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Abstract: In recent years, radio frequency interference (RFI) has emerged as a significant challenge in weather radar 

systems due to the escalating demand on the RF spectrum. This interference results in distortions in radar imagery, 

diminishing the accuracy of weather forecasts. While current mitigation methods rely on threshold algorithms and 

linear detection, there's been a notable enhancement with the incorporation of deep learning techniques, especially 

through convolutional neural networks (CNNs). In this context, we introduce the R2U-Net3+ architecture, a fusion of 

U-Net3+ and recurrent residual convolutional neural networks (RRCNN). Focusing on detecting RFI-affected areas in 

radar images, this architecture has exhibited commendable results in tests. Based on evaluation metrics, R2U-Net3+ 

achieved a dice coefficient of 94.980% with a single recurrence iteration and improved to 95.352% with two iterations. 

For the IoU, R2U-Net3+ scored 90.745% with one iteration and 91.409% with two iterations. These results affirm that 

R2U-Net3+ offers a significant improvement in detecting RFI, positioning it as a leading solution to challenges faced 

by weather radar systems. 
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1. Introduction 

Weather radar systems are fundamental in 

today’s meteorology, offering crucial data for real-

time weather monitoring and forecasting [1]. 

However, these systems often face radio frequency 

interference (RFI), leading to distortions and 

inaccuracies in radar imagery, which affects the 

reliability of the resulting weather forecasts [2].  

Currently, the increasing demand for bandwidth 

in the radio frequency (RF) spectrum has led to 

shared use, raising significant concerns about the 

potential impact of unwanted RF signals on weather 

radars [3]. A key example of this is the allocation of 

the 5470–5720 MHz band to mobile services, 

including radio local area networks (RLANs), 

approved by the world radio-communication 

conference in 2003 [4]. Although weather radars have 

a dedicated bandwidth in the 5600-5650 MHz (C-

Band) frequency range, there is a partial overlap with 

bands used by existing C-band radars, creating 

potential RFI issues [5]. 

This overlapping, especially with C-Band WIFI 

networks, causes recurrent RFI in weather radar data, 

showing as dots, spokes, or stripes in radar images [6]. 

Therefore, it is essential to develop methods to 

effectively identify and mitigate RFI to preserve the 

quality of radar data. 

Previous research in this domain primarily 

centered on the use of U-Net architectures integrated 

with convolutional neural networks (CNN) for 

image-based segmentation to address RFI challenges 

[7–9]. While these preliminary investigations have 

provided insights into potential mitigation techniques 

and methodologies, there remains significant scope 

for refinement and optimization in model 

performance. Acknowledging the prevalent use of the 

base U-Net architecture in previous research and 

addressing the identified gaps, this study embarks on 

a significant advancement by introducing the R2U-

Net3+ architecture. This innovative model is a 

carefully crafted combination of U-Net3+ [10] and 

recurrent residual convolutional networks (RRCNN) 

[11]. U-Net3+ an evolution of the widely used U-Net 

[12] and its enhanced version, U-Net++ [13] has a 
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proven track record in segmentation tasks. The 

integration of RRCNN, inspired by other U-Net 

variants like R2U-net [14] and R2U++ [15], brings a 

dynamic advantage to RFI identification in weather 

radar images through the R2U-Net3+ architecture. 

By leveraging full-scale skip connections for 

enriched feature representation, R2U-Net3+ sets the 

stage for improved performance with less parameter 

complexity than its predecessors. The goal of this 

research is to broaden the scope of RFI identification. 

This research endeavor aims to address the 

persistent challenges of RFI in weather radar images 

with a robust and innovative approach. Our project 

not only introduces a solution to these challenges but 

also encourages advancements in interconnected 

fields, particularly in the domain of image 

segmentation. Key contributions include: (a) Precise 

localization and segmentation of RFI areas in weather 

radar images, offering a more nuanced grasp of RFI's 

implications. (b) The introduction of the pioneering 

R2U-Net3+ architecture, tailored for adeptly 

segmenting RFI areas. (c) A proven superior 

performance of the R2U-Net3+ architecture 

compared to its contemporaries, as evidenced by 

benchmarks like the dice coefficient, IoU score, and 

pixel-level accuracy. 

The paper is organized as follows: after the 

introduction, section 2 presents a literature review, 

section 3 outlines the methodology, section 4 

describes the experimental setup and results, and 

section 5 concludes the study.  

2. Related work 

Methods for detecting radio frequency 

interference (RFI) are essential in various fields, 

including radio communications, weather radar 

systems, and satellite technologies. Historically, RFI 

detection has mainly used threshold algorithms 

focusing on the physical characteristics of RFI in the 

time-frequency domain, with linear detection being 

commonly used [16-18].  

However, this approach revealed certain 

limitations. While effective to some extent, the 

SumThreshold mask exhibited inaccuracies, 

including erroneously masked pixels and undetected 

RFI pixels. These limitations underscored the 

challenges in setting parameters for mask dilation and 

smoothing, as the characteristics of RFI vary 

significantly during different times, making it 

challenging to identify a singular parameter set that 

effectively addresses all scenarios. This underscores 

the complexity of accurately mitigating RFI 

contamination in observational data, especially in 

scenarios with varying RFI characteristics over time 

[7].  

Semantic segmentation technologies have 

advanced significantly in recent years, becoming 

vital in applications such as medical image analysis, 

robotic perception, and satellite image segmentation 

[19-21]. The evolution of convolutional neural 

networks (CNN) introduced groundbreaking 

architectures like fully convolutional networks 

(FCNs) [22], U-Net [12], PSPNet [23], and various 

versions of DeepLab [24-26], boosting the 

capabilities of semantic segmentation technologies. 

Expanding on this groundwork, researchers 

achieved notable milestones in the realm of RFI 

detection using CNN technology, particularly in 

image segmentation. A significant advancement was 

made [7], employed a vanilla U-Net architecture for 

RFI mitigation, setting a new standard in RFI area 

identification in 2D data, surpassing traditional RFI 

marking algorithms such as SEEK’s SumThreshold 

in receiver operating characteristic (ROC) and 

precision-recall assessments. This innovation 

inspired further developments, with Yang et al. [8] 

enhancing the vanilla U-Net to develop the RFI-Net, 

showing promising results in RFI detection. 

Additionally, studies by Lepetit et al. [9] explored 

using the same segmentation frameworks for 

different applications, expanding the field’s 

possibilities. 

However, the U-Net architectures used in earlier 

research are foundational and have seen substantial 

enhancements, one of which is U-Net3+. This 

enhanced U-Net variant has proven to be particularly 

effective in segmentation tasks, delivering superior 

results. This version improves the traditional U-Net 

by introducing full-scale skip connections, enabling 

the architecture to capture details at various semantic 

levels and achieving this with fewer parameters and 

improved performance. This innovation allows the 

architecture to understand details of different sizes 

from the feature maps created by each convolutional 

block. Notably, U-Net3+ does this with fewer 

parameters than its predecessors while enhancing 

performance, offering a well-balanced compromise 

between complexity and capability.  

The advancements in U-Net architectures do not 

stop at skip connections; the backbone of the U-Net 

has also seen significant improvements. A key 

development has been the introduction of recurrent 

convolutional layers (RCL) [11], allowing the 

network to utilize sequential information in the data. 

This led to the creation of frameworks like R2U-Net 

(Fig. 1a) and R2U++ (Fig. 1b) infusing them with 

enhanced performance. Integrating RCL into U-Net 

architecture represents a shift towards efficiency and 

deeper analysis [14, 15].  
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(a)                                                                                        (b) 

 
(c) 

Figure. 1 Integration of the RRCNN with different U-Net architectures: (a) R2U-Net, (b) R2U++, and (c) proposed 

method: R2U-Net3+ 
 

 
Figure. 2 Proposed process 

 

 

The use of RCL enables a deeper understanding 

of patterns in RFI-affected zones while maintaining a 

streamlined parameter count due to weight sharing. 

This balance between depth and efficiency in the 

framework opens up possibilities for architectures 

with unprecedented accuracy in semantic 

segmentation tasks while optimizing computational 

resource utilization. In this context, the role of RCL 

in enhancing the network layers without increasing 

parameter count is highlighted, emphasizing its  
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                                                 (a)                                                                                  (b)  

Figure. 3 Visualization reflectivity in: (a) Plan position indicator (PPI) and (b) Cartesian plot 
 

contribution to improving semantic segmentation 

tasks [11]. This reflects a commitment to innovation 

and resource efficiency, paving the way for growth 

and continuous improvement in the sector.  

In pursuit of advancing previous research in RFI 

detection through image segmentation models based 

on the U-Net architecture, we propose a novel 

architecture. Illustrated in Fig. 1c, our innovation 

combines RRCNN with U-Net3+, resulting in our 

newly proposed model, R2U-Net3+. This design 

aims to harness the strengths of U-Net3+ while 

integrating the advantages of recurrent convolutional 

layers for superior performance. With R2U-Net3+, 

we seek to push the boundaries of RFI detection 

capabilities, leveraging the latest advancements to 

provide even more accurate and efficient solutions in 

the field of semantic segmentation.  

3. Research method  

Our research method begins with extracting 

weather data, which forms the base for the 

subsequent steps. Next, we carefully assemble our 

dataset to ensure it is relevant and sturdy for the 

upcoming tasks. During the pre-processing phase, we 

apply three crucial steps: augmentation to diversify 

the data; enhancement to boost image quality using 

methods like pseudo-coloring; and patching to 

maintain image proportions for efficient data 

management. Once the data is pre-processed, we 

implement the proposed advanced R2U-Net3+ model, 

aiming to maximize the dataset's potential. The 

model is thoroughly trained to align with the data's 

intricacies. After training, we test the model to assess 

its effectiveness in real-world situations. Fig. 2 

provides a clear overview of this research process. 

3.1 Weather radar data 

In this study, the data used is collected from a 

Gematronik radar system. This system saves raw data 

in .vol format or volumetrically, which we then 

convert into JSON format with the help of wradlib 

[27]. This conversion enables the extraction of both 

the data and its associated metadata. The reflectivity 

(dBZ) data is organized as a matrix, with columns 

representing all possible measurable angles, and rows 

representing the range bins.  

We will represent this dBZ data as pixels to serve 

as model input. During a full cycle, the data 

undergoes 445 sweeps, resulting in an angular 

resolution that can be calculated as: 

 

𝑎 =
360°

𝑠𝑤𝑒𝑒𝑝𝑠
=

360°

445
≈  0.8°              (1) 

 

In this case, the number of sweeps is 445, and 

each sweep contains 480 data points, covering 

distances up to 240 km. The radial resolution, or 

distance resolution, can be calculated with the 

following formula: 

 

δr =
max distance 

n of data points 
=  

240 km

480
= 0.5 km     (2) 

 

To provide a more in-depth understanding, the 

data is represented in two formats: polar (Fig. 3a) and 

Cartesian (Fig. 3b). While the polar format provides 

immediate geospatial insights, we find the Cartesian 

format to be more advantageous, particularly for 

input model semantic segmentation. This means that 

each data point covers a half-kilometer distance. This 

data comes from the first layer, where radio 

frequency interference (RFI) is commonly observed 

[28].  

3.2 Build dataset 

Upon preparing the images in Cartesian format, 

they are imported into Label Studio, an open-source 

platform specializing in data annotation [29]. In this 

stage, our team, consisting of three experts in radar 
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imagery, identifies and marks the areas affected by 

radio frequency interference (RFI) by drawing 

bounding boxes around these areas. 

Following the annotation, we start the mask 

creation process. In this step, any pixel within the 

bounding boxes that is different from the background 

is assigned a value of 1. This method leverages the 

fact that RFI areas are predominantly isolated from 

the primary reflectivity. Consequently, every pixel 

inside the bounding box and different from the 

background value is designated a value of 1, 

representing the mask. This results in a clear visual 

representation of the regions affected by RFI, 

facilitating further data processing steps.  

3.3 Pre-processing  

The pre-processing stage is essential in refining 

the dataset for subsequent analyses and consists of 

three key steps: data augmentation, image 

enhancement, and patching. Each of these steps plays 

a critical role in ensuring the reliability and quality of 

the final output. 

3.3.1. Data augmentation 

To foster a more robust semantic segmentation 

model, we employ data augmentation to generate 

synthetic radar visuals. This technique involves 

utilizing two primary types of data: "RFI-Clean Data" 

visuals, which are devoid of radio frequency 

interference (RFI), and "RFI-Affected Data," which 

feature real-world interference patterns. 

From the RFI-affected visuals, we derive an "RFI 

Blueprint" that captures the essence of interference 

elements. This blueprint is subsequently 

superimposed onto the clean data, resulting in a 

synthesized set of radar visuals that balance the 

interference-free backdrop with controlled RFI 

elements. This method enables the exploration of 

diverse interference scenarios using actual radar 

signatures. 

3.3.2. Image enhancement 

In this phase, we focus on enriching the visual 

quality of the images. The original images, with 

values ranging between 0 and 65, necessitate 

enhancement techniques to extract detailed insights. 

We employ a pseudo-coloring technique, a widely 

recognized method in image processing, to augment 

the contrast and details, thereby facilitating easier 

data interpretation and analysis[30–33].  

The applied colormap features a sequential 

spectrum of blue, green, yellow, and red, designed to 

distinctly differentiate between various intensity 

levels, thus offering a richer and clearer perspective.  

3.3.3. Patching 

During the development phase of the dataset, 

maintaining the images' realistic proportions was 

critical, while also ensuring that they could be 

processed efficiently. To achieve this, we 

implemented a patching strategy that was finely 

tuned for our dataset, which comprised images no 

larger than 512 x 512 pixels. This approach involved 

segmenting each image into four equal-sized patches, 

each one anchored at a different corner of the image: 

top-left, top-right, bottom-left, and bottom-right. 

Given an array of dimensions 𝑀 × 𝑁 , we divide it 

into four 𝛼 𝑥 𝛼  patches anchored at four corners, 

where 𝛼 =  256. Let's denote the patches as follows: 

 

𝑃𝑇𝐿 = 𝐼[0: α, 0: α] 
𝑃𝑇𝑅 = 𝐼[0: α, 𝑁 − α: 𝑁] 
𝑃𝐵𝐿 = 𝐼[𝑀 − α: 𝑀, 0: α] 
𝑃𝐵𝑅 = 𝐼[𝑀 − α: 𝑀, 𝑁 − α: 𝑁]         (3) 

 

Where:  

 

• 𝑃𝑇𝐿 denotes the top-left patch of the image, 

starting from the top-left corner and spanning 

𝛼 𝑥 𝛼 pixels.  

• 𝑃𝑇𝑅 is the top-right patch, starting  𝛼 𝑥 𝛼 pixels 

from the right boundary and extending leftwards 

for  𝛼 𝑥 𝛼 pixels.  

• 𝑃𝐵𝐿 represents the bottom-left patch, beginning 

𝛼 𝑥 𝛼  pixels above the bottom boundary and 

extending upwards.  

• 𝑃𝐵𝑅  captures the bottom-right section of the 

image, which is the 𝛼 𝑥 𝛼 square of pixels at the 

bottom-right corner. 

 

In the final evaluation phase, it was imperative to 

reintegrate these segmented patches to reconstruct 

the complete image. This reintegration is crucial for 

the holistic evaluation of the model's outcomes 

against the original data.  

3.4 Architecture R2U-Net3+ 

To overcome the limitations associated with U-

Net and its derivatives, we introduce a new model, 

termed R2U-Net3+. This model comprises two main 

elements: the skip pathways and the backbone, which 

are detailed below. 

3.4.1. Skip pathways 

Addressing the existing challenges, R2U-Net3+ 

draws its architectural inspiration from U-Net3  
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Figure. 4 Skip pathways of U-Net3+ 

 

adapting modifications suitable for our tasks. 

Traditional models like U-Net and U-Net++ have the 

ability to capture some information but often fail to 

gather details comprehensively from all scales. U-

Net3+ improves this by combining feature maps from 

different sizes in each decoder layer. This ensures 

that both small details and larger patterns are captured 

across all scales. 

Incorporating the full-scale skip connections 

from U-Net3+ (Fig. 4) optimizes the model in terms 

of reducing parameter quantity, thereby promising an 

improvement in computational efficiency while 

ensuring enhanced performance. The effectiveness of 

U-Net3+ in enhancing the accuracy of medical image 

segmentation and reducing computational resources 

has been well-documented [10]. Formally, the 

integration of skip connections in the architecture can 

be described as follows:  

The first step in this intricate process is the 

extraction of the feature map at the 𝑘𝑡ℎ  encoding 

block. The math underlying this is:  

 

𝑌𝐸𝑛
𝑘 =  [𝐶 (𝐷(𝑋𝐸𝑛

𝑘 ))]                    (4) 

 

Here, 𝐶 denotes the convolution operation, while 

𝐷  signifies the down sampling mechanism. This 

produced feature map, 𝑌𝐸𝑛
𝑘 , is instrumental in 

deriving the primary feature map in the subsequent 

encoding block.  

As we transition to the decoding side, the 

generation of the feature map at the 𝑘𝑡ℎ  decoding 

block is paramount. This is described by: 

 

𝑌𝐷𝑒
𝑘 =  [𝐶 (𝑈(𝑋𝐷𝑒

𝑘 ))]                       (5) 

 

Where 𝑈  embodies the up sampling operation. 

Finally, to synthesize the main feature map 𝑋𝐷𝑒
𝑖  in the  

 

 
Figure. 5 Illustration of the process employed to derive 

the feature map 𝑋𝐷𝑒
3  

 

decoding block, the aggregated features from both 

encoding and decoding phases are combined. This 

fusion is mathematically expressed as: 

 

𝑋𝐷𝑒
𝑖 = 𝐻 (𝑍 [[𝑌𝐸𝑛

𝑘 ]
𝑘=1

𝑖−1
, 𝐶(𝑋𝐸𝑛

𝑘 ), [𝑌𝐷𝑒
𝑘 ]

𝑘=𝑖+1

𝑁
])   (6) 

 

Here, 𝑍 represents concatenation. The function 𝐻 

encompasses a convolution operation, followed by 

batch normalization and a ReLU activation function. 

The index 𝑖 pinpoints a specific layer in the decoding 

process, while 𝑁  denotes the depth of the 

downsampling.  

Fig. 5 illustrates the process of building the 

feature map from the 𝑋𝐷𝑒
3  block. The encoder-layer 

feature map of the same scale (𝑋𝐸𝑛
3 ) directly feeds 

into the 𝑋𝐷𝑒
3  decoder. The skip connections between 

the encoder and decoder serve the purpose of 

transmitting low-level information from the smaller 

scale encoder layers (like 𝑋𝐸𝑛
1  and 𝑋𝐸𝑛

2 ) using non-

overlapping max pooling operations. Meanwhile, 

skip connections within the decoders transmit high-

level semantic information from larger scale decoder 

layers (like 𝑋𝐷𝑒
5  and 𝑋𝐷𝑒

4 ) using bilinear interpolation. 

To generate five feature maps of identical resolution 

in this architecture, channels are unified and 

redundant information is pruned. This process 

employs 32 filters of size 3 × 3. Additionally, to 

amalgamate shallower semantic information with 

deeper semantic cues, feature aggregation is 

performed on the merged feature maps, consisting of 

160 filters of size 3 × 3, batch normalization, and the 

ReLU activation function. 

3.4.2. Backbone 

Drawing from the inspiration of the R2U-Net and 

R2U++, we have incorporated recurrent residual 

convolution layers (RRCL) into the foundational unit 

convolutional layers of the U-Net3+ architecture.  
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Figure. 6 Convolutional unit showing a comparison 

between: (a) U-Net and (b) the proposed R2U-Net3+ 
 

This evolution sees the recurrent convolution layer 

(RCL) mature over discrete time steps, which we 

denote as 𝑡. These recurrent convolution operations 

find their mathematical basis in the enhancements 

seen in the RCNN discussed. The RCL's operations 

are executed in alignment with these discrete time 

steps, as articulated by the RCNN. In our proposed 

RRCNN architecture for backbone use, the output is 

defined using the equation: 

 

𝑂𝑘
𝑙 (𝑡) = 𝑤𝑘

𝑓
. 𝑥𝑙

𝑓(𝑡) + 𝑤𝑘
𝑟. 𝑥𝑙

𝑟(𝑡 − 1) + 𝑏𝑘    (7) 

 

where 𝑥𝑙
𝑓(𝑡) and 𝑥𝑙

𝑟(𝑡 − 1) represent the inputs 

to the standard convolution layers at 𝑙 
𝑡ℎ the recurrent 

convolutional layer (RCL). The terms 𝑤 
𝑓 and 𝑤 

𝑟are 

feed-forward weights and recurrent weights and 𝑏𝑘 

denotes the bias term. Following this, the output is 

processed using the Rectified Linear Unit (ReLU) 

activation function, formulated as: 

 

𝑓 (𝑂𝑘
𝑙 (𝑡)) = max (0, 𝑂𝑘

𝑙 (𝑡))               (8) 

 

Subsequently, the output from the RRCL block is 

computed by combining the original input with the 

processed input, if 𝐹(𝑥𝑙 , 𝑤𝑙) is the output from the 

RCL then the final output from RRCL, as represented 

by:  

 

𝑥𝑙+1 = 𝑥𝑙 + 𝐹(𝑥𝑙 , 𝑤𝑙)                      (9) 

 

In Fig. 6, the left side depicts the convolutional 

block unit standard to the U-Net, which consists of 

two feedforward convolutional ReLU layers. On the  
 

 
Figure. 7 Recurrent convolutional layer demonstrated 

across different timestamps (t) 
 

right (Fig. 6b), we see the block unit for the residual 

recurrent unit intended for use in the R2U-3Net+. 

Every recurrent residual block is composed of two 

unit recurrent convolutional blocks. The residual 

connection is then utilized to generate the final output 

by combining the original input with the output 

derived from the second recurrent unit.  

In Fig. 7, the recurrent convolutional layer (RCL) 

with a time step of t=2 is illustrated. The unfolding of 

the recurrent convolution block is depicted for the 

specific time step. When t=0, the output emerges 

exclusively from the convolution layer, devoid of any 

recurrent contributions. At t=1, the output from t=0 is 

combined with the original input at t=1 and is 

subsequently fed into the network. This methodology 

is echoed for t=2. The term "Conv" symbolizes the 

convolution process.  

4. Result and discussion  

The experimentation process comprises two 

primary steps: training and testing, as depicted in Fig. 

2. For training, pre-processed images are fed to R2U-

Net3+ to train the model using a random split method. 

Upon completion of the training process, unseen 

testing data is introduced to the trained model to 

generate predictions. 

4.1 Dataset 

The datasets under study comprise two distinct 

categories: data containing radio frequency 

interference (RFI) and data devoid of RFI. The 

former category contains a total of 368 data entries, 

each with a resolution of 445 x 480. This dataset 

primarily focuses on the first elevation scanning,  
 

(a) (b) 
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(a) 

 
(b) 

Figure. 8 Pseudo-coloring comparison: (a) Original 

grayscale dataset and (b) Data after pseudo-coloring 

 

where RFI occurrences are frequently observed. In 

contrast, the latter category comprises 219 data 

entries with the same resolution, sourced from the 

third layer. At this elevation, RFI instances are 

uncommon but not entirely absent. As a result, not all 

entries from this layer were classified as RFI-free.  

Before delving deeper into the dataset discussion, 

Fig. 8 illustrates the pseudo-coloring process. 

Although this technique is typically applied after the 

patching process, it is introduced at this stage to 

enhance clarity and facilitate a more straightforward 

understanding of the forthcoming dataset discussion. 

Fig. 8a displays the original data which, due to its 

limited grayscale range of 0-65, tends to blur the 

distinctions between different elements. This lack of 

contrast can make it challenging for models to learn 

effectively. However, by introducing pseudo-

coloring as shown in In Fig. 8b, we introduce a wider 

range of colors, emphasizing the minor variations in 

the data. This enhanced feature palette offers greater 

information, facilitating more effective and 

comprehensive learning during training. 

 

 
Figure. 9 Data augmentation process: (a) Data with 

inherent RFI, (b) Data free from interference, (c) Mask 

isolating RFI, and (d) Synthetic image 
 

 
(a) 

 
(b) 

Figure. 10 Patching process in image segmentation 

according to Eq. (3): (a) input image and (b) ground truth 

(a) (b) 

(c) (d)

d 
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Fig. 9 illustrate of the datasets utilized in our 

augmentation process. The objective behind this 

methodology is to enrich our data, enhancing the 

diversity and robustness required for advanced 

analytics and model training. Specifically: (a) 

showcases the original dataset, which contains radio 

frequency interference (RFI); (b) presents the clean 

RFI dataset, purified and devoid of RFI; (c) details 

the Mask specifically designed to isolate RFI; and (d) 

illustrates the outcome when RFI from the original 

dataset (a) is transplanted onto the Clean RFI dataset 

(b). This augmentation strategy, particularly the 

incorporation of synthetic data like in (d), ensures a 

broader spectrum of data, catering to a more 

comprehensive learning landscape and, ultimately, a 

more resilient and accurate model. 

Fig. 10 illustrates the pre-processing, adhering to 

the methodology detailed in Eq. 3. In Fig. 10a, the 

input image has been processed and segmented into 

four images, each sized 256x256 pixels. This step 

ensures the quality and integrity of the image 

information while also accommodating an optimal 

size for further segmentation tasks. Conversely, Fig. 

10b represents the ground truth, which has also been 

segmented to the same dimensions. It is crucial to 

note that, during the evaluation phase, these 

segmented portions of the ground truth will be 

reassembled to provide a comprehensive evaluation 

of segmentation quality.  

4.2 Metrics 

Several evaluation metrics to assess the model's 

performance. These metrics include sensitivity (Se), 

specificity (Sp), accuracy (Ac), F1 score, dice 

coefficient (Dice), and Intersection over union (IoU) 

sensitivity (Se) measures how well a model can 

correctly identify positive cases, calculated by 

dividing true positives (TP) by the sum of true 

positives and false negatives (FN), represented as: 

 

Se =
TP

TP+FN
                      (10) 

 

Specificity (Sp), on the other hand, measures how 

well a model can correctly identify negative cases, 

calculated by dividing true negatives (TN) by the sum 

of true negatives and false positives (FP), represented 

as: 

 

Sp =
TN

TN+FP
                           (11) 

 

Accuracy (Ac) is another pivotal metric, 

quantifying the overall correctness of the model 

across all cases, represented as: 

Ac =
TP+TN

TP+TN+FP+FN
                       (12) 

 

The F1 Score (dice coefficient) is the harmonic 

mean of precision and recall, offering a balance 

between the two, and is calculated as: 

 

Dice = 2 ⋅
TP

2⋅TP+FP+FN
                   (13) 

 

Intersection over union (IoU) measure the 

overlap between two samples or object boundaries. 

Their respective formulas are: 

 

IoU =
TP

TP+FP+FN
                          (14) 

 

By utilizing these comprehensive metrics, the 

study facilitates an in-depth assessment of the 

model’s performance, highlighting areas that may 

necessitate further refinement. 

4.3 Result 

Upon examining Table 1, which presents a 

quantitative comparison of various architectural 

models including U-Net, U-Net++, U-Net3+, R2U-

Net, R2U++, and our innovatively developed R2U-

Net3+, it becomes apparent that there is a noticeable  

variability in the number of parameters across the 

different models. Our proposed model, R2U-Net3+, 

was evaluated under two different conditions, 

represented by timestamps t=1 and t=2, and exhibited 

parameter counts of 9.5 million and 17.6 million, 

respectively. These timestamps indicate the recursion 

iterations, reflecting the diverse conditions under 

which the models were assessed. When comparing 

the R2U++ models, our developed architecture, R2U-

Net3+, demonstrates a reduction in the number of 

parameters compared to R2U++, even though the 

reduction is marginal. This optimization in model 

parameters is vital for enhancing efficiency without 

compromising the integrity and accuracy of the 

results.  

In addition to the parameters, the hyperparameter 

settings have been set for optimal performance. The 

number of filters are, ranging from 32 to 512; number 

of filters consists of 32, 64, 128, 256, 512 for each 

layer depth. A Batch Size of 16, a Learning Rate of 

2e-4, and 35 epochs, with the Adam optimizer, have 

been employed. Furthermore, distinct loss functions 

have been allocated to each model; binary cross 

entropy for U-Net and R2U-Net, BCE dice loss [13] 

for U-Net++ and R2U++, and a multi hybrid loss 

function [10] for U-Net3+ and R2U-Net3+. The 

selection of different loss functions aligns with 

previous research on each respective architecture.  
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Table 1. Result of experiments 

Model t Parameter  Dice Coef  IoU Ac Se Sp 

U-Net - 7.7 M 93.527 88.467 99.837 92.236 99.936 

U-Net++ - 9 M 94.089 89.306 99.846 92.524 99.949 

U-Net3+ - 6.7 M 94.767 90.469 99.866 95.212 99.926 

R2U-Net 2 16.7 M 94.417 89.814 99.856 93.770 99.936 

R2U++ 2 18 M 94.581 90.160 99.863 92.854 99.955 

R2U-Net3+ (Ours) 1 9.5 M 94.980 90.745 99.869 95.061 99.934 

R2U-Net3+ (Ours) 2 17.6 M 95.352 91.409 99.881 94.952 99.945 

 

 
Figure. 11 Comparison results of three samples (R2U-Net3+): (a) input, (b) ground truth, (c) masks predict, and (d) 

predict, true positives (purple), false negatives (yellow), and false positives (green) 

(a) 

(b) 

(c) 

(d) 
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Specifically, binary cross entropy is utilized for U-

Net and R2U-Net, adhering to the prevalent 

methodologies found in related studies. Similarly, 

BCE dice loss is applied to U-Net++ and R2U++, 

while a multi hybrid loss function is implemented for 

U-Net3+ and R2U-Net3+. Fine-tuning these 

hyperparameters is crucial for ensuring the strength 

and consistency of the experimental results. 

Based on Table 1, it is evident that our proposed 

R2U-Net3+ model excels in terms of performance 

across various metrics. When tested at two different 

timestamps, t=1 and t=2, this model consistently 

delivers high values for IoU, accuracy (Ac), 

sensitivity (Se), specificity (SP), and dice coef. This 

suggests it is both effective at correctly identifying 

objects in images and has a good balance of precision 

and recall. In terms of IoU, R2U-Net3+ scored 

90.745% at t=1 and 91.409% at t=2, showing a strong 

match between its predictions and the actual results. 

The model also achieved an accuracy of 99.869% at 

t=1 and 99.881% at t=2, further highlighting its 

reliability. 

Furthermore, the model's sensitivity values were 

95.061% at t=1 and 94.952% at t=2, and its 

Specificity values were 99.934% and 99.945% 

respectively. These results show its strength in 

correctly identifying true positives and its ability to 

keep false positives low. This means it is good at 

spotting objects in images and avoiding mistakes. 

The dice coefficient for R2U-Net3+ at t=2 is 

95.352%, which is among the highest in the table. 

This score represents a balance between precision 

(getting things right) and recall (catching everything 

that's relevant), suggesting the model performs well 

overall. In conclusion, R2U-Net3+ performs well 

across various measures, making it a strong model for 

tasks like medical image segmentation. Its efficient 

use of parameters and balanced performance metrics 

make it a good choice for both further study and 

practical use. 

Fig. 11 provides a comprehensive analysis of 

masking results for three distinct samples using the 

proposed R2U-Net3+ model. Fig. 11a displays the 

model's input data, representing the initial radar 

reflections captured, whereas Fig. 11b presents the 

ground truth. Fig. 11c illustrates the masking results 

of the R2U-Net3+ model. Meanwhile, Fig. 11d 

highlights the masking outcomes with color-coded 

pixels indicating true positives (purple), false 

negatives (yellow), and false positives (green). Here, 

true positives are highlighted in purple, indicating 

areas where the model's predictions are in close 

harmony with the ground truth. Notably, when radio 

frequency interference (RFI) is absent within the 

reflectivity region, the model demonstrates  
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Figure. 12 Qualitive analysis: (a) Input, (b) R2U-Net3+, 

(c) R2U++, and (d) R2U-Net 
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Figure. 13 Comparative analysis of training times for 

various models, displayed in seconds. The t denotes the 

timestamp for recursive iterations in RRCNN 
 

remarkable segmentation precision. Conversely, in 

the presence of reflectivity, the model encounters 

challenges, as shown by the presence of false 

negatives (yellow) and false positives (green). These 

color markings respectively signify areas the model 

missed and locations inaccurately identified. The 

R2U-Net3+ model's capability in detecting RFI 

underscores its potential and areas that could benefit 

from further optimization for enhanced real-world 

deployment. 

Fig. 12 offers a side-by-side comparison of three 

distinct models: R2U-Net3+, R2U++, and R2U-Net. 

Within the figure, there are two red boxes. The 

central red box provides an enlarged view of the 

specific area captured within the smaller red box 

located in the bottom-right corner. The first image in 

the sequence displays the input data (Fig. 12 (a)), 

followed by the outputs of R2U-Net3+ (Fig. 12 (b)), 

R2U++ (Fig. 12 (c)), and R2U-Net (Fig. 12 (d)). 

Among the results, the segmentation achieved by 

R2U++ stands out, as evident from the regions 

highlighted. This model notably produces superior 

results, exhibiting fewer false positives and negatives 

compared to R2U++ and R2U-Net. Additionally, 

R2U-Net3+ delivers better performance than R2U-

Net++. This assessment underscores that our 

proposed model demonstrates greater accuracy than 

previous RRCNN models integrated into U-Net and 

U-Net++. 

In Fig. 13, we analyze the computational time of 

various models. Referring to Table 1, U-Net3+ has 

the fewest parameters yet still requires a longer 

computational time compared to U-Net, U-Net++,  
 

 
(a) 

 

 
(b) 

Figure. 14 Comparison of history: (a) Train dice 

coefficient and (b) Validation dice coefficient 

 

and even R2U-Net which has almost double the 

number of parameters. Both versions of our proposed 

R2U-Net3+ with time step (t=1 and t=2) use fewer 

parameters than R2U++ with time step 2 but require 

more processing time. Factors other than parameter 

count, such as the intricacies of the architecture, 

influence the processing duration. However, the 

streamlined parameter structure of R2U-Net3+ with 

t=1 indicates its efficient use of resources. This 

efficiency does not compromise the segmentation 

quality; in fact, it may enhance it, as shown by the 

superior dice coef and IoU metrics. 

Fig. 14 displays the graphs of the train dice 

coefficient history (a) and the validation dice 

coefficient (b). In the training data, all models exhibit 

slight fluctuations. The U-Net and R2U-Net models 
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tend to perform below other models, while U-Net++, 

R2U++, U-Net3+, R2U-Net3+ (t=1, t=2) have 

relatively similar performances. In the validation data, 

a similar trend is observed, although U-Net3+ and 

R2U-Net3+(t=1) show fluctuations at certain epochs. 

Notably, the R2U-Net3+ in the validation dice 

coefficient stands out with a significantly superior 

performance compared to the other models. 

5. Conclusion 

In this research, we introduced the recurrent 

residual convolution block architecture as the 

backbone for a full-scale skip connection U-Net in 

the context of radio frequency interference (RFI) 

radar weather data segmentation. Several key 

improvements that we applied to this architecture 

include: The utilization of Recurrent Residual Units 

instead of plain convolutions, enabling the network 

to extract low-level features with precision without 

encountering degradation issues. This approach 

allowed us to capture more relevant features from 

RFI data and enhance the segmentation quality. 

We also drew architectural inspiration from U-

Net3+, adapting modifications suitable for our task. 

Traditional models like U-Net and U-Net++ can 

capture some information but often fail to 

comprehensively gather details from all scales. U-

Net3+ addresses this limitation by combining feature 

maps of different sizes in each decoder layer. This 

ensures that both small-scale details and larger 

patterns are captured across all scales.  

Throughout this study, our proposed R2U-Net3+ 

model was rigorously benchmarked against several 

esteemed architectures, including U-Net, U-Net++, 

R2U-Net, R2U++, and U-Net3+, using the dice 

coefficient (Dice Coef) and intersection over union 

(IoU) as evaluation metrics. U-Net has been a 

frequently employed model for RFI segmentation in 

previous research. When compared with this classic 

model (U-Net), our R2U-Net3+ (t=2) showed a 

promising improvement of approximately 1.825% in 

Dice Coefficient and 2.942% in IoU. Furthermore, 

when pitted against earlier RRCNN fusions such as 

R2U-Net and R2U++, our architecture clearly stands 

out. Specifically, it outperformed R2U-Net by 

0.935% in dice coefficient and 1.595% in IoU, and 

against R2U++, our model marked an advancement 

with a 0.771% increment in dice coefficient and a 

1.249% rise in IoU. Delving into the foundational 

architecture, U-Net3+, which we enhanced by 

integrating RRCNN to create our R2U-Net3+, the 

latter demonstrated a growth of 0.585% in dice 

coefficient and a 0.94% elevation in IoU. 

Conclusively, the empirical data attests to the 

significant scientific contribution of our R2U-Net3+ 

model.  

Furthermore, we also paid attention to the role of 

the timesteps, which represents the recurrent time in 

the RRCN within our architecture. The experimental 

results showed that an increase the time step recurrent 

value had a positive impact on the model's 

performance. Particularly, when comparing the R2U-

Net3+ model with t=2 to t=1, there is a notable 

improvement, with an approximate 0.372% increase 

in the Dice Coefficient and IoU (0.664%), Accuracy 

(0.012%), Sensitivity (-0.109%), and Specificity 

(0.011%). This research contributes significantly to 

the development of segmentation techniques in this 

context and underscores the importance of recurrent 

parameters in designing optimal architectures for RFI 

segmentation tasks in radar weather data. These 

findings provide a solid foundation for further 

research and development in this field. 
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