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Abstract: The Internet of Underwater Things (IoUT) systems using Autonomous Underwater Vehicle (AUV) have 

significant issues with data collecting latency. This work explores the utilization of heuristic approaches and 

reinforcement learning. Specifically, we employ ant colony optimization (ACO) and Q-learning methods by 

implementing them using NS3 simulation. Based on the traveling salesman problem (TSP), adopting two objectives, 

determining the shortest path and achieving a balance between the length of the AUV's tour and increasing the value 

of information (VoI) of the entire network, moreover, adopting 7 scenarios, every one with a specific style of ordering 

visiting the sensor nodes. Additionally, the study investigates the integration of ACO and Q-learning algorithms. The 

results prove the suggested algorithms can obtain the desired paths planning of AUVs dealing with various numbers 

of SNs (10, 30, and 50) by considering the length of the path, energy consumption, and period of time for data transfer 

and the computation time. In contrast to previous studies that employed the branch and bound (BB), genetic algorithms 

(GA), and ant colony algorithm (ACA), the distance obtained is smaller by 7.5%, and the VoI increased by 0.3%. In 

reference to the examined algorithm's computational time, in ACO using 10 SNs (less by 0.96% for BB method and 

0.32% for ACA method, and increased by 0.2% for GA method), however, the utilisation of 30 SNs exhibits a decrease 

of 0.99%, 52.688%, and 30.37% for BB, ACA, and GA, respectively. Additionally, Q-learning with 10 SNs takes less 

time than BB, ACA, and GA methods, by 95.4%, 90%, and 82.22%, respectively, as well, with 30 SNs decreased by 

(99.95%, 97.6%, and 96.47%) for (BB, ACA and GA) methods, respectively. 

Keywords: IoUT, Autonomous underwater vehicle (AUV), Data collection, Path planning, Optimization, Ant colony 

optimization, Q-learning, TSP. 

 

 

Notation list 

N Number of sensor nodes. 

𝐸𝑡𝑥 Energy consumption to send a single 

packet 

𝐸𝑟𝑥 Energy consumption to receive a single 

packet 

𝐸𝑘,𝑖 Sensor ⅈ detects event k. 

𝑇𝑡𝑥 The transmission time for single packet 

𝑃𝑟 Receiving power consumption 

𝐿𝑡𝑟𝑎𝑣𝑒𝑙 The length of the AUV's travel path. 

𝐴(𝑑, 𝑓) Attenuation factor 

𝑁(𝑓) Ambient noise 

𝑁𝑠(𝑓) Shipping noise 

𝑁𝑡ℎ(𝑓) Thermal noise 

𝑁𝑤(𝑓) Waves noise 

𝑤, 𝘴 The wind speed and the shipping activity 

factor 

 
 

 

z An ACO algorithm artificial ant is 

constructed from possible solutions to an 

issue, like the AUV path. 

𝑃𝑖𝑗
𝑧  The likelihood that ant z chooses sensor 

node Sj 

𝑇𝑠,𝑖 Sending event with timestamp 

𝑑𝑖𝑗 The distance between the first point and 

the second point 

𝒩𝑖𝑒𝑓𝑓
𝑧  The set of SNs not visited so far by ant z 

in its current tour. 

𝒮𝑖𝑏 The ant colony's best resolve. 

𝒱𝐴𝑈𝑉 The velocity of AUV. 

𝒱𝑆,𝑖(𝑡) Function to trace the VoI gathered from 

Si at time t. 
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𝒱(𝑃) The total VoI of the data collected from 

the N SNs 

𝛼𝑞 , 𝛽𝑞 The learning rate and the discount factor 

to Q-learning algorithm, respectively. 

𝛼𝑐 , 𝛽𝑐 These factors determine how pheromone 

track values and heuristic information 

affect 𝑃𝑖𝑗
𝑧  

𝜂𝑖𝑗 Heuristic value as input to ACO 

algorithm 

𝜏𝑖𝑗 The value of the pheromone trail. 

𝜔1, 𝜔2,  
ώ1, ώ2,  
𝜔1
𝑞
 , 𝜔2

𝑞
, 

ώ1
𝑞

 , ώ2
𝑞
, 

𝔷𝑞, and 𝔷  

Weighting factors 

ʤ Threshold of distance used in a special 

style of SNs 

vk A relationship equation between the 

event importance and the time that AUV 

takes to reach the next hop, used by E-

ACO 

OB Inverse of 𝜂𝑖𝑗 used in E-ACO 

E0 Initial energy 

Popt The optimal path of AUV 

Psht The shortest path of AUV 

Rmax Maximum iterations. 

rt Transmission distance. 

tij, 

𝑡𝑖→𝑖+1 

𝑡𝑠𝑎𝑖𝑙→𝑖+1 

The amount of time taken for the AUV 

to relocate between any two points, from 

Si to Si+1 

Ԛ(𝑠𝑙 , 𝑎𝑙) The Q value for current state and current 

action. 

𝑅(𝑠𝑙 , 𝑎𝑙) The reward function in Q-learning 

algorithm, that, 𝑠𝑙 and  𝑎𝑙  are the current 

state and the current action. 

α The absorption coefficient 

f Carrier frequency 

𝓢z One ACO algorithm path solution for ant 

(z) 

𝛽 The trade-off factor for VoI measure. 

𝜌 The pheromone evaporation factor in 

ACO algorithm. 

𝜗 The pheromone decay rate. 

1. Introduction 

The internet of things (IoT) aims to quickly 

connect all the things around us so they can interact 

with one another with little support from humans. 

Researchers have recently started looking at the IoT 

possibilities in underwater environments due to the 

rising need for maritime discovery and usage. The 

internet of underwater things (IoUT) has been 

suggested as a way to examine the intelligent 

relationships between underwater things all around 

the world [1]. 

Although the underwater wireless sensor 

network (UWSN) has a bright future, it also presents 

novel difficulties for IoUT [2]. Underwater acoustic 

sensor networks (UASN) are one of the most 

promising technologies for data collecting [3]. 

However, there are a number of distinctions between 

UASNs and wireless sensor networks (WSNs) that 

have a significant impact on data collecting. 

Problems arise when a lot of data in the UWSN 

transferred across long distances. In addition, 

batteries used in underwater sensors are more 

difficult to refuel, and underwater acoustic 

communication requires a transmission power that is 

significantly higher than radio wave communication. 

Additionally, the speed of acoustic transmission is 

around 1.5 × 103 m/s slower than the speed of light, 

which is (3 × 108  m/s), and is slower than radio 

wave communication, which causes a significant 

delay [4–6]. The doppler effect poses a greater 

vulnerability to the sent signal [7]. Due to these 

limitations, it is not possible to upload the algorithms 

created for terrestrial sensor networks to the UASN 

[4]. 

"Path planning (PP)" is often used term to 

describe motion planning. PP involves identifying a 

sequence of points the AUV must traverse to reach 

the predetermined destination from the beginning 

place [8]. PP is a task that is entirely geometric in 

nature. When the plan is created previously, it is 

deemed offline; however, when the plan is created 

progressively while the robot is running, it is 

identified online[9]. Thus, PP for AUV is a challenge, 

it needs effectiveness and flexibility of the 

evolutionary computation paradigms to find time- 

and energy-efficient pathways. The genetic algorithm 

(GA), the particle swarm optimization (PSO), the 

differential evolution (DE), and the ant colony 

optimization (ACO) algorithms are a few examples 

of typical works. Even though evolutionary 

algorithms are highly in a constrained optimization 

problem in small-scale or coarse-grained working 

scenarios, they frequently struggle or fail to find a 

workable solution in large-scale or fine-grained 

environments [10]. One of the most well-known 

swarm intelligence methods in the scientific 

community is ACO.  This technique solves 

combinatorial optimization issues like vehicle 

routing and scheduling. Finding the best collection of 

values to maximize or reduce an objective is the goal. 

For underwater path procedures, other intelligent 

algorithms have been proposed, such as artificial 

intelligence (AI) methods, machine learning (ML) 

techniques are typically favored because they offered 
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faster, more accurate results with lower processing 

costs[11]. The reinforcement learning (RL) approach 

is more practical for path problem exploration. The 

Q-learning algorithm is a markov decision process 

(MDP) and a RL state. Due to learning, the 

experiment requires varied actions to gain different 

rewards and determine the next action with the 

greatest reward [12–14]. 

The value of information (VoI) metric is measure 

how important and timely data deteriorates with time. 

The following example illustrates VoI's importance. 

Caution zones are designated in intrusion detection 

frameworks. When a target enters the caution zone, 

installed sensors might report higher priority for 

event detection than regular observance reports [4]. 

The VoI is greatest immediately after an event is 

detected, and it subsequently gets less over time [15]. 

The kind of UWSNs we take into account in this 

work are shown in Fig. 1. This essay will describe the 

basic concept and algorithm logic, then create and 

simulate the mobile robot. In conclusion, the 

identification of optimal route plans will be found, 

and followed by a systematic process of verification, 

comparison, and evaluation of the obtained outcomes.  

1.1 Problem statement and objectives 

The use of AUV route planning for data 

collecting has been investigated in earlier research 

projects. But these researches focus on path length 

and one particular node order style using 

optimization methods, which require a long 

computation time, in addition to the performance 

degradation in large search networks. Furthermore, 

not many researchers try to employ alternative 

machine learning techniques and take the priority of 

stored data into account and solve the forementioned 

problem, and most regarded the path distance as the 

most important component. 

Defining the main problems of UWSN, it appears 

that two issues are still present: First, conserving 

energy is important in IoUT because inadequate 

batteries storage and charge-receiving abilities, this 

reduces network service life. The length of the AUV 

route passively influences energy consumption. 

Second, the QoI and the AUV's traversal path are 

strongly associated. Effective AUV path planning is 

required to raise QoI. In the preceding instance, the 

geographic dependency sometimes fails to accurately 

reflect the value of the data, this means the validity of 

the data is not taken into account. Given that the 

values associated with the data generated by the 

nodes degrade over time, it is important to take into 

account the importance and priority of the collected 

data [1]. As an illustration, each application has 

different needs for the quantity, valuation, and 

urgency of the data provided by a node that senses an 

event relevant to the corresponding application. It is 

necessary to strike a trade-off between the energy 

consumption as well as the VoI of the IoUT system 

[16]. 

This study prioritizes the importance of nodes by 

utilizing the event packet as an initial step.  ACO and 

Q-learning are utilized in the second step to enhance 

the objectives of the selected path. The third step 

involves the AUV following a predetermined path to 

collect data from nodes. In some cases, AUV has the 

capability to modify its trajectory and afterward drive 

within an alternative adaptive route. 

The aim of this work is to develop an efficient 

algorithm for determining the shortest travel distance 

of the AUV through the collection process in IoUT, 

taking into consideration the importance of data 

provided by each sensor node. To achieve this aim, 

the following objectives have been considered. 

1) Developing an efficient algorithm with low 

complexity and computation time; the AUV path 

planning problem as a matter of combinatorial 

optimization with two objectives: the first objective 

function being the minimum shortest distance of 

AUV path planning. The second objective maximizes 

the value of information by minimizing the latency 

that critical data sensed by network nodes experience 

when they reach sink; this involves prioritizing the 

sensor nodes based on their importance's value. 

2) To solve the objectives, low-complexity 

algorithms were utilized, ACO and Q-learning 

algorithms; explaining a comparison between them in 

the obtained results. 

3) Presenting 7 scenarios, each one with style of 

arrange the visiting node and different mathematics, 

further the point of online changing path, and the SN 

that doesn’t have data also considered. 

4) Introducing a hybrid method by merging ACO and 

Q-learning algorithms in a novel way. 

5) A particular style was employed, similar to 

previous studies, leading to a decrease in computation 

time and improved balance between path length and 

VoI. 

6) For the purpose of assessing the effectiveness of 

the suggested algorithms, extensive simulations 

utilizing the NS3 simulator are carried out. 

The remainder of the paper is structured so that 

section 2 will explore similar works. Section 3 

reviews the system model of our work. Section 4 

presents the different steps and mathematical models 

of the suggested methods. Section 5 presents 

simulation research. Finally, Conclusions and 

recommendations for more research are offered in 

section 6.
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Figure. 1 The model of AUV-enabled IoUT/UWASN visits the deployed sensor node 

 

 

2. Related works 

Planning the AUV's course has a significant 

influence on the efficiency of data collecting. 

Numerous academics have suggested a number of 

ways to improve data collecting with AUVs. In [17], 

Dijkstra's algorithm, which shortens the AUV's path 

distance, is still used despite the authors' integration 

of a multi-hop transmission scheme with the AUV for 

data gathering, however, it is still severe the 

collection delay and reduction of the value of 

information. The authors of [18] developed the alarm 

pheromone aided ant colony system (AP-ACS), 

which integrates the alarm pheromone with the 

standard guiding pheromone, to enhance the 

algorithm's resilience by mitigating fruitless searches, 

however, the standard deviation decreases compared 

to the other methods, moreover, it necessitates a 

substantial amount of traffic. Also [19] combine 

AUV with cluster-based routing, and they adopt GAs 

with objective of reduce length of AUV path and the 

propagation delay. One other typical indicator of 

quality of information is the time it takes for data to 

be transmitted. For instance, the authors of studied 

the delay optimal data collection problem in [5], 

which they implemented through a decentralized 

prediction-based plan was put out using the Kernel 

Ridge Regression technique. Moreover, the method 

in [20] Only the impact of geographic location on 

AUV data collecting is taken into account, the 

accuracy of the data is not. It is vital to take into 

account the value information of the acquired data 

since the values linked with the data supplied by the 

nodes depreciate with time. The authors of [21] 

introduced A four-layer software-defined smart 

underwater edge drone internet (EdgeIoUT), the 

AUV's path was determined based on the distance 

and energy. 

Unfortunately, these measurements, don't always 

accurately capture the full worth of the data. VoI has 

been presented as a novel measure to enhance QoI by 

concurrently taking into consideration event 

significance and timeliness in order to address this 

issue and then optimize the real value of the whole 

data gathering [1, 4, 15, 22]. In [15] and [22], the 

authors examined instances in that AUVs made 

regular trips back to base to offload data, with the 

VoI being the time metric of choice. They solved ILP 
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AUV route planning difficulties, and heuristics 

methods have been provided. However, they failed to 

adequately convey the significance of the data, and 

the AUV path planning failed to take the length of 

trip between nodes into account. Zhao 𝑒𝑡 𝑎𝑙. In [4] 

Using VoI, they tackled the AUV route planning 

problem with a dynamic planning method as an 

unconstrained optimization problem. Their definition 

did not consider node timeliness sensitivity. About 

[1] In order to optimize VoI, the authors investigated 

the AUV route planning problem. The issue is 

modelled as an integer linear programming (ILP), and 

the branch and bound (BB) approach is presented for 

finding the best solution. Two near-optimal heuristic 

methods, one of them built on the ideas of the ant 

colony algorithm (ACA) and the other on those of the 

GA, are provided. Therefore, all methods used are 

heuristic methods and take time and complexity 

overhead in large networks. The route of the AUV 

was calculated in [12] using simply the Q-learning 

method, which was based on the energy and VoI of 

the sensors. Nevertheless, because of the translation 

of acoustic linkages and group VoI, each sensor's 

actual VoI is not committed. Now in order to decrease 

the travel distance of AUV and reduce delay for 

transmission data some specialists use multiple 

AUVs [16, 23, 24]. In [16] The process of 

exchanging information was simulated using the 

M/G/1 vacation queueing system, however, 

determine the nearly best path by applying the 

GA. 

3. System model 

3.1 Architecture for underwater sensor network 

This study considers a limited area represents a 

portion of the ocean from the surface to the bottom, 

with a sink node located in the center of the water's 

surface outfitted with radio and acoustic transceivers. 

At random distribution isometry nodes with unique 

IDs, use acoustic modems and may communicate 

with every other node and the AUV system. The 

starting energy, cache size, and processing capability 

of these nodes are all constrained, also locations are 

fixed. Each node is assigned the task of recording and 

packs them into a packet with a timestamp of TS,i and 

relying it upon the arrival of AUV. The expression 

𝒮 = {𝑆1, 𝑆2, . . . , 𝑆𝑁} is used to identify the N sensor 

nodes. A node Si's observations at a certain moment 

have a value of importance Ei. Every time a new 

event occurs, the node that discovered it generates a 

short event packet explaining the importance of the 

observation, naturally, this package much too small, 

and send it to AUV using single-hop communication. 

More so, the AUVs are sailing on a tour, gathering 

data from various sensor nodes. Also, data may be 

sent to AUV through acoustic connections, then 

regularly surface to offload data to a sink acoustically. 

Initially, the AUV follows the planned route in order 

to gather data, and then modifies its course depending 

on the algorithm. Effective AUV route design is 

required to optimize the energy consuming and the 

VoI of the network. Assuming that the surface station 

is node S0, the AUV's route should begin and 

terminate at S0 and comprise a series of nonrepeating 

SNs. For instance, S0 → S1 → S2 → · · · → SM → S0 

is one such path. The shortest path and the optimal 

path denoted by Psht and Popt respectively. 

Noteworthy is the fact that, it is difficult to determine 

the precise dynamic characteristics of an AUV, 

because of the impact of ocean currents. This 

problem may be solved by model-free tracking, 

which allows an AUV to follow the target path with 

accuracy. 

It is assumed that a set E of occurrences, where 
|𝐸| stands for the number of events, 𝐸1, … , 𝐸|𝐸|. when 

1 ≤  𝑘 ≤  |𝐸| , means sensor ⅈ  detects event 𝐸𝑘  at 

time 𝑡𝑘, node ⅈ combine information about itself and 

the event in a small control packet with timestamp 

𝑇𝑠,𝑖 , and deliver it. We use 𝒱𝑆,𝑖(𝑡) to trace the VoI 

gathered from Si at time t, at the completion of the 

AUV tour to the sink, the measure of the 𝑉𝑜𝐼𝑘,𝑖 for 

received data by sensor ⅈ of event 𝐸𝑘, as follows: 

 

𝒱𝑆,𝑖(𝑡) = VoIk,i  

= {
 𝛽𝐸𝑘,𝑖 + (1 − 𝛽)𝐸𝑘,𝑖𝑓(𝑡),    𝑓𝑜𝑟 𝑡 ≥ 𝑇𝑠,𝑖
 0,                                              𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒

   (1) 

 

Where 𝛽  is the trade-off factor that contributing in 

balancing between both the severity of the event and 

how quickly it decays over time. f(t) is a 

monotonically declining function of time, if 𝑡 >  𝑇𝑠,𝑖. 

In this work, we suppose 𝑓(𝑡) = 𝑒−
𝑡−𝑇𝑠,𝑖

𝛼 , where 𝛼 is 

scaling factor calculates the level of sensitivity   with 

the timeliness [1]. At the end of The AUV path P 

When the AUV returns to the surface station at time 

TN+1, the AUV has visited all of the N SNs, and t 

denotes the journey time of AUV path, completely 

determines 𝒱𝑖(𝑁 + 1) , hence 𝒱𝑖(𝑁 + 1) =  𝒱𝑖(𝑃) . 

As thus, the following equation gives the total VoI of 

the data collected from the N SNs:  

 

𝒱(𝑃) = ∑ 𝒱𝑖(𝑃) = 
𝑁
𝑖=1  𝛽 ∑ 𝐸𝑖

𝑁
𝑖=1   

+(1 − 𝛽)∑ 𝐸𝑖
𝑁
𝑖=1 𝑒−

∑
𝑡−𝑇𝑠,𝑖

𝛼
𝑁
𝑖+1        (2) 
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3.2 Energy consumption of underwater 

environment 

The distinct characteristics of underwater 

acoustic signal propagation undoubtedly produce 

significant influences on the transmission of data. In 

this research, we examine a shallow-water acoustic 

propagation environment and make the simplifying 

assumption that it exhibits time and spatial 

homogeneity.  

When the environment beneath is rough, there is 

significant attenuation during transmission that is 

caused by the acoustic signal through single path 

attenuation. Across a distance of d, a signal with a 

frequency f, is attenuated based on [5]: 

 

𝐴(𝑑, 𝑓) =  𝑑𝜆𝑎(𝑓)𝑑                           (3) 

 

Where, "d" indicates the distance, while the variable 

"f" reflects the carrier frequency in kHz. The 

parameter 𝝀 practically is assumed to be 1.5, While 

the equivalent values for spherical spreading and 

cylindrical spreading are set as 2 and 1, respectively. 

Additionally, the variable 𝑎(𝑓)  provides the 

absorption coefficient given in dB/km. which is 

determined using Thorp's expression [25] as follows: 

 

𝑎(𝑓) =
0.11𝑓2

1+𝑓2
+

44𝑓2

4100+𝑓2
+ 2.75 × 10−4𝑓2   (4) 

 

Assuming there is no site-specific noise, the power 

spectrum density of the atmospheric, ambient noise 

in oceans can be determined employing the following 

four sources: thermal noise 𝑁𝑡ℎ(𝑓), shipping 𝑁𝑠(𝑓), 
waves 𝑁𝑤(𝑓), and turbulence 𝑁𝑡(𝑓) [26] by: 

 

𝑁(𝑓) = 𝑁𝑡(𝑓) + 𝑁𝑠(𝑓) + 𝑁𝑤(𝑓) + 𝑁𝑡ℎ(𝑓)   (5) 

 

The four noise components' power spectral densities 

are given in the empirical formulas below as a 

function of frequency in kHz and expressed in dB re 

𝜇 Pa per Hz. 

 

10𝑙𝑜𝑔𝑁𝑡(𝑓) = 17 − 30𝑙𝑜𝑔𝑓, 
 

10𝑙𝑜𝑔𝑁𝑠(𝑓) = 40 + 20(𝘴 − 0.5) 
             +26𝑙𝑜𝑔 𝑓 − 60 𝑙𝑜𝑔 (𝑓 + 0.03), 
 

10𝑙𝑜𝑔𝑁𝑤(𝑓) = 50 + 7.5√𝑤 + 20𝑙𝑜𝑔𝑓 

                          − 40𝑙𝑜𝑔 (𝑓 + 0.4), 
10𝑙𝑜𝑔𝑁𝑡ℎ(𝑓) =  −15 + 20𝑙𝑜𝑔𝑓 

(6) 

 

Where 𝑤  is the wind speed in m/s and 𝘴  is the 

shipping activity factor, 0 ≤ s ≤ 1. 

We conclude by applying a standard underwater 

energy model to the issue of acoustic energy 

consumption, which is influenced by bandwidth, 

transmission loss, and propagation delay. The general 

definition of packet transmission energy usage is as 

follows [17, 27]. 

 

𝐸𝑡𝑥(𝑥, 𝑑) = 𝑥𝑃𝑟𝑇𝑝 𝐴(𝑑, 𝑓)                       (7) 

 

Where 𝑥  represents bits packet; 𝑃𝑟 is the power 

consumption and 𝑇𝑝 is data transmission time. 

In a similar manner [5], the calculation of a node's 

energy consumption to receive a data packet is as 

follows: 

 

𝐸𝑟𝑥(𝑥, 𝑑) = 𝑥𝑃𝑟𝑇𝑝                                     (8) 

4. AUV path planning algorithms 

This section focuses on the analysis of algorithms 

with low complexity that are applicable to the 

problem of path planning for AUVs. 

4.1 ACO based algorithm 

ACO approach is used for AUV missions that are 

limited in both time and space, or per the assigned 

task in a dynamic underwater environment. 

Optimizing travel length, energy utilization, etc. In 

this case we conclude Psht meaning the shortest path. 

Any ACO solutions are constructed iteratively by 

deploying ants upon random moves and tours over a 

linked graph. Artificial ants are constructed from a 

collection of n possible solutions. Each ant z, where 

z = 1, ..., M, begins on its journey from the sink node 

S0 is shown by 𝓢z, which is one of the solutions to the 

issue. Ant z chooses the Sj that best fits its present 

location as the Si and begins building a solution, until 

all SNs have been visited once and 

end at S0, depending on the relative strengths of 

pheromones and other heuristic factors among the 

SNs. At each stage of the tour-building process the 

likelihood that ant z, now at SN Si, i = 1, 2, … |N|, 

will choose sensor node Sj, j = 1, 2, … |N|, to visit 

next is: 

 

𝑃𝑖𝑗
𝑧  =

{
 
 

 
  

[𝜏𝑖𝑗]
𝛼𝑐
[𝜂𝑗]

𝛽𝑐

∑ [𝜏𝑖𝑗]
𝛼𝑐
[𝜂𝑗]

𝛽𝑐

𝑆𝑗∈𝑁𝑖
𝑧

, ⅈ𝑓𝑆𝑗  ∈  𝒩𝑖
𝑧
, 𝑞 > 𝑞0

  [𝜏𝑖𝑗]
𝛼𝑐
[𝜂𝑗]

𝛽𝑐
,              ⅈ𝑓 𝑑𝑗  ∈  𝒩𝑖

𝑧, 𝑞 ≤  𝑞0
 0,                                      𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒

 

(9) 

 

Where 𝜏ij represents the value of the pheromone 

trail between SNs 𝑆�̇� (S0 if at the start of tour from the 
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sink) and 𝑆𝑗. 𝜂𝑗 denotes the heuristic value associated 

with the addition of the SN by ant z. 𝓝𝑖
𝑧 represents 

the available neighborhood of ant z at its current 

position. Additionally, 𝛼𝑐 and 𝛽𝑐 are parameters that 

govern the impact of the pheromone trail values and 

heuristic information on 𝑃𝑖𝑗
𝑧 . According to our case 

study of ACOs based on the ant colony system (ACS), 

ants use a decision policy, ants in ACS follow the 

pseudorandom proportional rule in order to transition 

from city ⅈ to city 𝑗, which states that given a random 

value uniform distribution of 𝑞 between [0,1], and a 

parameter 𝑞0 , if 𝑞 ≤  𝑞0  , then 𝑃𝑖𝑗
𝑧  be as 

[𝜏𝑖𝑗]
𝛼𝑐
[𝜂𝑗]

𝛽𝑐
 Otherwise, the first term in Eq. (9) is 

used [28]. The definition of the available 

neighborhood 𝓝𝑖
𝑧 of ant z at a given current position 

𝑆�̇� to select the next 𝑆�̇�, is described as follows. 

 

𝓝𝑖
𝑧  =  𝒩iⅇ𝑓𝑓

𝑧 ,               𝒩iⅇ𝑓𝑓
𝑧  ⊆     𝒩i𝑓𝑢𝑙𝑙

𝑧 ,      (10) 

 

Where the collection of SNs that make up our 

network, 𝒩𝑖𝑓𝑢𝑙𝑙
𝑧 , is described. Whereas, the set 𝒩𝑖𝑒𝑓𝑓

𝑧 , 

is a subset of SNs belonging to 𝒩𝑖𝑓𝑢𝑙𝑙
𝑧  that would be 

the set of SNs not visited so far by ant z in its current 

tour, and would offer a coverage. Let 𝑔𝑗
𝑧 serve as a 

symbol for the coverage gain of an SN 𝑆𝑗  ∈ 𝒩𝑖𝑓𝑢𝑙𝑙
𝑧 . 

We define 𝑔𝑗
𝑧  as the inverted value of distance, or 

according any another target. Where the start of the 

tour, i = 0 and 𝒩𝑓𝑢𝑙𝑙 = 𝒩𝑒𝑓𝑓. Due to all ants’ path 

start from S0, the neighborhood rule guarantees the 

possibility of ants creating pathways that match to 

practical solutions to the optimal path for AUV. An 

edge's desirability annotated by 𝜂𝑖𝑗 is determined by 

a function that is basically heuristic and indicates how 

excellent between SNs Si and Sj. If the shortest 

distance of the entire tour is our goal, by using the 

Euclidean distance between two locations 𝑑𝑖𝑗 , the 

definition of 𝜂𝑖𝑗 is as follows. 

 

𝜂𝑖𝑗 =
1

𝑑𝑖𝑗
                                                (11) 

 

The following cost formula is used to assess the 

quality of the solution to the optimum route 

corresponding to the tour built by ant z: 

 

𝐶(𝒮𝑧) = 𝐿𝑧                                           (12) 

 

Where 𝐿𝑧 represents the total distance traveled by ant 

z. Once all ants have built their paths and solutions 

have been found, the values of pheromone traces are 

updated according to the ACS, details of updating 

pheromone adopted from the research [28]. 

4.2 Event importance based ACO algorithm 

The importance of the next event is the primary 

factor in selecting the best action to take. The period 

should be as small as possible between sampling data 

at SN to reach the sink for analysis. An integer 

number between [1,7] is chosen to signify the event 

importance. In order to minimize the latency 

associated with the transmission of real-time event 

data to the sink, it is suggested to prioritize visiting 

the SNs. SNs with larger importance values and poor 

timeliness might result in more value loss, and 

therefore these are likely to be visited later. Our aim 

is to explore AUV's route that optimizes the total VoI 

delivered to the sink as possible and shorten the path 

length. In this part, we'll go through how to design the 

ACO algorithm to achieve the goal, which is also 

known as a multi-objective ACO (MO-ACO) since 

we'll be utilizing more than one measurement. The 

multi-constraint circumstances of route planning in 

such a complex environment challenge solver, 

particularly in large problem spaces. The complete 

strategy of ACO algorithm explained in previous sub-

section. Here we will specialize to explain how to 

compute the heuristic information and the cost 

function. We consider the importance of events for 

nodes and the distance between nodes i and j and use 

the weighting factors 𝜔1 and 𝜔2 to specify their role 

importance respectively, hence the heuristic  𝜂𝑖𝑗 for 

edge desirability given by the weight function can be 

calculated by theoretical and empirical formulate:  

 

𝑡𝑖𝑗 = 𝑑𝑖𝑗 𝒱𝑎𝑢𝑣⁄                                                                                                         

 

𝑣𝑘 = 2 ∙ (𝐸𝑗) + 0.001 ⋅ (𝐸𝑗) ⋅ 𝑡𝑖𝑗                                                                      

 

𝑂𝐵 = (𝜔1 ⋅ 𝑣𝑘 +𝜔2 ⋅ 𝑑𝑖𝑗)                                                                                

 

𝜂𝑖𝑗 =
1

𝑂𝐵
                    

(13) 

 

Where tij is the amount of time taken for the AUV to 

travel between any two points. 𝒱𝐴𝑈𝑉 is the speed of 

AUV. The time distance is derived from node 

positions due to the calculation of the Euclidean 

distance in addition to the AUV's speed. While, 𝑣𝑘 is 

a relationship equation between the event importance 

and the time that AUV takes to reach the next hop. 

The weights (2, 0.001) have been specified using trial 

and error, according to multi runs (1000 tries), in 

order to meet the best balance, this formula is like the 

computation of VoI in Eq. (1), however, here this 

formulation is more convenient, because the 

minimum path value was examined. From Eq. (13) 
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It's obvious that ηij is meant to give preference to a 

node that is closer together and has a lower degree of 

importance when deciding between two or more 

candidates, so as to improve the timeliness for 

applications by checking the importance priority 

demands and balancing the length of the tour, Ej is 

the importance value of the node j, dij is the distance 

between node i and node j. The weighting factors 𝜔1 

and 𝜔2 , if 𝜔1  set as 
1

𝑁
∙ 100  and it has an inverse 

relation with N because the dij is big in a few spaced 

sensors. 𝜔2  is set as a number between 0 to 1 to 

converge the equation to the first term and it has a 

positive correlation with N because the dij value is 

already tiny in nearby sensors. The utilization of 

single pheromone information has been considered in 

the framework of the MO-ACO algorithm. 

The cost function that is employed by using 

summation of OB equation calculated above in 

moving to any SN within ant z’ path: 

 

𝐶(𝒮𝑧)  = 𝛴𝑘=1
𝑁𝑧 (𝜔1 ⋅ 𝑣𝑘 +𝜔2 ⋅ 𝑑𝑖𝑗)               (14) 

 

Where 𝑁𝑧 is number of SNs in path of current ant. 

The description of ACO steps by Algorithm 1. 

In another goal ordering approach, priority is 

given to visiting SNs located near the sink with low 

importance first, while those with high importance 

are visited at the end of the tour. This is motivated by 

the need to ensure that important data does not have 

to wait for the entire tour duration before being 

received by the sink for analysis. On the other hand, 

SNs that are located at greater distances from the 

surface tend to prioritize the sequence of visitors 

primarily based on distance compared to importance. 

We handle this objectively while maintaining a 

balanced distance. The heuristic factor 𝜂𝑖𝑗 calculated 

by the following formula: 

 

𝜂𝑖𝑗  ={

1

(ώ1∙𝐸𝑗+ώ2⋅𝑑𝑖𝑗)
,                   ⅈ𝑓 𝑑0 ≤ ʤ

1

((ώ1−𝔷)∙𝐸𝑗+(ώ2+𝔷)⋅𝑑𝑖𝑗)
, 𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒

       (15) 

 

Where ώ1  and ώ2  are the weighting factors, 𝔷 
represents the differentiation of weights. Specifically, 

while considering nodes in close proximity to the sink, 

we provide a higher value to their importance. ʤ is 

the area defined as being close to the sink, 𝑑0 is the 

distance to sink. And the cost function has been 

formed as the following equation. 

 

𝐶(𝒮𝑧)  = 𝛴𝑖,𝑗∈𝑁  (
1

𝜂𝑖𝑗
)                                (16) 

 

Algorithm 1: ACO Based AUV path planning algorithm 

1. Input: Sensor nodes’ position, the position pi and 

pj of sensor i and j, respectively, the event 

importance vector 𝑬𝑠 = [𝐸𝑠1 , 𝐸𝑠2 , ⋯ , 𝐸𝑠𝑁] . The 

number of ants Nant, the volatilization coefficient 

𝜌, the maximum iteration rounds Rmax. 

2. Calculate the travel distance between nodes by 

Euclidean distance, Find Lnn by calculate 

adjacent distance of a random node. 

3. Set r = 1, 𝜏0 =
1

𝑁 ∙ 𝐿𝑛𝑛
 . 

4. For each edge (i,j), initialize trail intensity as the 

pheromone matrix to 𝜏𝑖𝑗 = 𝜏0. 

5. Calculate the heuristic factor matrix 𝜂 according 

to Eq. (11), (13), or (15). 

6. For each ant z: 

7. Place ant z on SN S0 as starting point and store 

this information in a set. 
8. Set 𝒮𝑟𝑒𝑚𝑎𝑖𝑛 = 𝒮 ∖ {𝑆0} as the set of unvisited 

nodes. 
9. For r =1 to Rmax do 

10. For z = 1 to Nant do 

11. While 𝒮𝑟𝑒𝑚𝑎𝑖𝑛  ≠  ∅ do 

12. Calculate the probability to choose the 

next city j according to: 𝑗 =  𝐸𝑞. (9) 
13. Store the chosen node, remove this 

node from 𝒮𝑟𝑒𝑚𝑎𝑖𝑛. 

14. Local update of trail for chosen edge 

(i,j). 

15. Calculate the total cost Eq. (12), (14), 

or (16) of path of ant z. Choose the 

best ant. 
16. End while 

17. End for 

18. Choose the best path of existing paths that 

have minimum length Popt. 
19. Update r = r + 1, update the pheromone 

intensity of Popt. 
20. End for 

21. Output: the optimal path as Popt. 

4.3 Shortest path based on Q-learning 

We briefly demonstrate the Q-learning approach 

which is the art of optimal decision-making based on 

interactive learning logic, the agent (here, the AUV) 

chooses the best course of action by interacting with 

the surrounding world. To characterize the network 

learning process as a Markov decision process with a 

finite state and action space, we may write M = (S, A, 

R), where S is the state set i.e., the collection of 

sensor nodes and the start node, A is the action set i.e., 

a collection of optional nodes, and R is the reward 

function. The next node to be visited is selected as the 
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destination depending on the expected the highest 

rewards to the next location, hence, each state in this 

section contains N+1 potential actions. At the lth 

episode step, the reward function 𝑅(𝑠𝑙 , 𝑎𝑙)  is 

constructed as: 

 

𝑅(𝑠𝑙 , 𝑎𝑙)  =  {
1/𝑑𝑖𝑗, ⅈ𝑓 ⅈ ≠  𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒,
                  (17) 

 

Where 𝑑𝑖𝑗 is the distance between the nodes ⅈ and 𝑗. 

Besides that, 𝑠𝑙 and  𝑎𝑙  are the current state and the 

current action, respectively. According to 𝑅(𝑠𝑙 , 𝑎𝑙), 
the Eq. (18) used to update the Q function [12–14]: 

 

Ԛ(𝑠𝑙 , 𝑎𝑙)  =  Ԛ(𝑠𝑙 , 𝑎𝑙) + 𝛼𝑞 (𝑅(𝑠𝑙 , 𝑎𝑙) + 

𝛽𝑞𝑚𝑎𝑥(Ԛ(𝑠𝑙+1, 𝑎𝑙+1)) − Ԛ(𝑠𝑙 , 𝑎𝑙))    (18) 

 

The variables 𝑠𝑙  and 𝑠𝑙+1  denote the state in the 

environment, 𝑠𝑙+1  and 𝑎𝑙+1  being the subsequent 

state and action, respectively. The learning rate, 𝛼, 

determines how much of the new Q an old Q value 

learns, convergence of Q value occurs more rapidly 

as increases of 𝛼. The discount factor 𝛽∈[0,1], this 

factor quantifies the significance of future (long-

term) rewards. The term 𝑚𝑎𝑥(Ԛ(𝑠𝑙+1, 𝑎𝑙+1) means 

the chosen action 𝑎𝑙 achieves the new state 𝑠𝑙+1, that 

has maximum Q. Since the AUV tour is completed 

by returning back to the starting point, that will be 

more efficient when add 1 to Ԛ(𝑠𝑙 , 0) equation at end 

of each episode when 𝑠𝑙+1 is the start point but that 

fitting for small network. Initialize the Q value table 

at the start of the process. The AUV chooses the node 

with the highest Q value as the next hop. AUVs can 

explore the shortest distance. The Q-table may help 

the agent reach an optimal state by predicting future 

rewards for each state-action combination. There are 

benefits to using the Q-table, for example, if the AUV 

is at a different location than the surface point and we 

need to use that location as the starting position, we 

can quickly calculate the path using the Q-table 

without performing a complicated computation. 

4.4 Event importance based Q-learning algorithm 

The importance of SNs as it is achieved and 

explained in section iv.B, here is will implemented 

using Q-learning, and will be mentioned specific 

points. The AUV chooses the next node to be visited 

as the destination based on the balance between the 

distance and importance of consequences nodes. The 

calculation using the Q-learning we called it E-Q-

learning. The definition of the Q-learning algorithm 

was presented in the previous sub-section. The 

reward function 𝑅(𝑠𝑙 , 𝑎𝑙)  at 𝑙 th episode step is 

designed based on the parameters of distance 

between states 𝑠𝑙 and the 𝑠𝑙+1 and the importance of 

each event: 

 

𝑅(𝑠𝑙 , 𝑎𝑙) = 𝜔1
𝑞
(
1

𝑑𝑖𝑗
) + 𝜔2

𝑞
 (
1

𝐸𝑗
)                   (19) 

 

The weights 𝜔1
𝑞

 and 𝜔2
𝑞

 are set as the following 

criterion. According to how much weight is given to 

the parameters, if 𝜔1
𝑞

 is set to a large number, the 

solution will ignore the importance, and if 𝜔2
𝑞
 is set 

to a large number, the opposite will occur and will be 

too long length path. 

In a situation where one of the SNs did not sense 

any event, there is no need for AUV to visit them 

since there is no new information to be taken, 

therefore AUV neglect sensor nodes without 

importance (NSWI). Simultaneously, since the SN's 

event, denoted as Ej, had an initial value of zero at the 

beginning of the tour, it was possible for the SN to 

detect new data during the tour, and that was an 

important event, then, SN should not wait until AUV 

finishes the current round and starts a new round. The 

Q-learning algorithm is helpful in this point by using 

the Q-table directly without the need for long 

recalculations during of rounding to perform adaptive 

path planning, especially, this is more helpful in a 

case using vertical and horizontal diagrams of AUVs 

[29], however here we depend on only the distance in 

ordering these remaining SNs. We can limit the 

degree of value by threshold, if its high value then 

AUV goes to it in the current round, whereas, if it is 

low value, then keep it for the next round. All 

concepts are explained in algorithm 3. The reward 

function 𝑅(𝑠𝑙 , 𝑎𝑙) is given according the formulation: 

 

𝑅(𝑠𝑙 , 𝑎𝑙) = 

{
 
 

 
 𝜔1

𝑞
(
1

𝑑𝑖𝑗
) + 𝜔2

𝑞
 (
1

𝐸𝑗
), ⅈ𝑓 𝐸𝑗  ≠ 0 , 𝑑𝑖𝑗  ≠ 0,

(
1

𝑑𝑖𝑗
) , ⅈ𝑓 𝐸𝑗 = 0,

0,            𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒,

   (20) 

 

Furthermore, another style target of SNs may be 

achieved by using a Q-learning algorithm, as outlined 

in sub-section IV achieving a balance between 

distances and the importance of events, while the 

nodes that are in close proximity to the sink node 

(defined as a threshold ʤ found by distance to the 

sink d0) are assigned a higher value in terms of their 

relevance. The formula for the reward function 

𝑅(𝑠𝑙 , 𝑎𝑙) defines it as: 
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(a) 

 
(b) 

 
(c) 

Figure. 2: (a) Block diagram of ACO, (b) Block diagram 

of Q-learning, and (c) Block diagram of QL-ACO 

 

 

𝑅(𝑠𝑙 , 𝑎𝑙) =

{
 
 
 

 
 
 ώ1

𝑞
(
1

𝑑𝑖𝑗
) + ώ2

𝑞
  (

1

𝐸𝑗
) , ⅈ𝑓 𝐸𝑗 ≠ 0 ,

                             𝑑𝑖𝑗 ≠ 0, 𝑑0 ≤ ʤ 

(ώ1
𝑞
+ 𝔷𝑞) ∙ (

1

𝑑𝑖𝑗
) + (ώ2

𝑞
− 𝔷𝑞) ∙ (

1

𝐸𝑗
),

     ⅈ𝑓 𝐸𝑗 ≠ 0 , 𝑑𝑖𝑗 ≠ 0, 𝑑0 > ʤ

0,                                        𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒,

  

(21) 

4.5 Q-Learning based ACO 

Q-learning is an off-policy reinforcement learning 

algorithm, as such, it takes a greedy approach by 

looking for the most straightforward action. ACO is 

a probabilistic strategy to finding high-quality 

pathways to computational issues. Therefore, the Q-

learning algorithm is a non-probabilistic technique, 

and it use greedy approach, while ACO is 

probabilistic technique so it has a full future 

perspective. TSP one of processes needs a full future 

perspective, so ACO is more suitable for TSP, but in 

small network, and this algorithm lacks the useful 

feature of owning a table like Q-table, that why ACO 

distance result is lower than q-learning but ACO is 

very overhead with large networks, and if we want to 

take advantage of the Q-table and the result of ACO, 

then it is possible by calculation the ACO algorithm 

and obtain its path for Q-learning algorithm, so on, 

we can benefit from the Q-table to perform adaptive 

path planning. The details of this method same to 

algorithm 2 unless take the best path of ACO as input. 

The path of ACO denoted by 𝑃𝑠ℎ𝑡
𝐴𝐶𝑂  = { 𝑆1

𝐴, 𝑆2
𝐴, . . ., 𝑆𝑘

𝐴 , 

𝑆𝑘+1
𝐴 , 𝑆𝑁

𝐴}, so we can make the next formulation to 

calculate the reward function 𝑅(𝑠𝑙 , 𝑎𝑙): 

Algorithm 2: Qlearning based AUV path planning 

algorithm 

1. Input: Sensor nodes’ position, the position pi and 

pj of sensor i and j, respectively, the event 

importance vector 𝑬𝑠 = [𝐸𝑠1 , 𝐸𝑠2 , ⋯ , 𝐸𝑠𝑁] , the 

maximum iteration rounds Rmax and number of 

sensor nodes N. 

2. Set the parameters: 𝜎, 𝛾 𝑎𝑛𝑑 𝜖. 

3. Initialize the matrix Q(s, a) = 0. 

4. Calculate the Euclidean distance between nodes. 

5. Find the reward matrix R(s, a) according to Eq. 

(17), (19), or (21). 

6. Repeat 

7. Observe the state S0 = 0 as initial city, set 

possible nodes = N. 
8. Repeat 

9. Select the action a (destination node) using 

𝜖-greedy method. 
10. Take the action a. 

11. Receive immediate reward R(s, a). 

12. Observe the new state s’ (new city). 

13. Update Q(s, a) with Eq. (18). 

14. s = s’. 

15. Store the chosen node, remove it from  

                     possible nodes. 

16. Until complete the tour. 

17. Set action a to a = 0. 

18. Update Q(s, a) according to Eq. (18). 

19. Store a node, update 𝜖. 

20.  Until the stopping criterion Rmax is satisfied. 

21.  Set possible nodes = N. 

22.  Repeat 

23. Take the action by which node give max  

           value in the Q-table. 

24. Store the chosen node in a set, remove it from 

possible nodes. 
25.  Until complete the tour. 

26.  Set action a to a = 0. 

27.  Store node a in the set, and define the set as the  

 best path Popt. 

28.  Output: the optimal path as Popt. 

 

𝑅(𝑠𝑙 , 𝑎𝑙) =

{
 
 

 
 (

1

𝑑𝑖𝑗
) + 𝑥, ⅈ𝑓 ⅈ =  𝑆𝑘

𝐴, 𝑗 =  𝑆𝑘+𝑥
𝐴   ,

                      𝑥 ∈ {1,⋯ ,𝑁 − 1},
0,               ⅈ𝑓 ⅈ = 𝑗,

(
1

𝑑𝑖𝑗
) ,        𝑜𝑡ℎ𝑒𝑟𝑤ⅈ𝑠𝑒,

  (22) 

 

Moreover, initializing the Q-table using Eq. (18).  Fig. 

2 explains the difference in the block diagram of the 

methods.  
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Algorithm 3: E-Qlearning based AUV path planning 

algorithm considering  𝐸𝑗 = 0 

1. Input: Sensor nodes’ position, the position pi and 

pj of sensor i and j, respectively, the event 

importance vector 𝑬𝑠 = [𝐸𝑠1 , 𝐸𝑠2 , ⋯ , 𝐸𝑠𝑁] , the 

maximum iteration rounds Rmax and number of 

sensor nodes N. 

2. Apply Algorithm 2 with the reward matrix R(s, a) 

according to Eq. (20) until complete step 20. 

3. Set possible nodes, remove the SNs have Ej = 0. 

4. Apply Algorithm 2 from step 22 until complete 

step 28. 

5.  Repeat 

6. AUV travel from Si to Sj 

7. If received event packet from a sensor node its 

event was 0 and it sensed data with value > 

threshold then 

8. Save visited nodes in vector, remove new 
visited nodes from possible Nodes. Go to 

3. 
9. Break 

10.  Until complete Popt.  

 
Table 1. The setting of parameters 

Parameters Value Parameters Value 

AUV’s 

velocity 𝒱auv 
4 m/s Volatilization 

coefficient 
0.1 

Transmitted 

power PT  

30 

mW 

Maximum 

iterations Rmax 

(E-ACO) 

30 ∙ 𝑁 

Received 

power PR 

10 

mW 

Maximum 

iterations Rmax 

(ACO) 

20 ∙ 𝑁 

Maximum 

iterations Rmax 

(Q-learning)& 

(E-Qlearning) 

50 ∙ 𝑁 Number of 

ants  

(ACO) 

N 

𝛼𝑐  
(ACO)&(E-

ACO) 

2 Number of 

ants  

(E-ACO) 

5 ∙ 𝑁   

𝛽𝑐  (ACO)&(E-

AC0) 
3 Pheromone 

factor k1 

1/(𝑁
∙ 𝐿𝑛𝑛) 

Transmission 

distance rt 
1000 

m 

Node Initial 

Energy(E0) 

100 J 

AUV Initial 

Energy(E0) 

70 KJ Data rate 25 

Kbps 

Event packet 

length 

80 bit Number of 

Nodes(N) 

10, 30, 

50 

Data length 80-200 

Kbits 

  

𝛼𝑞 0.15 𝛽𝑞 0.15 

5. Simulation setup and result evaluation 

Real-world underwater simulation experiments 

are challenging. The NS3 simulation environment is 

an excellent option for rapidly and easily assessing 

the performance of the suggested algorithm. The 

network size in the simulated environment is 

1000m1000m. In the 2D region, a vast and varied 

number of sensor nodes are randomly distributed. A 

sink node, which is deployed in the middle of the 

water's surface and is thought to be static. To gather 

data, the AUV travels at a steady speed. Table 1 

provides an overview of more specific factors. 

This section provides numerical results to assess 

how well the suggested AUV path planning methods. 

The results are shown in Fig. 3 by comparing the 

outcomes of different approaches, all of which 

operate in the same surroundings. and have the same 

number of sensors. Specifically, the ‘ACO’, 'Q-

learning', 'E-ACO', 'E-Qlearning', 'QL-ACO' and 

NSWI represent the paths that found by Algorithm 1, 

Algorithm 2, and Algorithm 3, then how online 

resolve the problem of change path easily.  

As illustrated in Fig. 3 (a), the path length 

calculated from the paths resulted from the ACO, Q-

learning and QL-ACO algorithms based on the 

distance between the AUV location and the location 

of any sensor, the AUV analyses the distance and 

path planning, where the path of ACO is shorter than 

Q-learning and still shorter with increasing the 

number of nodes. Of note, ACO with an increasing 

number of nodes it becomes unstable and falls in 

local optimal solution, increasing the overhead and 

computation time. On the other hand, the Q-learning 

is much less overhead. The last column "QL-ACO" 

is for the result of merging the two algorithms, 

depending on ACO's best paths to plan the rewards 

for the Q-learning algorithm, it demonstrates that the 

outcomes almost match the ACO optimal pathways, 

but this is useful in order to take advantages of the Q-

table. 

Fig. 3 (b) shows the length of the collecting path 

with various number of nodes based on case 2 of our 

objectives. The trade-off between SNs’ distances and 

the importance of the event, here the path length more 

than the previous case that depends on the distance 

between nodes. In this study will consider the values 

of importance in network of N=10 as: 𝐸1 = 2,𝐸2 =
4, 𝐸3 = 3, 𝐸4 = 4, 𝐸5 = 2, 𝐸6 = 3, 𝐸7 = 4, 𝐸8 =
6, 𝐸9 = 7, 𝐸10 = 3 . SNs with higher event 

importance are visited later, and, this assumption was 

implemented in [1] to plan the trajectory of AUV, 

however, they did it using the branch and bound (BB) 

method which is a method very time-consuming, also 

they had used a type of ACA and GA, therefore we 

can solve the idea using other better algorithms like 

another type ACS of ACO algorithm and Q-learning 

algorithm. In this result, also the ACO is the shorter 

path. This figure, which includes the result of  
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                                               (a)                                                                                               (b) 

 
                                               (c)                                                                                               (d) 

Figure. 3 Simulation results: (a) Path length based on distance, (b) Path Length based on distance and importance, (c) 

Energy consumption, and (d) Time period for data of SN5 reach the sink 

 

Algorithm 3 by neglecting sensor nodes without 

importance (NSWI) using Q-learning algorithm, 

proves how to decrease the total length of the tour 

compared to E-Qlearning and E-ACO. Without loss 

of generality, nodes with Ek=0 were made when 

N=10 with two nodes, when N=30 with six nodes, 

and when N=50 with eleven nodes. This concept is 

instead of methods in [5] and [12]. 

The energy consumption of the data collection 

process is divided into multiple parts and devices, the 

sensors nodes broadcast the importance directly to 

AUV by small event packet with a long distance to 

AUV location. Also, SNs start transferring their 

chunk data of captured events to AUV when it 

becomes near by the SN. The consumed energy for 

moving AUV is very influenced by the path length in 

order to increase the time of mobility. Also AUV 

receive the data chunks from SNs and when back to 

the starting location transmit all the collected data. Of 

note, the transmission energy is higher than receiving 

one and depends on the transmitted distance. 

As shown in Fig. 3 (c), the consumed energy of 

ACO is lower because it has shortest path which 

means less time is taken for complete the collection 

process. The Qlearning-ACO that depends on the 

ACO path has the same values, therefore, the same 

order of path length is positively correlated with 

consumes energy, after that, the result by Q-learning, 

then E-ACO, finally E-Qlearning. 

The time of receiving the data chunks by the 

surface station varies for an increasing number of 

nodes in the network. There isn't a specified rule, it 

depends on how each algorithm arranges the nodes. 

The Si was visited first by the AUV, its data has a 

longer time period until reaching the surface station. 

This long period causes high value loss, which means 

it becomes less important if we know about it now. 

especially with critical time application. Therefore, 

we assign every event with the event's importance,  
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                                                  (a)                                                                                               (b) 

 
                                                    (c)                                                                                               (d) 

Figure. 4 An overview of the optimal path of each algorithm with N = 10 randomly distributed, where the red numbers 

are the nodeID of SNs, and E denotes the importance of events recording by each SN: (a) ACO, (b) E-ACO, (c) Q-

learning, and (d) E-Qlearning 

 

 

 
                                                    (a)                                                                                            (b) 

Figure. 5 The path trajectory of (NSWE-QL): (a) The path trajectory and (b) Changing path during the AUV tour 
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                                                    (a)                                                                                           (b) 

 
                                                    (c)                                                                                               (d) 

Figure. 6 Results of optimal path under objectives of SNs near sink: (a) Our path obtained by both ACO and Q-learning 

algorithms, (b) Path in [1] obtained by BB algorithm, (c) Distance, and (d) The VoI 

 

meaning that it is more critical with time. In Figure 

4.4, we chose a random node SN5 to examine the 

time period for its data, we set value 2 to SN5, then it 

is obvious the time of ACO lower than E-ACO, and 

the time of Q-learning is lower than E-Qlearning, due 

to the assumption of every node has lower 

Importance then first visited according to the trade-

off with distance then it has more time. 

As a consequence, Fig. 4 explain the desired 

trajectory of an AUV using the techniques presented 

in this article. It does so by overview of the best path 

produced by each algorithm in the case of N=10. The 

SNs are randomly arranged in a square region of this 

picture, and the event relevance of their data is shown 

beside to the SNs. In Fig. 4 (a), the result of ACO 

algorithm distinguish the distance between nodes and 

find the greedy shortest path, whether, in Fig. 4 (b), 

using E-ACO this balance between a shortest path 

and maximize the VoI by event importance, in mean, 

where the SNs are close in distance then take the best 

importance but if they are far then not traverse the 

distance, cumulated of near nodes is considering 

more than one near node, as we mentioned, ACO has 

better full future perspective. after node 6 the node 10 

is chose to be visited in Fig. 4 (a) but the node 5 is 

chose in Fig. 4 (b) because it has a lower importance 

with near SNs have also low importance. 

The Q-learning equation states that each node is 

chosen based on the rewards offered by it and the 

options that are available to it subsequently, in Fig. 4 

(c), after SN 6, the SN 10 is chosen, and after SN 7, 

then the agent moves to SN 3, because they are near 

and have more rewards. Whereas, in Fig. 4 (d), after 

the SN 6 also select the 10 and 7 because they are 

near and have convergent importance values, but the 

SN 1 is selected after SN 7 in order to it have more 

rewards by its small importance and comparable 

distance and also has appropriate adjacent SN choices. 
However, Fig. 5 (a) shows the path trajectory of 

neglecting sensor nodes without event NSWE using 

Q-learning, with E4 = 0 and E10 = 0, there is no 

requirement for the AUV to visit the sensor nodes 4 
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and 10. As shown in Fig. 5 (b) if there is a node (SN 

10) sensed important data as desired threshold value 

of importance, it is difficult to wait for the second 

round. AUV received the event packet from SN10 

when it is located near SN 3 and then it changed its 

path directly according to the Q-table without long 

computation. Now, AUV will visit this new SN 

according distance of current location. 

The proposed algorithms is.evaluated against the 

optimal path in [1] obtained by the high-complexity 

algorithms IPL and BB algorithms with regard to the 

trajectory of SNs in the optimal path and the length 

of the path. For this comparison use the same 

deployment coordinates of SNs as [1] under 

itsobjectives but more balancing between the 

distance and the importance of events, using the Eqs. 

(15) and (21) for ACO and Q-Learning, respectively. 

The path planning by this objective in this paper 

is shown in Fig. 6 (a). The optimal path of [1] is 

shown in Fig. 6 (b). We were able to get a very near 

path by the ACO and Qlearning algorithms, we are 

more concerned about balancing with distance so it is 

a main factor that affects the energy consumption of 

AUV. In Fig. 6 (a) SN1 is taken at the start because it 

has low importance, while SNs 10 and 12 have a high 

importance so leave them for the last. SN 11 locate 

between SNs 3 and 4, and the AUV will visit it on the 

go. In Fig. 6 (b) the authors of [1] were concerned 

with maximizing the VoI of the path so they leave 

SN11 at last, they obtained their optimal path by BB 

algorithm and they got near-optimal path by ACA 

and GA algorithms. Fig. 6 (c) shows how the path 

length varies and is less in our procedure. 

Additionally, calculate the total VoI of the path 

according Eq. (2) to prove our path has no impact on 

this crucial parameter. As a result, in Fig. 6 (d), the 

VoI of our path is a bit more 0.3% than the optimal 

path of [1], achieved by the low computing time 

techniques ACO and Q-Learning. 
In addition, Table 2 evaluates the calculation 

times of applied AUV path planning techniques. The 

time computation for the methods BB, ACA and GA 

in [1] is mentioned first, followed by the examination 

of our results. Obviously, The BB method is not 

capable of dealing with cases regarding plenty of SNs, 

so we are concerned about other methods. The more 

SNs there are, the longer it takes to calculate. Since 

the ACO and Q-learning approaches require the least 

amount of time, they developed as the most 

affordable choices. As demonstrated, implementing 

the trade-off with importance requires more time than 

the situation without importance consideration, 

which depends on the number of iterations. It is 

feasible to apply a smaller number of iterations, but  

 

Table 2. The computational time of applied methods 

.        Number 

              SNs 

Methods 

10 30 50 

BB method in 

[1] 

0.35 s 300.76 s - 

ACA method 

in [1] 

0.16 s 5.43 s - 

GA method in 

[1] 

0.09 s 3.69 s - 

ACO method 

in this paper 

0.009 s 0.341 s 2.44 s 

E-ACO 

method 

0.108 s 2.569 s 18.41 s 

Q-learning 

method 

0.016 s 0.13 s 0.631 s    

E-Qlearning 

method 

0.016 s 0.13 s 0.631 s 

 

the results won't be stable. If you increase the number 

of iterations, you'll get results that are more precise. 

Table 3 presents a comparison between our 

proposed technique and other previous research. 

6. Conclusion and future works 

In this study, we looked at the information 

gathering issue in an IoUT with an AUV. We 

undertook a detailed examination of the AUV path 

planning problem to determine the order in which 

nodes are visited for the data collection, concluded: 

1.  The ACO algorithm is considered as ACS type 

and is utilized in this study to enhance AUV path 

planning for data collection. This is achieved by 

implementing one objective function and two 

objectives function. 

2. The Q-learning is depended on the reward 

function, in this work the reward function 

implemented to work as one and two objectives, 

summation of both objectives and also scale each 

to avoid dominant of one objective. 

3. The prioritization of importance necessitates 

visiting high-value nodes later, as critical data 

cannot be stored for extended periods by 

AUV without incurring value loss. This approach 

aims to maximize the VoI. 

4.  ACO can find the shortest path more than Q-

learning, especially with the small network by few 

numbers of nodes. 

5. ACO in large networks become not constant every 

run with different results, the average more 

repeating close numbers were chosen, and it 

becomes much overhead, complexity and the 

computation time than Q-learning. 
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Table 3. Comparison of this paper with several previous studies 

Research Methods Contribution Lacks 

Gjanci P and et 

al, in 2017 [15] 

Define a Greedy and Adaptive  

AUV Path. 

AUV path With 

maximizing the VoI. 

Failed to take the length of trip 

between nodes into account. 

Han G and et al, 

in 2018 [17] 

Dijkstra's algorithm for AUV path. 

Integration of a multi-hop 

transmission scheme with the AUV 

for data gathering. 

Shortens the AUV's path 

distance 

Suffer from the collection delay 

and reduction of the value of 

information 

Han G and et al, 

in 2019 [5] 

The ACO as a case of TSP based on 

the competition coefficient of the 

request cluster for AUV path. Kernel 

Ridge Regression (KRR), for the 

prediction of data. 

Reducing the path length 

and the collection delay. 

Prediction models will 

reduce the visited clusters. 

The quantity of data does not 

accurately represent its 

significance. Due to, distance and 

the data traffic are the two 

parameters used. 

Duan R and et al,  

in 2020 [1] 

The heuristic methods (BB) 

approach, (ACA), and (GA). 

Maximizing the VoI. 

The building of clusters. 

Methods used are heuristic 

methods and take time, overhead, 

especially in large networks. 

Fang Z and et al, 

in 2021 [16] 

The process of exchanging 

information was simulated using the 

M/G/1 vacation queueing system. 

Determine the nearly best path by 

applying the genetic algorithm (GA). 

AUV path trades off 

energy use and AoI. 

Determining the path just with the 

traditional genetic method, based 

on the distance, without addition 

methods or considering priority of 

nodes.  

Bhattacharjya K 

and De D, in 

2021 [21] 

A four-layer software-defined smart 

underwater edge drone internet 

(EdgeIoUT) is suggested. 

Improve residual energy 

and the time it takes to 

acquire data. 

The AUV's path was determined 

based on the distance and energy 

without importance of data; the 

algorithms are not specified. 

Zhao H and et al,  

in 2022 [12] 

Two phases: routing for SNs and 

path of AU V.  

Q-learning used. 

Path Based on the VoI and 

energy of sensors. 

Lack of real VoI for  

each node and shortest length. 

Delay. 

This paper Using of optimization method and AI 

method (ACO and Q-learning). 

Considering the distance, the importance of data, and the 

computation time to develop efficient algorithms. 

Implementation of 7 scenarios; the SN that doesn’t have data 

considered; online changing adaptive path also considered. 

 

 

6. Adding more objectives when formulating in 

ACO is more complex than formulating them in 

Q-learning. 

7. The Q-table feature in the Q-learning algorithm is 

highly beneficial, as it allows for both offline and 

online models to be implemented easily. 

8. Neglecting the sensors without acquiring new data 

can enhance the path length, consequently leading 

to an improvement in overall performance. 

9. To enhance the outcomes of Q-learning, an 

experiment was conducted in which the Q-

learning was computed based on the path obtained 

from ACO, called hybrid QL-ACO. This method 

proves beneficial when exploiting the Q-table to 

perform online changing the path.  

10. Ultimately, in order to establish a comparative 

analysis with other works inside a certain style of 

arranging visited sensor nodes, it has been 

determined that the suggested techniques 

demonstrate reduced distance while maintaining 

beneficial VoI and significantly enhanced 

computing speed. 

However, in future works we will improve the Q-

learning by using one of the algorithms, deep learning 

algorithm or curriculum learning (CL) method, 

considering the obstacles that interrupt the path of 

AUVs, and adopting more intricate underwater 

acoustic channel characteristic. 
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