
Received:  November 8, 2023.     Revised: January 5, 2024.                                                                                            201 

International Journal of Intelligent Engineering and Systems, Vol.17, No.2, 2024           DOI: 10.22266/ijies2024.0430.18 

 

 
An Enhanced Sparrow Search Algorithm for Solving Optimal Power Flow 

Problem Considering Renewable Energy Systems 
 

Narendra Babu Kattepogu1*          G Saravanan1          A Rama Koteswara Rao2 

 
1Department of Electrical Engineering, Faculty of Engineering and Technology,  

Annamalai University, Annamalai nagar – 608002, Tamil Nadu, India 
2Department of Electrical and Electronics Engineering, RVR & JC College of Engineering,  

Chowdavaram, Andhra Pradesh 522019 
* Corresponding author’s Email: narendrasrkeee@gmail.com 

 
 

Abstract: In this paper, an enhanced sparrow search algorithm (ESSA) is proposed to solve the optimal power flow 
(OPF) problem of power systems considering renewable energy systems. Two modifications were introduced to the 
basic SSA to overcome its weak global search capability. Elite reverse learning strategy for diversifying the population 
and mutation strategy of firefly algorithm (FA) to achieve a fast convergence rate. The effectiveness of the ESSA is 
analysed for two types of power systems: conventional power systems with only thermal power plants and modern 
power systems with thermal and renewable energy power plants. A multi-objective optimisation problem considering 
the operational cost of power plants and greenhouse gas (GHG) emissions was formulated with multiple power system 
variables and its operational equal and unequal constraints. The effectiveness of ESSA was verified on standard IEEE 
14-bus and IEEE 30-bus test systems without RE plants and compared with the literature. In addition, a real-time 
Andhra Pradesh, an Indian power system with 14-bus is simulated with RE systems.  In the 14-bus test system, the 
cost is reduced by 89.97 $/h, the losses are reduced by 4.106 MW, the voltage deviation is reduced by 0.1276 p. u., 
and GHG emissions are reduced by 8407.86 lb/MWh. In the 30-bus test system, the cost was reduced by 73.1 $/h, the 
losses were reduced by 3.962 MW, the voltage deviation was reduced by 0.00459 p. u., and GHG emissions were 
reduced by 8113 lb/MWh.  On the other hand, in a real-time system, the cost is reduced by 114.41 $/h, the losses are 
reduced by 1.177 MW, the voltage deviation is reduced by 0.1116 p. u., and GHG emissions are reduced by 75560.13 
lb/MWh. The obtained results confirm that the proposed ESSA outperforms the basic SSA and other competitive meta-
heuristics, namely the grasshopper optimisation algorithm (GOA), whale optimisation algorithm (WOA), and moth-
flame optimisation (MFO), to solve the OPF problem. However, embedding RE plants in the OPF problem has resulted 
in significant reductions in operating costs and GHG emissions, which are the need of the present world with rising 
fossil fuel costs and increasing global warming.  

Keywords: Elite reverse learning strategy, Firefly algorithm, Multi-objective optimization, Optimal power flow, 
Renewable energy systems, Sparrow search algorithm. 

 

 

1. Introduction 
In recent times, power system security and 

reliability optimisation, considering economic and 
environmental goals, have become increasingly 
important owing to ever-increasing fossil fuel prices 
and the dangerous alarm bells of global warming. The 
primary goal of any power system is to meet the ever-
increasing demand for electricity at the lowest 
possible cost without compromising security and 

reliability. Optimal power flow (OPF) is one of the 
solution techniques to achieve this target by 
determining the generation levels for all power plants 
and corresponding control variables such as 
generator voltage magnitudes, reactive power outputs, 
tap-changing transformer settings, and other 
volt/VAr controls in the power system by 
maintaining bus voltage magnitudes within tolerable 
limits and transmission line currents within their 
specified limits [1].     
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On the other hand, the major pollutants in 
greenhouse gas (GHG) emissions are carbon dioxide 
(CO2), nitrogen oxides (NOX), and sulphur dioxide 
(SO2). Among these, CO2 makes the highest 
contribution (approximately 70%), followed by 
particulate matter from conventional power systems 
with thermal power plants. In this regard, it is 
essential to adopt various sustainable practices in all 
sectors, particularly renewable energy (RE) 
technologies for power systems and electric vehicles 
(EVs) for the transportation sector.  

In light of these aspects, the OPF problem 
becomes a multi-objective, multi-variable, and multi-
constraint optimisation problem. Furthermore, the 
consideration of RE power plants in the OPF problem 
becomes more complex and a non-linear, non-convex 
problem owing to their intermittent nature. The OPF 
problem is addressed for multiple objectives, such as 
minimisation of real and reactive power costs, 
transmission loss reduction, CO2 emission reduction, 
maximisation of voltage stability, transmission 
system loadability, and voltage profile improvement. 
These objectives are also used to formulate multi-
objective functions [2]. In the literature, many 
methods are used for solving OPF problems, which 
can be classified as traditional approaches, numerical 
approaches, and heuristic or meta-heuristic 
approaches. Considering the drawbacks of traditional 
approaches, the OPF is potentially addressed by 
heuristic and meta-heuristic approaches [3].  

In [4], a fuzzy adaptive hybrid approach, namely 
FAHSPSO-DE, was proposed using self-adaptive 
particle swarm optimisation (SPSO) and differential 
evolution (DE) for solving multi-objective OPF 
focusing on generation cost, real power loss, and 
GHG emission. The effectiveness of FAHSPSO-DE 
was tested on IEEE 30-, 57-, and 118-bus test systems. 
In [5], the whale optimisation algorithm (WOA) and 
modified moth flame optimisation (MMFO) are 
hybridised for formulating the WMFO towards the 
OPF solution. minimisation of cost and voltage 
deviation is aimed at and verified for its effectiveness 
in IEEE 14-, 30-, 39-, 57-, and 118-bus test systems. 
In [6], a modified pigeon-inspired optimisation with 
the constraint-objective sorting rule (COSR) was 
proposed to overcome the constraint violation 
problem in conventional Pareto solutions while 
solving the OPF problem with respect to generation 
cost, real power loss, and emission optimisation. 
Simulations were performed on IEEE 30-, 57-, and 
118-bus test systems with valve-point loading. In [7], 
a gradient-based optimiser for solving multi-
objective optimal power-flow problems was 
presented. In [8], gorilla troop optimisation (GTO) 
was proposed for the OPF considering the valve-

point loading effect. The major objectives are cost 
optimisation and loss reduction. In [9], an improved 
Archimedes optimisation algorithm (IAOA) with a 
dimension-learning-based strategy was introduced 
for OPF in modern power systems with offshore wind 
farms. In [10], a hybrid gradient-based and moth-
flame algorithm (GMFA) was proposed, considering 
the optimal placement and sizing of FACTS devices 
and wind power. In [11], the cost, valve-point loading 
effect, loss, voltage deviation, and emission were 
optimised in the multiobjective OPF (MOOPF) 
problem and solved using a novel approach based on 
a modified and hybrid flower pollination algorithm to 
solve multi-objective optimal power flow (MHFPA). 
In [12], with cost minimisation as the major objective 
function, the OPF problem is solved using ant colony 
optimisation (ACO), considering transient stability as 
the major benefit to the power system. 

In a power system, reactive power plays a key 
role in maintaining the stability and security of the 
transmission system. Thus, it is essential to optimise 
the reactive power flow in the entire power system. 
In [13], hybrid grey wolf optimisation and PSO 
(GWO-PSO) were proposed for the OPF, considering 
reactive power optimisation. In [14], a chaotic bat 
algorithm (CBA) is applied for optimal reactive 
power dispatch. In [15], the economic, environmental, 
and technical operation of power networks with high 
renewable penetration was investigated using a 
multi-objective coronavirus herd immunity algorithm 
(MOCHIA).  

At this point, it is essential to realise that active 
and reactive power optimisation via meta-heuristics 
is a continuous optimisation problem in electrical 
engineering. However, the modes of operation and 
control in power systems have changed dramatically 
owing to the integration of renewable energy (RE) 
sources. Although they are an alternative and 
potential solution for pollution reduction in the power 
sector, their intermittency has become a challenge for 
power system engineers. In this connection, the 
reformation of the OPF problem with RE sources and 
its solution leads to further complicated and nonlinear 
problems. Recently, some researchers have attempted 
OPF with RE using meta-heuristics. A modified Rao-
2 algorithm (MRao-2) [16], gorilla troops algorithm 
(GTA) [17], manta ray foraging optimisation 
(MRFO) [18], an adaptive differential evolutionary 
algorithm (ADEA) [19], slime mould algorithm 
(SMA) [20], mixed-integer nonlinear programming 
(MINLP) [21], an improved grey wolf algorithm [22], 
an adaptive grasshopper optimization algorithm 
(AGOA) [23] and modified  honey badger algorithm 
(MHBA) [24] are such recent works. However, 
according to the no-free-lunch (NFL) theorem [25], 
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most heuristic algorithms suffer from pre-
convergence problems owing to their poor 
exploration and/or exploitation characteristics. Thus, 
as seen in the above literature, many have proposed 
improvements and hybridisation to overcome the 
above-mentioned issues. Moreover, as per NLF, 
many researchers have been motivated to introduce 
new algorithms. The extended stochastic coati 
optimiser (ESCO) [26], swarm magnetic optimiser 
(SMO) [27], walk-spread algorithm (WSA) [28], four 
directed search algorithms (FDSA) [29], and 
migrating walrus algorithm (MWA) [30] are recent 
meta-heuristics for addressing various real-time 
optimisation problems. The Sparrow search 
algorithm (SSA) is a recent and efficient algorithm, 
but it suffers from slow convergence [31]. Since its 
introduction, SSA has attracted various real-time 
optimisation problems and has been subjected to 
improvements and advancements [32]. In this regard, 
this study has adapted two modifications to the basic 
SSA to overcome its weak global search capability. 
Elite reverse learning strategy for diversifying the 
population and mutation strategy of the firefly 
algorithm (FA) to achieve a fast convergence rate 
[33]. For the first time, SSA with these improvements 
(ESSA) was adapted to solve OPF problems with RE 
sources. Compared to the literature, the following are 
the major contributions of this study. 

 
• Formulation and solution of OPF incorporating 

important real-world factors. Advances in 
solving OPF with high renewable penetration. 

• Novel metaheuristics are proposed to overcome 
the limitations of the existing algorithms. 
Improvements to the sparse search algorithm to 
accelerate convergence for OPF.  

• Elite reverse learning and firefly mutation 
strategies were incorporated for the first time to 
enhance the global search ability. 

• Simulations were performed on standard IEEE 
14-bus, 30-bus, and a real-time 14-bus Andhra 
Pradesh power system with renewable sources. 

 
The remainder of the paper is structured as 

follows: the problem formulation is explained in 
section 2, the solution methodology is covered in 
section 3, the results of OPF without RE sources are 
explained in section 4, the results of OPF with RE 
sources are explained in section 5, and the important 
research findings are presented in section 6 in detail. 
 
 
 
 

2. Problem formulation 
The OPF is mainly non-convex and non-linear 

problem and that can be represented as minimization 
problem, mathematically, 

 
min𝐹𝐹 (𝑥𝑥,𝑢𝑢)     (1) 

 
Subjected to: 

 
𝑔𝑔(𝑥𝑥,𝑢𝑢) = 0,𝑝𝑝 = 1,2, … ,𝑚𝑚    (2)  

 
ℎ(𝑥𝑥,𝑢𝑢) ≤ 0,𝑝𝑝 = 1,2, … ,𝑛𝑛   (3) 

 
In the OPF problem, active and reactive power 

generations at slack buses, reactive power 
generations at generator buses, voltage magnitudes of 
load buses, and branch power flows are the state 
variables. On the other hand, real power generation 
and voltage magnitudes of generators, tap-changer 
controls, and shunt VAr controls are the major 
control or independent variables. 

 

𝑥𝑥 =

⎣
⎢
⎢
⎡
𝑃𝑃𝑔𝑔,1                            
𝑄𝑄𝑔𝑔,1,𝑄𝑄𝑔𝑔,2, … ,𝑄𝑄𝑔𝑔,𝑛𝑛𝑔𝑔
𝑉𝑉𝑙𝑙,1,𝑉𝑉𝑙𝑙,2, … ,𝑉𝑉𝑙𝑙,𝑛𝑛𝑙𝑙       
𝑆𝑆𝑙𝑙,1,𝑆𝑆𝑙𝑙,2, … , 𝑆𝑆𝑙𝑙,𝑛𝑛𝑛𝑛𝑛𝑛     ⎦

⎥
⎥
⎤
   (4) 

 

𝑢𝑢 =

⎣
⎢
⎢
⎡
𝑃𝑃𝑔𝑔,2,𝑃𝑃𝑔𝑔,3, … ,𝑄𝑄𝑔𝑔,𝑛𝑛𝑔𝑔          
𝑉𝑉𝑔𝑔,1,𝑉𝑉𝑔𝑔,2, … ,𝑉𝑉𝑔𝑔,𝑛𝑛𝑔𝑔         
𝑎𝑎𝑛𝑛,1,𝑎𝑎𝑛𝑛,2, … ,𝑎𝑎𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛      
𝑄𝑄𝑠𝑠ℎ,1,𝑄𝑄𝑠𝑠ℎ,2, … ,𝑄𝑄𝑠𝑠ℎ,𝑛𝑛𝑠𝑠ℎ⎦

⎥
⎥
⎤
    (5) 

2.1 Objective functions 

Minimization of generation cost (𝑓𝑓1), loss (𝑓𝑓2), 
and voltage deviation (𝑓𝑓3) are considered in this paper 
to formulate multi-objective problem while solving 
OPF in conventional power systems consisting of 
only thermal power plants. On the other hand, 
reduction of emission (𝑓𝑓4) is also considered while 
solving OPF in modern power systems consisting of 
both thermal and RE power plants.  

 
𝑓𝑓1 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑠𝑠𝑛𝑛 = ∑ �𝑎𝑎𝑘𝑘𝑃𝑃𝑔𝑔,𝑘𝑘

2 + 𝑏𝑏𝑘𝑘𝑃𝑃𝑔𝑔,𝑘𝑘 + 𝑐𝑐𝑘𝑘�
𝑛𝑛𝑔𝑔
𝑘𝑘=1       (6) 

 
𝑓𝑓2 = 𝑃𝑃𝑙𝑙𝑐𝑐𝑠𝑠𝑠𝑠 = ∑ �𝑃𝑃𝑘𝑘(𝑖𝑖,𝑗𝑗) + 𝑃𝑃𝑘𝑘(𝑗𝑗,𝑖𝑖)�𝑛𝑛𝑛𝑛𝑛𝑛

𝑘𝑘=1          (7) 
 

𝑓𝑓3 = 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 = ∑ �1− 𝑉𝑉𝑙𝑙,𝑘𝑘�𝑛𝑛𝑛𝑛
𝑘𝑘=1           (8) 

 
𝑓𝑓4 = 𝐺𝐺𝐺𝐺𝐺𝐺𝑑𝑑𝑒𝑒 = (𝐶𝐶𝐶𝐶2 + 𝑆𝑆𝐶𝐶2 +𝑁𝑁𝐶𝐶𝑥𝑥) × 𝑃𝑃𝑔𝑔,1   (9) 
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2.2 Equality constraints 

The real and reactive power balances are the 
major equality constraints in OPF problem. 

 
∑ 𝑃𝑃𝑔𝑔,𝑘𝑘
𝑛𝑛𝑔𝑔
𝑘𝑘=1 + ∑ 𝑃𝑃𝑛𝑛𝑔𝑔,𝑘𝑘

𝑛𝑛𝑛𝑛𝑔𝑔
𝑘𝑘=1 = 𝑃𝑃𝑙𝑙𝑐𝑐𝑠𝑠𝑠𝑠 + ∑ 𝑃𝑃𝑙𝑙,𝑘𝑘𝑛𝑛𝑙𝑙

𝑘𝑘=1    (10) 
 
∑ 𝑄𝑄𝑔𝑔,𝑘𝑘
𝑛𝑛𝑔𝑔
𝑘𝑘=1 + +∑ 𝑄𝑄𝑛𝑛𝑔𝑔,𝑘𝑘

𝑛𝑛𝑛𝑛𝑔𝑔
𝑘𝑘=1 + ∑ 𝑄𝑄𝑠𝑠ℎ,𝑘𝑘

𝑛𝑛𝑠𝑠ℎ
𝑘𝑘=1   

= 𝑄𝑄𝑙𝑙𝑐𝑐𝑠𝑠𝑠𝑠 + ∑ 𝑄𝑄𝑙𝑙,𝑘𝑘𝑛𝑛𝑙𝑙
𝑘𝑘=1       (11) 

2.3 Inequality constraints 

The real power generation, reactive power 
generation and voltage magnitude limits at thermal 
power plants, tap-changer limits, shunt VAr limits, 
and line power flow limits are the major inequality 
constraints in OPF problem. 

 
𝑃𝑃𝑔𝑔,𝑘𝑘(𝑒𝑒𝑖𝑖𝑛𝑛) ≤ 𝑃𝑃𝑔𝑔,𝑘𝑘 ≤ 𝑃𝑃𝑔𝑔,𝑘𝑘(𝑒𝑒𝑛𝑛𝑥𝑥), 𝑘𝑘 = 1:𝑛𝑛𝑔𝑔      (12) 

 
𝑄𝑄𝑔𝑔,𝑘𝑘(𝑒𝑒𝑖𝑖𝑛𝑛) ≤ 𝑄𝑄𝑔𝑔,𝑘𝑘 ≤ 𝑄𝑄𝑔𝑔,𝑘𝑘(𝑒𝑒𝑛𝑛𝑥𝑥), 𝑘𝑘 = 1:𝑛𝑛𝑔𝑔      (13) 

 
𝑉𝑉𝑔𝑔,𝑘𝑘(𝑒𝑒𝑖𝑖𝑛𝑛) ≤ 𝑉𝑉𝑔𝑔,𝑘𝑘 ≤ 𝑉𝑉𝑔𝑔,𝑘𝑘(𝑒𝑒𝑛𝑛𝑥𝑥), 𝑘𝑘 = 1:𝑛𝑛𝑔𝑔        (14) 

 
𝑎𝑎𝑛𝑛,𝑘𝑘(𝑒𝑒𝑖𝑖𝑛𝑛) ≤ 𝑎𝑎𝑛𝑛,𝑘𝑘 ≤ 𝑎𝑎𝑛𝑛,𝑘𝑘(𝑒𝑒𝑛𝑛𝑥𝑥), 𝑘𝑘 = 1:𝑛𝑛𝑛𝑛𝑎𝑎𝑝𝑝      (15) 

 
𝑄𝑄𝑠𝑠ℎ,𝑘𝑘(𝑒𝑒𝑖𝑖𝑛𝑛) ≤ 𝑄𝑄𝑠𝑠ℎ,𝑘𝑘 ≤ 𝑄𝑄𝑠𝑠ℎ,𝑘𝑘(𝑒𝑒𝑛𝑛𝑥𝑥), 𝑘𝑘 = 1:𝑛𝑛𝑛𝑛ℎ (16) 

 
𝑆𝑆𝑙𝑙,𝑘𝑘 ≤ 𝑆𝑆𝑙𝑙,𝑘𝑘(𝑒𝑒𝑛𝑛𝑥𝑥),   𝑘𝑘 = 1:𝑛𝑛𝑛𝑛𝑛𝑛                       (17) 

  
For satisfying each constraint, a penalty function 

is introduced to the multi-objective function. 
 
𝐹𝐹 = ∑ 𝑓𝑓𝑘𝑘

𝑛𝑛𝑛𝑛
𝑘𝑘=1 + ∑ 𝛾𝛾𝑘𝑘�𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘(𝑙𝑙𝑒𝑒)�

2𝑛𝑛𝑥𝑥
𝑘𝑘=1            (18) 

 
𝑥𝑥𝑘𝑘(𝑙𝑙𝑒𝑒) = 𝑥𝑥𝑘𝑘(𝑒𝑒𝑛𝑛𝑥𝑥) − 0.25�𝑥𝑥𝑘𝑘(𝑒𝑒𝑛𝑛𝑥𝑥) − 𝑥𝑥𝑘𝑘(𝑒𝑒𝑖𝑖𝑛𝑛)�𝑛𝑛𝑘𝑘  

(19) 

3. Solution methodology 
In this section, the proposed OPF is solved by 

adapting sparrow search algorithm (SSA) with elite 
reverse learning strategy and mutation strategy of 
firefly algorithm (FA).  

3.1 Basic sparrow search algorithm 

The sparrow search algorithm (SSA) optimises 
swarm intelligence based on sparrow eating and 
predator avoidance. The sparrows who discover 
better food behave as finders, and the others follow. 
The initial position of sparrows and their respective 
fitness functions are given in Eq. (20) and (21), 
respectively. 

𝑆𝑆 = �

𝑛𝑛1,1
𝑛𝑛2,1
⋮
𝑛𝑛𝑛𝑛,1

𝑛𝑛1,2
𝑛𝑛2,2
⋮
𝑛𝑛𝑛𝑛,2

…
…
⋱
…

𝑛𝑛1,𝑑𝑑
𝑛𝑛2,𝑑𝑑
⋮

𝑛𝑛𝑛𝑛,𝑑𝑑

�              (20) 

 

𝐹𝐹(𝑆𝑆) = �

𝐹𝐹[𝑛𝑛1,1 𝑛𝑛1,2 … 𝑛𝑛1,𝑑𝑑]
𝐹𝐹[𝑛𝑛2,1 𝑛𝑛2,2 … 𝑛𝑛2,𝑑𝑑]

⋮
𝐹𝐹[𝑛𝑛𝑛𝑛,1 𝑛𝑛𝑛𝑛,2 … 𝑛𝑛𝑛𝑛,𝑑𝑑]

�             (21) 

 
where n and d represent the number of sparrows and 
dimension of search variables in the problem, 
respectively, 𝑛𝑛𝑖𝑖,𝑗𝑗  represents the ith sparrow position 
in jth dimension, 𝐹𝐹(𝑆𝑆) is the fitness of each sparrow, 
At the stage, the minimum fitness function and 
corresponding sparrow population will be treated as 
pre-iterative best fitness and solution variables, 
respectively.  

The finders guide the populace with greater fitness 
levels and prioritise food during the search. Thus, the 
discoverers can search a larger region for food than 
the participants. The sparrow sings to alert predators. 
The finder will take players to safer foraging sites if 
the alarm value exceeds the safety value. Each 
iteration updates the sparrow finder location: 

 

𝑛𝑛𝑖𝑖,𝑗𝑗𝑘𝑘+1 = �
𝑛𝑛𝑖𝑖,𝑗𝑗𝑘𝑘 × 𝑒𝑒𝑥𝑥𝑝𝑝(−𝑖𝑖 𝑛𝑛1𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚⁄ ) 𝑖𝑖𝑓𝑓 𝑛𝑛3 < 𝛿𝛿

𝑛𝑛𝑖𝑖,𝑗𝑗𝑘𝑘 + 𝑛𝑛2 ∝ 𝑖𝑖𝑓𝑓 𝑛𝑛3 ≥ 𝛿𝛿
     (22) 

 
where  𝑛𝑛1 ∈ (0, 1] ,  𝑛𝑛1 ∈ [0, 1] ,  𝑛𝑛3(∈ [0, 1])  and 𝛿𝛿(∈
[0.5, 1]) are the random numbers, respectively; k and 
𝑘𝑘𝑒𝑒𝑛𝑛𝑥𝑥 represent the iteration number and maximum 
iterations, respectively; If every item in a 
dimensioned matrix is 1, then ∝ is set to 1.    

There are no predators if  𝑛𝑛3 < 𝛿𝛿, and the finder 
enters extensive search mode. All sparrows must 
depart for safety if  𝑛𝑛3 ≥ 𝛿𝛿  because some sparrows 
have come into contact with predators. 

Energy loss in an entry group leads to decreased 
foraging opportunities, potentially causing 
immigrants to flee. Sparrows can locate locators and 
forage near or collect food from them. Some observe 
finders to intensify predation and engage in 
competition, with winners receiving the finder's meal 
immediately. The formula for updating the enrolee 
position is: 
 

𝑛𝑛𝑖𝑖,𝑗𝑗𝑘𝑘+1 = �𝑛𝑛2 × 𝑒𝑒𝑥𝑥𝑝𝑝
�
𝑠𝑠𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤
𝑘𝑘 −𝑠𝑠𝑖𝑖,𝑗𝑗

𝑘𝑘

𝑘𝑘2 �
         𝑖𝑖𝑓𝑓  𝑖𝑖 < 𝑛𝑛

2
𝑛𝑛𝑖𝑖,𝑗𝑗𝑘𝑘+1 + �𝑛𝑛𝑃𝑃𝑘𝑘 − 𝑛𝑛𝑃𝑃𝑘𝑘+1�𝑛𝑛4+ ∝ 𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒        

  (23)  

  
where 𝑛𝑛𝑤𝑤𝑐𝑐𝑛𝑛𝑠𝑠𝑛𝑛𝑘𝑘  is the worst position in iteration k, 𝑛𝑛4+ is 
a d-dimensional random number between [1, -1]; 
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𝑛𝑛4+ = 𝑛𝑛4𝑇𝑇(𝑛𝑛4𝑛𝑛4𝑇𝑇)−1 . 𝑖𝑖𝑓𝑓  𝑖𝑖 < 𝑛𝑛
2

 , it implies that the ith 
competitor is unfit and is going to starve.  

Threat alertness affects 10%–20% of sparrows, 
which randomly determines where they land at the 
beginning. The sparrows in the midst of the group 
will wander around randomly to get close to other 
sparrows, while the sparrows on the edge of the group 
that are aware of danger will quickly fly to the safe 
region to better their position. The mathematical 
model of scout is:  

 

𝑛𝑛𝑖𝑖,𝑗𝑗𝑘𝑘+1 = �
𝑛𝑛𝑛𝑛𝑑𝑑𝑠𝑠𝑛𝑛𝑘𝑘 + 𝜏𝜏. �𝑛𝑛𝑃𝑃𝑘𝑘 − 𝑛𝑛𝑛𝑛𝑑𝑑𝑠𝑠𝑛𝑛𝑘𝑘 �  𝑖𝑖𝑓𝑓 𝐹𝐹𝑖𝑖 > 𝐹𝐹𝑔𝑔

𝑛𝑛𝑖𝑖,𝑗𝑗𝑘𝑘 + 𝑛𝑛5 �
𝑠𝑠𝑖𝑖,𝑗𝑗
𝑘𝑘 −𝑠𝑠𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤

𝑘𝑘

(𝐹𝐹𝑖𝑖−𝐹𝐹𝑤𝑤)+𝜀𝜀
�      𝑖𝑖𝑓𝑓𝐹𝐹𝑖𝑖 = 𝐹𝐹𝑔𝑔

  (23)  

 
where 𝑛𝑛5  is the sparrow movement direction as a 
random number [1, 1], 𝑛𝑛𝑛𝑛𝑑𝑑𝑠𝑠𝑛𝑛𝑘𝑘  is the current global 
ideal position, and 𝜏𝜏 is a step size control parameter 
represented by a normal distribution of random 
numbers with a mean of 0 and a variance of 1. The 
global, worst and current fitness values for the 
optimisation problem are represented by 𝐹𝐹𝑔𝑔, 𝐹𝐹𝑤𝑤  and 
𝐹𝐹𝑖𝑖. Here 𝜀𝜀 is used as the smallest constant to prevent 
zero division error. For ease of understanding, when 
it is safe, 𝑛𝑛𝑛𝑛𝑑𝑑𝑠𝑠𝑛𝑛𝑘𝑘 , around the middle, 𝐹𝐹𝑖𝑖 > 𝐹𝐹𝑔𝑔 indicates 
that sparrows are towards the edge of the group; 
otherwise, 𝐹𝐹𝑖𝑖 = 𝐹𝐹𝑔𝑔  shows that sparrows in the 
population are aware of the danger sparrow. 

3.2. Enhanced sparrow search algorithm 

According to elite learning strategy, the opposite 
sparrows of a vector 𝑆𝑆𝑖𝑖 in d-dimensional space may 
be stated as follows if it is in the range [𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖]. The 
original forward solution set and the reverse solution 
set are regarded as fitness values according to the 
forward sparrow and reverse sparrow taken together, 
and the inverse vectors of all solutions in the 
optimisation space are calculated. By using direct 
screening or other optimisation techniques, it is 
possible to quickly converge to the optimal solution 
by selecting the sparrows in the d-dimensional 
solution space with the highest fitness value as a new 
optimisation group.  

3.2.1. Elite reverse learning strategy 

The new optimisation group is created by the elite 
strategy, which gathers the original and inverse 
solution vectors and produces new solutions at a 
specific rate to join the original and inverse solution 
set. The mathematical form that was optimised 
produces 𝑆𝑆𝑖𝑖,𝑛𝑛𝑑𝑑𝑤𝑤: 

𝑆𝑆𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 − 𝑆𝑆𝑖𝑖               (24) 
 

𝑆𝑆𝑖𝑖,𝑛𝑛𝑑𝑑𝑤𝑤 = 𝑆𝑆𝑖𝑖 × 𝜑𝜑 × 𝑛𝑛𝑛𝑛𝑛𝑛𝑑𝑑(−0.5,   0.5)
𝑑𝑑

            (25) 
 
where 𝜑𝜑 is the Euclidean distance between the best 
answer and the next-closest solution is 𝑆𝑆𝑖𝑖. The 20% 
and d-dimension solutions 𝑛𝑛𝑖𝑖,𝑤𝑤𝑐𝑐𝑛𝑛𝑠𝑠𝑛𝑛𝑘𝑘  with the worst 
fitness values are deleted to create a new optimisation 
group after sorting the fitness values of the solution 
vectors in the new set. 

3.2.2 Mutation strategy of firefly algorithm 

The firefly algorithm (FA) [34] draws in 
additional fireflies by using light. The FA 
demonstrates how SSA's performance can be 
enhanced by optimisation processing's mutations, 
quick convergence, and few parameters. To create 
new solutions, the SSA’s update formula in Eq. (26) 
is hybridised with the FA’s mutation strategy 
equation. 

 
𝑛𝑛𝑖𝑖,𝑗𝑗𝑘𝑘+1 =

�
𝑛𝑛𝑛𝑛𝑑𝑑𝑠𝑠𝑛𝑛𝑘𝑘 + 𝜏𝜏1. �𝑛𝑛𝑖𝑖,𝑗𝑗𝑘𝑘 − 𝑛𝑛𝑛𝑛𝑑𝑑𝑠𝑠𝑛𝑛𝑘𝑘 �+ 𝜌𝜌(𝑛𝑛6 − 0.5)  𝑖𝑖𝑓𝑓 𝐹𝐹𝑖𝑖 > 𝐹𝐹𝑔𝑔

𝑛𝑛𝑖𝑖,𝑗𝑗𝑘𝑘 + 𝑛𝑛7 �
𝑠𝑠𝑖𝑖,𝑗𝑗
𝑘𝑘 −𝑠𝑠𝑤𝑤𝑤𝑤𝑤𝑤𝑠𝑠𝑤𝑤

𝑘𝑘

(𝐹𝐹𝑖𝑖−𝐹𝐹𝑤𝑤)+𝜀𝜀
�                                    𝑖𝑖𝑓𝑓𝐹𝐹𝑖𝑖 = 𝐹𝐹𝑔𝑔

     

(23) 
 
where 𝜏𝜏1 and 𝜌𝜌 are the step-size control parameters, 
𝑛𝑛6  and 𝑛𝑛7 are random numbers. By increasing search 
accuracy and convergence speed, these two changes 
considerably improve the performance of basic SSA 
[31]. 

4. Results on standard IEEE test systems 
and comparison study 
In order to validate the effectiveness of proposed 

ESSA, the simulation results are performed on IEEE 
14-bus and IEEE 30-bus test systems. The data of the 
test systems are taken from MATPOWER [35].  

4.1 IEEE 14-bus system 

In basic 14-bus system, there are two thermal 
power plants at buses 1 and 2 are scheduled for 
supplying total active and reactive power loads of 259 
MW and 73.5 MVAr, respectively. The total 
transmission losses are 13.393 MW and 54.54 MVAr, 
respectively.  

By implementing OPF with ESSA, the network 
performance is changed as follows: the total 
transmission losses are reduced to 9.287 MW and 
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Table 1. Generation schedule in IEEE 14-bus 

Gen # 
Schedule (MW + j MVAr) 
Base case OPF 

1 232.39 – j 16.55 194.33 + j 0.00 
2 40.00 + j 43.56 36.72 + j 23.69 
3 0.00 + j 25.08 28.74 + j 24.13 
6 0.00 + j 12.73 0.00 + j 11.55 
8 0.00 + j 17.62 8.50 + j 8.27 
𝑓𝑓1 8171.6  8081.64 
𝑓𝑓2 13.393 + j 54.54 9.287 + j 39.16 
𝑓𝑓3 0.6786 0.5511 
𝑓𝑓4  557779.15 549371.29 

 
Table 2. Comparison of ESSA with literature for 

IEEE 14-bus system 
Method  𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒇𝒇𝟑𝟑 𝒇𝒇𝟒𝟒  
WMFO [6] 8082.128 9.379 0.621 – 
GOA 8082.24 9.299 0.001 549395.9 
WOA 8083.66 9.324 0.553 549447.1 
MFO 8084.38 9.336 0.553 549471.6 
SSA 8085.10 9.348 0.554 549496.2 
ESSA 8081.637 9.287 0.551 549371.3 

 
 
39.16 MVAr, respectively. The generation schedule 
before and after OPF are given in Table 1. In base 
case schedule, generators at buses 3, 6 and 8 are 
scheduled for only reactive power to maintain 
specified voltage magnitudes. On the other hand, 
OPF has resulted for schedule at all generators except 
at bus-6. The operating cost (𝑓𝑓1) in $/h, loss (𝑓𝑓2) in 
(MW + j MVAr), and voltage deviation (𝑓𝑓3) in p.u 
and emission (𝑓𝑓4) in lb/MWh for both the cases are 
given in the same table. The cost is reduced by 89.97 
$/h, the losses are reduced by 4.106 MW, the voltage 
deviation reduced by 0.1276 p.u and GHG emissions 
are reduced by 8407.86 lb/MWh.    

The simulation results obtained by ESSA are 
compared with literature in Table 2. The 
effectiveness of ESSA is compared with GOA, WOA, 
MFO, SSA and WMFO [6]. The results of ESSA are 
very competitive to WMFO [6] and GOA, where as 
they are very superior to WOA, MFO and SSA with 
low objective functions.   

4.2 IEEE 30-bus system 

In basic 30-bus system, there are two thermal 
power plants at buses 1 and 2 are scheduled for 
supplying total active and reactive power loads of 
283.4 MW and 126.2 MVAr, respectively. The total 
transmission losses are 17.557 MW and 54.54 MVAr, 
respectively. 
 
 

Table 3. Generation schedule in IEEE 30-bus 

Gen # 
Schedule (MW + j MVAr) 
Base case OPF 

1 260.96 – j 20.42 176.29 + j 0.20 
2 40.00 + j 56.07    48.79 + j 19.02 
5 0.00 + j 35.66 21.50 + j 29.30 
8 0.00 + j 36.11 22.04 + j 44.63   
11 0.00 + j 16.06 12.20 + j 6.72 
13 0.00 + j 10.45 12.01 + j 4.22 
𝑓𝑓1 875.3 802.2 
𝑓𝑓2 13.393 + j 54.54 9.431 + j 37.67 
𝑓𝑓3 0.9082 0.9036 
𝑓𝑓4  607743.03 599630.04 

 
Table 4. Comparison of ESSA with literature for 

IEEE 30-bus system 
Method  𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒇𝒇𝟑𝟑 𝒇𝒇𝟒𝟒  
WMFO [6] 804.209 9.956 0.099 – 
MHFPA [11] 867.8159 5.6303 – – 
ESSA 802.20 9.431 0.551  

 
 

By implementing OPF with ESSA, the network 
performance is changed as follows: the total 
transmission losses are reduced to 9.431 MW and     
37.67 MVAr, respectively. The generation schedule 
before and after OPF are given in Table 3. In base 
case schedule, generators at buses 3, 6 and 8 are 
scheduled for only reactive power to maintain 
specified voltage magnitudes. On the other hand, 
OPF has resulted for schedule at all generators except 
at bus-6. The cost is reduced by 73.1 $/h, the losses 
are reduced by 3.962 MW, the voltage deviation 
reduced by 0.00459 p.u and GHG emissions are 
reduced by 8113 lb/MWh. 

The simulation results obtained by ESSA are 
compared with literature in Table 4. The 
effectiveness of ESSA is compared with GOA, WOA, 
MFO, SSA and WMFO [6], and MHFPA [11]. The 
results of ESSA are very competitive to WMFO [6], 
where as they are very superior to MHFPA [11] with 
low objective functions.  

5. Results on modified IEEE test systems 
with renewable energy systems 
In this scenario, some of the generator locations 

are treated as PV and WT systems and 
correspondingly, OPF is solved in real-time Andhra 
Pradesh, Indian power system. The data of Andhra 
Pradesh 14-bus system is taken from [36].  
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Table 5. Generation schedule in IEEE 14-bus 
Gen # 
(Type) 

Schedule (MW + j MVAr) 
Without RES With RES 

1 (T) 158.45 + j 10.00 145.92 + j 10.01 
2 (T) 44.45 + j 10.45 41.77 + j 16.76 
3 (T) 20.02 + j 23.4 19.47 + j 20.66 
6 (T) 33.63 + j 2.09 5.00 – j 6.00 
8 (T) 9.99 + j 11.48 17.56  + j 11.72 
𝑓𝑓1 711.19 596.78 
𝑓𝑓2 7.541 + j 28.73 6.364 + j 24.02 
𝑓𝑓3 0.5245 0.412943399 
𝑓𝑓4  545793.96 470233.83 

5.1 OPF without RES systems  

In this case, the ESSA OPF is performed without 
considering any RES systems and the results are 
given in Table 5.   

5.2. OPF with RES systems  

In this case, a 10 MW photovoltaic system at 
Karnool (bus-11) and a 30 MW onshore Wind Power 
Plant at Anantapur (bus-13) are considered. 
Excluding peak generations of (7.87 + j 5.1) MVA at 
bus-11 and (27.85 – j 4.96) at bus-13 due to PV and 
WT, respectively, the OPF is performed. The 
simulation results of ESSA are given in Table 5. 

The cost is reduced by 114.41 $/h, the losses are 
reduced by 1.177 MW, the voltage deviation reduced 
by 0.1116 p.u and GHG emissions are reduced by 
75560.13 lb/MWh.    

6. Conclusions 
This paper proposes an extended sparrow search 

algorithm (ESSA) for power system optimal power 
flow (OPF), including renewable energy systems. A 
multi-objective optimisation problem with numerous 
power system variables and equal and unequal 
operational constraints considers power plant 
operating costs and GHG emissions. The 
effectiveness ESSA is verified on standard IEEE 14-
bus and IEEE 30-bus test systems without RE plants 
and compared with literature. Also, a re-time Andhra 
Pradesh, Indian power system with 14-bus is 
simulated with RE systems. The results show that the 
proposed ESSA outperforms the standard SSA, GOA, 
WOA, and MFO for addressing the OPF problem. 
However, incorporating RE plants into OPF 
problems has reduced operating costs and GHG 
emissions, which are needed in a world with rising 
fossil fuel prices and global warming. 

Notations 
𝑢𝑢 Independent (control) variable vector 
𝑥𝑥 Dependent (state) variable vector 
𝑔𝑔 Equality constraints 
ℎ Inequality constraints 
𝑚𝑚 Number of equality constraints 
𝑛𝑛 Number of inequality constraints 
𝑃𝑃𝑔𝑔,1 Real power generation by slack bus 
𝑄𝑄𝑔𝑔,1 Reactive power generation by slack bus 
𝑃𝑃𝑔𝑔,𝑛𝑛𝑔𝑔 Real power generation by other 

generator buses 
𝑄𝑄𝑔𝑔,𝑛𝑛𝑔𝑔 Reactive power generation by other 

generator buses 
𝑉𝑉𝑙𝑙,𝑛𝑛𝑙𝑙 Load bus voltage magnitudes 
𝑆𝑆𝑙𝑙,𝑛𝑛𝑛𝑛𝑛𝑛 Apparent power flows of transmission 

lines 
𝑎𝑎𝑛𝑛,𝑛𝑛𝑛𝑛 Tap-settings of transformers 
𝑉𝑉𝑔𝑔,𝑛𝑛𝑔𝑔 Generator bus voltage magnitudes, 
𝑄𝑄𝑠𝑠ℎ,𝑛𝑛𝑠𝑠ℎ Shunt VAr controls 
𝑛𝑛𝑔𝑔 Number of generator buses 
𝑛𝑛𝑒𝑒 Number of load buses,  
𝑛𝑛𝑛𝑛𝑛𝑛 Number of transmission lines 
𝑛𝑛𝑛𝑛𝑎𝑎𝑝𝑝 Number of tap-changers 
𝑛𝑛𝑛𝑛ℎ Number shunt var control buses 
𝑛𝑛𝑛𝑛𝑔𝑔 Number of RE power plants 
𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘, 𝑐𝑐𝑘𝑘  Cost curve coefficients of kth thermal 

power plant 
𝑃𝑃𝑘𝑘(𝑖𝑖,𝑗𝑗) Real power flows in kth transmission 

line from bus-i to bus-j 
𝑃𝑃𝑘𝑘(𝑗𝑗,𝑖𝑖) Real power flows in kth transmission 

line from bus-j to bus-i 
𝑃𝑃𝑛𝑛𝑔𝑔,𝑘𝑘  Real power generations by RE power 

plant at bus-k 
𝑄𝑄𝑛𝑛𝑔𝑔,𝑘𝑘  Reactive power generations by RE 

power plant at bus-k 
𝑃𝑃𝑙𝑙,𝑘𝑘  Real power loads of bus-k 
𝑄𝑄𝑙𝑙,𝑘𝑘  Reactive power loads of bus-k 
𝑃𝑃𝑙𝑙𝑐𝑐𝑠𝑠𝑠𝑠  Real power loss 
𝑄𝑄𝑙𝑙𝑐𝑐𝑠𝑠𝑠𝑠  Reactive power loss 
𝑚𝑚𝑖𝑖𝑛𝑛 Minimum limit of control variable 
𝑚𝑚𝑎𝑎𝑥𝑥 Maximum limit of control variable 
𝛾𝛾𝑘𝑘 Penalty factors 
𝑛𝑛𝑘𝑘  Random number between 0 and 1 
𝑛𝑛𝑓𝑓 Number of objective functions 
𝑥𝑥𝑘𝑘  Limit violated control variable 
𝑛𝑛𝑥𝑥 Number of limit violated control 

variables 
𝑥𝑥𝑘𝑘(𝑒𝑒𝑖𝑖𝑛𝑛) Minimum limits of control variables 
𝑥𝑥𝑘𝑘(𝑒𝑒𝑛𝑛𝑥𝑥) Maximum limits of control variables 
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