12 34.46 

Hybrid ACS-BSO 31.73 33.33 32.37 33.22 33.20 32.77 
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parameters are set as follows: 𝑝1  = 0.9 with the 

maximum iterations and maximum idem being the 

same as in the VRP approach. In both VRP and TSP 

approaches, the parameter  𝑝0  is set to 0.5. The 

process iterates up to 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟  times, stopping if 

the fitness value remains unchanged for 𝑚𝑎𝑥_𝑖𝑑𝑒𝑚 

consecutive iterations. 

4.2 General performance 

An experiment was conducted to assess the 

performance and effectiveness of the hybrid ACS-

BSO compared to other conventional algorithms. 

This experiment used five samples, each consisting 

of 30 random POIs and 1 random hotel. All DOIs 

were set to 1, indicating that all attributes were 

equally considered. The number of travel days in 

this experiment was set to three days. 

Table 1 shows that the hybrid ACS-BSO 

algorithm excels in 4 out of 5 metrics. Based on the 

fitness value as the primary metric, the hybrid ACS-

BSO is superior in generating a multi-day travel 

itinerary. The hybrid ACS-BSO outperforms other 

algorithms in each set of random POIs across fitness, 

the number of POIs included in the itinerary, 

average rating, and total travel duration metrics. 

This demonstrates the effectiveness of the hybrid 

ACS-BSO in generating a multi-day travel itinerary 

compared to the other well-known conventional 

algorithms. In terms of total cost metric, SA 

outperforms other algorithms. However, the hybrid 

ACS-BSO still maintains competitive results for the 

total cost metric with the second smallest average 

total cost after SA. 

4.3 Attribute analysis 

The generated multi-day travel itinerary is 

influenced by several attributes such as the rating 

and cost of POIs, travel duration, the number of 

POIs included in the itinerary, and the penalties 

(POI penalty and time penalty). Rating, cost, and 

travel duration attributes can have values in the 

range [0,1], while the number of POIs included in 

the itinerary and the penalties have a value of 1. 

This study conducted experiments to evaluate the 

effectiveness of the proposed algorithm in 

optimizing the attributes of rating, cost, and travel 

duration compared with the other conventional 

algorithms in VRP approach. 

4.3.1. Travel duration attribute 

An experiment to evaluate the effectiveness the 

proposed algorithm in optimizing the travel duration 

attribute was conducted using several samples  

 

consisting of 15 to 40 random POIs and 1 random 

hotel. The DOI for the travel duration attribute was 

set to 1, while the other attributes (rating and cost) 

were set to 0. The travel days in this experiment was 

set to infinity. The metrics used in this experiment 

are the total travel duration and days needed to visit 

all POIs. 

Table 2 and Table 3 show that the hybrid ACS-

BSO consistently produces solutions with the lowest 

travel duration and days needed to visit all POIs in 

each sample. Furthermore, the greater the number of 

POIs, the larger the gap in total travel duration, 

indicating that the hybrid ACS-BSO is effective in 

minimizing travel duration better than the other 

algorithms. 

4.3.2. Cost attribute 

The effectiveness in optimizing the cost attribute 

is evaluated by conducting an experiment using a 

sample consisting of 30 random POIs and 1 random 

hotel. The DOI for the cost attribute was set to 1, 

while the other attributes were set to 0. In this 

experiment, the number of travel days is set to three 

days. The metric used in this experiment is the total 

cost needed to visit all POIs in the generated 

itinerary. 

Table 4 shows that the solution generated by the 

hybrid ACS-BSO has the smallest cost with the 

highest number of POIs included in the itinerary. 

This makes the hybrid ACS-BSO algorithm has the  

 

Table 2. Days needed to visit all POIs 

Algorithm 
The number of POIs 

15 20 25 30 35 40 

GA 3 4 4 5 6 7 

TS 3 3 4 5 6 7 

SA 3 4 4 5 6 7 

Hybrid ACS-BSO 3 3 4 5 5 6 

Table 3. Travel duration (hours) needed to visit all POIs 

in the itinerary 

Algorithm 
The number of POIs 

15 20 25 30 35 40 

GA 26.6 35.9 44.8 52.9 63.8 75.9 

TS 25.6 35.1 43.1 48.8 63.4 74.5 

SA 30.5 37.4 47.6 54.6 70.0 79.7 

Hybrid ACS-BSO 25.2 33.3 41.8 48.2 59.2 68.3 

Table 4. Total cost to visit all POIs in the itinerary 

Algorithm Total cost Fitness 
POIs 

included 

GA 34000 0.8203 21 

TS 29000 0.8239 21 

SA 26500 0.8604 23 

Hybrid ACS-BSO 24000 0.8628 23 
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highest fitness value, followed by SA. These results  

proved the effectiveness of the hybrid ACS-BSO in 

optimizing the cost attribute compared to the other 

conventional algorithms. 

4.3.3. Rating attribute 

An experiment was conducted to evaluate the 

effectiveness of the proposed algorithm in 

optimizing the rating attribute using a sample 

consisting of 30 random POIs and 1 random hotel. 

The DOI for rating attribute was set to 1, while the 

others were set to 0. Additionally, travel days were 

set to three days. The metrics used in this 

experiment are the average of all POIs included in 

the itinerary, fitness value, and the number of POIs 

included in the itinerary. 

Table 5 shows that the highest average rating is 

obtained by the SA algorithm. However, there is no 

significant difference among all algorithms. The 

average rating obtained by the hybrid ACS-BSO 

algorithm is 4.61, only 0.02 different from the 

highest average rating. Moreover, the number of 

POIs included in the itinerary by the hybrid ACS-

BSO is higher than other algorithms. Therefore, the 

hybrid ACS-BSO still has the highest fitness value. 

Based on the results of this experiment, it can be 

concluded that the hybrid ACS-BSO can optimize 

the rating attribute effectively. 

4.4 The comparison of hybrid and standalone 

algorithms 

Based on general performance and attribute 

analysis, it is evident that the hybrid ACS-BSO is 

effective in generating a multi-day travel itinerary 

better than the other conventional algorithms. 

Furthermore, this study conducted a more in-depth 

analysis to evaluate the performance of the hybrid 

algorithm compared to the standalone algorithms. 

The experiment included multiple samples 

comprising 5 to 87 randomly selected POIs, 1 

randomly selected hotel, with all DOIs set to 1, and 

a duration of three travel days. 

Fig. 1 demonstrates that the hybrid ACS-BSO 

consistently achieves the highest fitness value across 

varying numbers of POIs. This suggests that the 

hybrid ACS-BSO can uphold the quality of the  

 

generated solution for different POIs quantities 

while considering all attributes more effectively than 

the standalone ACS and BSO. However, as shown 

in Fig. 2, the hybrid ACS-BSO exhibits less 

favourable running times compared to the 

standalone algorithms, attributable to its higher 

complexity. This implies that the hybrid ACS-BSO 

still presents a drawback in terms of time 

complexity. Despite the extended running time, the 

hybrid ACS-BSO remains effective, considering the 

fitness value as the primary metrics. 

4.5  The comparison of TSP and VRP 

approaches 

A deeper analysis was conducted to substantiate 

the superior effectiveness of the VRP approach over 

the TSP approach using a sample of 30 random 

POIs, 1 randomly selected hotel, with all DOIs set to 

1, and a duration of three travel days. This 

examination focused on the daily fitness values of 

each algorithm. Table 6 shows that the hybrid ACS-

BSO – VRP consistently outperforms at least in 2 

days and achieves the best overall fitness value  

Table 5. Average rating of POIs in the itinerary 

Algorithm Avg. rating Fitness 
POIs 

included 

GA 4.62 0.8088 23 

TS 4.62 0.8104 23 

SA 4.63 0.8114 23 

Hybrid ACS-BSO 4.61 0.8263 24 

 
Figure. 1 Fitness value over the number of POIs 

 

 
Figure. 2 Running time over the number of POIs 
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compared to every other algorithm. This indicates 

that the hybrid ACS-BSO – VRP can yield a more 

optimal solution compared to the other algorithms. 

Furthermore, the superiority of the VRP approach 

over the TSP approach is corroborated by all VRP 

algorithms demonstrating better overall fitness than 

their TSP counterparts, as presented in Table 6. 

Thus, it can be concluded that the VRP approach is 

notably more effective in generating a multi-day 

travel itinerary compared to the TSP approach. 

5. Conclusion 

This study introduces the VRP approach using 

the hybrid ACS-BSO algorithm for generating a 

multi-day travel itinerary to overcome the limitation 

of the TSP approach. The hybrid ACS-BSO 

algorithm outperforms other conventional 

algorithms (GA, TS, SA), excelling in 4 out of 5 

metrics (fitness value, the number of POIs included 

in the itinerary, average rating, total cost, and total 

travel duration). Based on the fitness value as the 

primary metrics, the hybrid ACS-BSO achieves an 

average fitness value of 0.6704 across 5 sets of 30 

random POIs, surpassing GA, TS, and SA with 

average fitness values of 0.6337, 0.6469, and 0.6626. 

In addition, attribute analysis reveals the hybrid 

ACS-BSO’s proficiency in optimizing travel 

duration, cost, and rating attributes. In terms of 

travel duration, the hybrid ACS-BSO generates an 

itinerary requiring only 68.3 hours (6 days) to visit 

40 POIs, while the other algorithms need at least 7 

days. In terms of cost and rating attributes, the 

hybrid ACS-BSO outperform other algorithms with 

the fitness values of 0.8628 and 0.8263 respectively 

for 30 POIs. Compared to standalone algorithms 

(ACS and BSO), the hybrid ACS-BSO consistently 

outperforms achieves the best fitness value in 

varying numbers of POIs. However, the hybrid 

ACS-BSO reaches maximum running time of 311 

seconds (87 POIs), indicating its weakness. Lastly, 

ACS, BSO, and the hybrid ACS-BSO in VRP 

approach outperforms their TSP counterparts. The 

hybrid ACS-BSO in VRP approach achieve a fitness 

value of 0.6925 for 30 random POIs considering all 

attribute equally, while the hybrid ACS-BSO in TSP 

approach only achieves 0.5913. These experimental 

results underscore the successful approach to 

overcome the weakness of TSP approach by using 

the hybrid ACS-BSO with the VRP approach, 

representing a substantial contribution of this study. 
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