
Received: October 8, 2023. Revised: November 15, 2023. 483

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.42

An Optimized VM Migration to Improve the Hybrid Scheduling in Cloud

Computing

Ramya Boopathi1* Erode Subramaniam Samundeeswari1

1Department of Computer Science, Vellalar College for Women, Erode- 638012, Tamil Nadu, India

* Corresponding author’s Email: ramyaboopathiphd1988@gmail.com

Abstract: Cloud computing is a decentralized platform that efficiently allows user applications to utilize various

resources. However, it faces challenges in task scheduling (TS) and load balancing (LB). To address these issues,

several metaheuristic algorithms have been developed. One such algorithm is a hybrid TS algorithm that uses long

short-term memory (LSTM) to determine task runtime reliability, tuna swarm optimization (TSO) to schedule optimal

tasks with high expected runtime, and the VIKOR technique to backfill remaining tasks. Despite these efforts, the TS

among nodes is unbalanced, leading to overloaded or under-loaded Physical Machines (PMs) and high energy

consumption. To tackle these problems, this article proposes a hybrid TSLB algorithm to achieve balanced energy

utilization and load fairness among PMs in heterogeneous cloud networks. The TSO algorithm is used to select optimal

tasks and virtual machines (VMs) for migration to suitable PMs. The selection of optimal tasks is based on the fitness

function of all VMs, while the selection of optimal VMs for migration is determined by the fitness function of all PMs

in the network. This approach ensures the best mapping correlation between selected tasks and VMs, resulting in

effective load distribution. Simulation results show that the LSTM-TSLBTSO-VIKOR algorithm achieves a makespan

of 2700 seconds, a mean resource utilization ratio (RUR) of 0.97, a degree of imbalance (DoI) of 0.03, a throughput

of 0.86 tasks/sec, memory usage of 26.9MB, a bandwidth of 187MBps, energy consumption of 95KWh, one VM

migration, and a load fairness of 1.23 for 1000 tasks. These results outperform the LSTM-TSTSO-VIKOR, CMODLB,

APDPSO, LBPSGORA, and GWOLB algorithms.

Keywords: Cloud computing, Task scheduling, Load balancing, Tuna swarm optimization, VM migration, Physical

machine.

1. Introduction

The importance of cloud computing has grown in

recent years across many sectors. Cloud services are

provided over the internet on an "on-demand" basis,

meaning that users can obtain the resources they need

when they need them [1, 2]. It might also manage a

diverse set of services, depending on the kinds of

applications and designs its users need. It uses shared

hardware and software and is paid for as it is used.

Infrastructure as a service (IaaS) is one model for

managing computing resources such as servers, data

centers, and VMs. It provides a virtual server in the

cloud, where data can be processed and stored [3].

Because cloud resources are housed on VMs, users

can connect to servers in their local area. The cost

relies on the agreement between the subscriber and

the CSPs (Cloud Service Providers) [4]. It also makes

it simpler for CSPs to provide their customers with

servers that are equipped with powerful computing

capabilities that can be used to access applications

hosted in the cloud [5, 6].

The VM makes use of the cloud's resources, like

storage space and processing power, to function.

Therefore, the cloud system has an uneven

distribution of resources, and certain VMs are unable

to access the resources they require [7]. To reduce

idle time, the VM must respond quickly after the task

has been sent to the cloud for processing. However,

for stability and optimal resource utilization, tasks

should be distributed among all VMs concurrently

using TS algorithms [8]. Therefore, it is crucial to

determine the distribution to ensure that not all tasks

Received: October 8, 2023. Revised: November 15, 2023. 484

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.42

are assigned to a single VM, which could lead to the

unavailability or imbalance of other VMs. To avoid

this, a schedule needs to include aspects like

makespan, costs, and resources.

Achieving appropriate outcomes under a variety

of task restrictions, like execution deadlines,

guarantees efficient use of available resources [9].

First-come-first-serve (FCFS), maximum-minimum

(Max-Min), and other similar strategies have been

used to address TS difficulties by various academics

[10-11]. However, because of TS's multimodal

behavior, such approaches have the potential problem

of being misleading in local minima. Metaheuristic

algorithms have recently gained a lot of popularity as

a means to quickly and efficiently locate a near-ideal

solution to the TS dilemma. To get near-ideal

solutions and provide trade-offs to CSPs, various

metaheuristic techniques have dealt with TS

challenges utilizing single or multiple criteria [12].

Among many others, the TS using modified grey

wolf optimization (TSMGWO) can help VMs save

costs and make better use of their resources by

discovering near-ideal solutions while dealing with

conflicting criteria [13]. However, this technique

merely attempts to optimize system throughput,

resource utilization, and task distribution between

VMs; other parameters, including memory and

bandwidth use, are required to increase TS ability.

As a result, based on the memory and bandwidth

constraints for efficient TS, a hybrid TSA was

suggested that utilizes both the linear matching

method and backfilling [14]. To forecast the task's

runtime reliability, the LSTM network was used as a

meta-learner. The tasks were separated into

predictable and unpredictable queues. A plan-based

scheduling method based on TSO was used to

schedule tasks with longer predicted runtimes. The

other tasks were backfilled using the VIKOR

approach. The RUR of predicted tasks among newly

submitted tasks was monitored and used to

dynamically adjust the percentage of CPU cores

reserved for backfilling. On the other hand, it still did

not consider the energy utilization of data centers like

PMs, which may be over-utilized or under-utilized

according to the number of tasks scheduled.

Therefore, in this manuscript, VM migration is

proposed together with the LSTM-TSO-VIKOR-

based TS in heterogeneous cloud networks. The main

aim of this study is to efficiently trade-off energy

utilization and load fairness among PMs. The

contribution of this new algorithm is applying the

TSO algorithm for simultaneous TS and VM

migration in cloud platforms. The TSO can

concurrently choose the optimal tasks and optimal

VMs to migrate to the most appropriate PMs. VM

migration is optimized based on the fitness function

of all PMs, which discovers the best mapping

correlation between elected VMs to be matched to the

most appropriate PM. This results in reducing energy

utilization and balancing load among every PM in the

network.

The rest of the sections are formatted as follows:

Section 2 reviews related works. Section 3 describes

the proposed technique, and section 4 presents its

simulation findings. Section 5 summarizes the study

and gives future scope.

2. Literature survey

The LB is crucial in cloud systems to alleviate the

utilization of computing resources during TS. This

section reviews different LB via VM migration

models using metaheuristic algorithms in cloud

platforms developed these days.

Negi et al. [15] developed a Clustering-based

Multiple Objective Dynamic Load Balancing

(CMODLB) method to balance the load among VMs

and PMs in the cloud platform. Initially, an artificial

neural network-based load balancing (ANN-LB) was

used to cluster VMs into underloaded and overloaded

categories. Then, the Technique of Order Preference

by Similarity to the Ideal Solution with Particle

Swarm Optimization (TOPSIS-PSO) was employed

to schedule runtime tasks. Additionally, an interval

Type-2 fuzzy logic system (IT2FLS) was utilized to

migrate the optimal VM from the overloaded PMs.

However, the energy efficiency of the method was

poor, and the RUR was ineffective when dealing with

storage-intensive tasks.

Miao et al. [16] developed a novel PSO-based

static LB scheme called adaptive Pbest discrete PSO

(APDPSO) on a cloud platform. However, this

scheme only considered the static LB issue, which

impacts VM RUR and memory consumption when

performing multiple tasks. Mirmohseni et al. [17]

presented an LBPSGORA (LB with particle swarm

genetic optimization and resource allocation)

algorithm to reduce energy usage in cloud networks.

However, the algorithm did not consider reliability

and response periods, resulting in poor load fairness.

Hung et al. [18] used gene expression

programming (GEP) to create symbolic regression

models that define the performance of VMs, which

are then used to predict the loads of VM hosts after

LB. The genetic algorithm is then used to consider

the current and future loads of VM hosts to find the

best VM-VM host assignment for VM migration.

However, this approach has a high RUR, which leads

to degradation in LB performance. Chourasia &

Received: October 8, 2023. Revised: November 15, 2023. 485

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.42

Table 1. List of notations

Notations Description

𝑃𝑀 Physical machine

𝑛 Number of PMs

𝑉𝑀 Virtual machine

𝑚 Number of VMs

𝑉𝐿̅̅̅̅
𝑖𝑗 Mean load of 𝑗𝑡ℎ VM in 𝑖𝑡ℎ PM

𝐶𝑈𝑗 CPU utilization of 𝑗𝑡ℎ VM

𝑀𝑈𝑗 Memory utilization of 𝑗𝑡ℎ VM

𝐵𝑈𝑗 Bandwidth utilization of 𝑗𝑡ℎ VM

𝑃𝐿̅̅̅̅
𝑖 Mean load of 𝑖𝑡ℎ PM

𝜎𝑖 Standard variation for 𝑖𝑡ℎ PM

𝑃𝐿̅̅̅̅ Mean load of all PMs

𝐹𝑖 Fitness of each tuna swarm

𝜏𝑖 Tuna swarm parameter

𝛼 Relative importance between 𝜏𝑖

𝛽 Relative importance between weight 𝜂𝑖

𝐸𝑋𝐵𝑖 Additional network bandwidth available

for 𝑃𝑀𝑖

𝑅𝐴𝑀(𝑎) Amount of RAM currently used by 𝑉𝑀𝑎

𝑅𝐴𝑀(𝑢) Amount of RAM currently used by 𝑉𝑀𝑢

𝐶𝑈𝑉𝑀𝑗
 Required CPU utilization for 𝑗𝑡ℎ VM

𝑀𝑈𝑉𝑀𝑗
 Required memory utilization for 𝑗𝑡ℎ VM

𝐸𝑋𝐵𝑉𝑀𝑗
 Required additional bandwidth for 𝑗𝑡ℎ

VM

𝑆𝑇𝑉𝑀𝑗
 Required storage size for 𝑗𝑡ℎ VM

𝐶𝑈𝑃𝑀𝑖
 Required CPU utilization for 𝑖𝑡ℎ PM

𝑀𝑈𝑃𝑀𝑖
 Required memory utilization for 𝑖𝑡ℎ PM

𝐸𝑋𝐵𝑃𝑀𝑖
 Required additional bandwidth for 𝑖𝑡ℎ PM

𝑆𝑇𝑃𝑀𝑖
 Required storage size for 𝑖𝑡ℎ PM

𝑁𝑃 Tuna population

𝑖𝑡𝑟𝑚𝑎𝑥 Maximum number of iterations

𝑃𝑇𝑗 Number of predictable tasks

𝛼1, 𝛼2, 𝑝 TSO parameters

Silakari [19] developed an integrated adaptive neuro-

fuzzy inference system-polynomial neural network

(ANFIS-PNN) and memory-based grey wolf

optimization (GWO) for optimal LB. However, the

number of VM migrations was still high since the

considered objective functions were not efficient.

Asghari et al. [20] presented a parallel SARSA

reinforcement learning and genetic algorithm for TS,

resource distribution, and LB in cloud platforms.

First, a smart agent was applied to schedule tasks

during the training phase. After that, all resources

were allocated to an agent by choosing the most

suitable set of tasks to increase resource utilization.

The genetic algorithm was used to find the globally

best solutions, such as task deadlines, by calculating

the fitness function, resulting in improved LB.

However, the makespan was low due to the longer

scheduling period it took.

He et al. [21] presented an improved genetic ant

colony optimization (ACO) algorithm to achieve LB

in a cloud platform. However, the load fairness was

degraded when increasing the number of tasks. Sefati

et al. [22] presented the GWO algorithm according to

resource reliability to sustain appropriate load-

balancing. Initially, the GWO algorithm was applied

to discover the unemployed or busy nodes. Then,

each node’s threshold and fitness function was

computed to maintain a balanced load across each

VM in a cloud platform. But it needs other parameters

along with the reliability to balance load among the

dependent tasks adaptively.

Jena et al. [23] developed a new dynamic LB

method among VMs by hybridizing Modified PSO

and improved Q-learning (QMPSO). The velocity of

MPSO was adjusted using the gbest and pbest values,

which were determined by the optimal action formed

by the improved Q-learning. Additionally, the

waiting interval for tasks was optimized to balance

the load among VMs and tradeoff among task

priorities. But the load balance among dependent

tasks was not effective, resulting in a high RUR.

From the literature, it is addressed that the

previous researchers mostly focused on separate

algorithms for both TS and LB in cloud computing.

But those algorithms have many drawbacks like high

computational complexity, trapping into local optima,

and limited objective functions, which limit the

system performance. In contrast with previous

studies, the LSTM-TSLBTSO-VIKOR algorithm is a

new hybrid method to concurrently achieve both TS

and LB in cloud computing. It can balance the energy

utilization and load among all PMs in the network

based on different objective functions.

3. Proposed methodology

This section describes the proposed VM

migration along with TS in cloud computing. First,

the LSTM is applied to predict task runtime reliability,

which helps in separating tasks into predictable and

unpredictable. Then, the TSO is used to schedule the

tasks with higher expected runtime reliability,

whereas other tasks are backfilled by the VIKOR

technique [14]. In this study, the TSO is also used to

find the most optimal VM to migrate to the most

appropriate PMs for balancing scheduled tasks

(loads). The notations utilized in this study are

outlined in Table 1.

3.1 Problem statement

In cloud platform, all PMs have distinct quantity

of VMs. The group of each PM in datacenter is

denoted by 𝑃𝑀 = {𝑃𝑀1, 𝑃𝑀2, … , 𝑃𝑀𝑛} , where 𝑛

Received: October 8, 2023. Revised: November 15, 2023. 486

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.42

Figure. 1 Schematic representation of: (a) balanced and (b) unbalanced cloud network scenarios

Figure. 2 Overview of proposed hybrid TSLB algorithm

refers to the quantity of PMs and the group of each

VM in datacenter is denoted by 𝑉𝑀 =
{𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑚}, where 𝑚 refers to the quantity

of VMs. A balanced and unbalanced cloud network

is illustrated in Fig. 1, where the tasks are scheduled

to each VM in each PM to achieve LB in balanced

cloud network and the tasks are scheduled to a certain

PM to make it overloaded in the unbalanced cloud

network.

The key objective is to lessen energy utilization

and increase the resource utilization, as well as to

maintain a balanced load among all PMs within a

cloud network. Without balancing the loads, the

network can increase makespan and energy

utilization for completing its tasks. To avoid this

issue, a hybrid TSLB algorithm is proposed using the

TSO algorithm, which is portrayed in Fig. 2.

3.2 Load balancing using TSO

In TSO, tuna swarm can compute the standard

variation (𝜎) for all PMs to discover under and

overloaded PMs. It must discover the load of all PMs

based on the load (scheduled tasks) of VMs deployed

into it. The mean load of 𝑗𝑡ℎ VM in 𝑖𝑡ℎ PM (𝑉𝐿̅̅̅̅
𝑖𝑗) is

determined by

𝑉𝐿̅̅̅̅
𝑖𝑗 = 𝐶𝑈𝑗 + 𝑀𝑈𝑗 + 𝐵𝑈𝑗 (1)

In Eq. (1), 𝐶𝑈𝑗 , 𝑀𝑈𝑗 and 𝐵𝑈𝑗 are the utilization of

CPU, memory, and bandwidth of 𝑗𝑡ℎ VM,

correspondingly. The mean load of 𝑖𝑡ℎ PM (𝑃𝐿̅̅̅̅
𝑖) and

standard variation for 𝑖𝑡ℎ PM (𝜎𝑖) is computed by

𝑃𝐿̅̅̅̅
𝑖 =

∑ 𝑉𝐿̅̅̅̅ 𝑖𝑗
𝑚
𝑗=1

𝑚
, ∀𝑉𝑀1, … , 𝑉𝑀𝑚 ∈ 𝑃𝑀𝑖 (2)

Received: October 8, 2023. Revised: November 15, 2023. 487

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.42

𝜎𝑖 = √
1

𝑛
∑ (𝑃𝐿̅̅̅̅ − 𝑃𝐿̅̅̅̅

𝑖)2𝑛
𝑖=1 (3)

In Eq. (3), 𝑛 denotes the number of all PMs and

𝑃𝐿̅̅̅̅ denotes the mean load of all PMs, which is

determined by

𝑃𝐿̅̅̅̅ =
1

𝑛
∑ 𝑃𝐿̅̅̅̅

𝑖
𝑛
𝑖=1 (4)

If 𝜎𝑖 is less than a minimum threshold, then 𝑃𝑀𝑖

is under-loaded host. If 𝜎𝑖 is greater than a maximum

threshold, then 𝑃𝑀𝑖 is over-loaded host. Threshold is

calculated as follows:

A minimum threshold is the lowest 𝑃𝐿̅̅̅̅
𝑖 among

each PM and the maximum threshold is equivalent to

𝑃𝐿̅̅̅̅
𝑖. Once the under or over-loaded PMs, tuna swarm

makes its swings in knowledge base to update each

swarm about its outcomes. At this step, the

knowledge base applies TSO to organize hosts by Eq.

(5) and considers energy utilization for all PMs. After

that, the new host’s list is used to discover the

appropriate PM among each hosts to execute VM

migration from it.

The TSO determines its fitness (𝐹𝑖) based on

over or under-loaded PMs as:

𝐹𝑖 =
(𝜏𝑖)𝛼∗(𝜂𝑖)𝛽

∑ (𝜏𝑖)𝛼∗(𝜂𝑖)𝛽𝑚
𝑖=1

 (5)

𝐹𝑖 =
(

1

𝜏𝑖
)

𝛼

∗(𝜂𝑖)𝛽

∑ (
1

𝜏𝑖
)

𝛼

∗(𝜂𝑖)𝛽𝑚
𝑖=1

 (6)

In Eqs. (5) and (6), 𝛼 and 𝛽 provides relative

importance between tuna swarm 𝜏𝑖 , and weight 𝜂𝑖 .

The tuna swarm parameter 𝜏𝑖 is defined by the load

of 𝑃𝑀𝑖.

So, the most appropriate 𝑃𝑀𝑖 is chosen and used

in migration state to inform each tuna by knowledge

base. After, the tuna chooses the appropriate VM to

be migrated to the other PM by the minimum

migration interval strategy, which is the amount of

RAM used by the VM divided by the additional

network bandwidth available for 𝑃𝑀𝑖 as:

𝑅𝐴𝑀(𝑎)

𝐸𝑋𝐵𝑖
≤

𝑅𝐴𝑀(𝑢)

𝐸𝑋𝐵𝑖
, ∀𝑎, 𝑢 ∈ 𝑉𝑀𝑗 (7)

In Eq. (7), 𝑉𝑀𝑗 is group of VMs currently

allocated to 𝑃𝑀𝑖 and 𝐸𝑋𝐵𝑖 is the additional network

bandwidth available for 𝑃𝑀𝑖 . The parameters

𝑅𝐴𝑀(𝑎) and 𝑅𝐴𝑀(𝑢) are the amount of RAM

currently used by 𝑉𝑀𝑎 and 𝑉𝑀𝑢 , correspondingly.

Then, the TSO determines fitness function to

discover the optimal mapping correlation between

chosen VMs to be matched to the most appropriate

PM, which compatible with the list of PMs from

knowledge base as:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑉𝑀𝑗, 𝑃𝑀𝑖) =
𝐶𝑈𝑃𝑀𝑖

−𝐶𝑈𝑉𝑀𝑗

𝐶𝑈𝑉𝑀𝑗

∙

𝑀𝑈𝑃𝑀𝑖
−𝑀𝑈𝑉𝑀𝑗

𝑀𝑈𝑉𝑀𝑗

∙
𝐸𝑋𝐵𝑃𝑀𝑖

−𝐸𝑋𝐵𝑉𝑀𝑗

𝐸𝑋𝐵𝑉𝑀𝑗

∙
𝑆𝑇𝑃𝑀𝑖

−𝑆𝑇𝑉𝑀𝑗

𝑆𝑇𝑉𝑀𝑗

 (8)

In Eq. (8), 𝐶𝑈𝑉𝑀𝑗
, 𝑀𝑈𝑉𝑀𝑗

, 𝐸𝑋𝐵𝑉𝑀𝑗
 and 𝑆𝑇𝑉𝑀𝑗

are the VM’s parameters (i.e., CPU use, memory,

bandwidth and storage size, correspondingly), which

VM requests, as well as 𝐶𝑈𝑃𝑀𝑖
, 𝑀𝑈𝑃𝑀𝑖

, 𝐸𝑋𝐵𝑃𝑀𝑖
 and

𝑆𝑇𝑃𝑀𝑖
 are the PM’s parameters (i.e., CPU use,

memory, bandwidth and storage size,

correspondingly), which PM has.

At last, tuna swarm consider its data about VM

which can be migrated and appropriate PM to migrate

VM to it by knowledge base. The tuna swarm

executes migration by moving the VM to the

appropriate PM. Algorithm 1 describes the TS and

VM migration using TSO to achieve LVB in cloud

network.

Algorithm 1 Task Scheduling and VM Migration

using TSO for Load Balancing

Input: Tuna population size (𝑁𝑃) , maximum

iteration (𝑖𝑡𝑟𝑚𝑎𝑥), the number of predictable tasks

(𝑃𝑇𝑗), 𝑗 ∈ {1, … , 𝐽}, the number of VMs (𝑉𝑀𝑚) and

the number of PMs (𝑃𝑀𝑛)

Output: Set of optimal predictable task

schedules, Optimal VMs to be migrated to the most

appropriate PMs

1. Begin

2. Generate the initial population of tunas

𝑆𝑖
𝑖𝑛𝑖 (𝑖 = 1, … , 𝑁𝑃) randomly;

3. Set free parameters 𝑎 and 𝑧;

4. 𝒘𝒉𝒊𝒍𝒆(𝑡 < 𝑖𝑡𝑟𝑚𝑎𝑥)

5. Compute the fitness value 𝑓 of all tunas

based on the makespan, resource utilization,

throughput, DoI, memory use, and bandwidth

use;

6. Modify the location and value of the best

tuna 𝑆𝑏𝑒𝑠𝑡
𝑡 ;

7. 𝒇𝒐𝒓(𝑎𝑙𝑙 𝑡𝑢𝑛𝑎𝑠)

8. Modify TSO parameters 𝛼1, 𝛼2, 𝑝;

9. 𝒊𝒇(𝑟𝑎𝑛𝑑 < 𝑧)

10. Modify 𝑆𝑖
𝑡+1;

11. 𝒆𝒍𝒔𝒆 𝒊𝒇(𝑟𝑎𝑛𝑑 ≥ 𝑧)

12. 𝒊𝒇(𝑟𝑎𝑛𝑑 < 0.5)

13. Modify the location 𝑆𝑖
𝑡+1;

14. 𝒆𝒍𝒔𝒆 𝒊𝒇(𝑟𝑎𝑛𝑑 ≥ 0.5)

15. Modify the location 𝑆𝑖
𝑡+1;

16. 𝒆𝒏𝒅 𝒊𝒇

Received: October 8, 2023. Revised: November 15, 2023. 488

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.42

17. 𝒆𝒏𝒅 𝒊𝒇

18. 𝒆𝒏𝒅 𝒇𝒐𝒓

19. Find the best tuna 𝑆𝑏𝑒𝑠𝑡 in the search space,

and the optimal fitness value (𝑓(𝑆𝑏𝑒𝑠𝑡));

20. Obtain the optimal set of predictable

schedules;

21. Calculate the standard variance 𝜎𝑖 using Eq.

(3);

22. Discover over and under-loaded PMs;

23. Calculate fitness of over and under-loaded

PMs using Eqns. (5) and (6);

24. Calculate the fitness of each VM using Eq.

(8);

25. Elect the most optimal VMs and PMs for

VM migration;

26. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆

27. End

4. Simulation result

This section presents the LSTM-TSLBTSO-

VIKOR’s efficiency by modeling it in CloudSim API

3.0.3 tool. The cloud network is constructed using the

parameters listed in [14]. Also, the performance of

the proposed algorithm is evaluated against the

contemporary algorithms: LSTM-TSTSO-VIKOR

[14], CMODLB [15], APDPSO [16], LBPSGORA

[17] and GWOLB [22] regarding different metrics.

To do this, the considered existing algorithms are also

modeled using the parameters in [14].

4.1 Makespan

It is the total period needed from submitting a task

to the end of the task by the user.

In Fig. 3, a comparison of proposed and existing

TSLB algorithms is plotted in terms of makespan. It

is addressed that the LSTM-TSLBTSO-VIKOR

algorithm reduces the makespan by 22.64%, 20.49%,

17.15%, 12.05% and 7.31% compared to the

CMODLB, APDPSO, LBPSGORA, GWOLB and

LSTM-TSTSO-VIKOR algorithms, respectively for

1000 tasks. This is due to the contribution of both LB

and TS, which decreases the completion period and

assists in reducing makespan.

4.2 Mean resource utilization ratio

The mean RUR is calculated as the fraction of the

mean makespan to the highest makespan of the cloud

network.

Fig. 4 illustrates the comparison of proposed and

existing TSLB algorithms in terms of mean RUR. It

Figure. 3 Makespan vs. No. of tasks

Figure. 4 Mean RUR vs. No. of tasks

Figure. 5 DoI vs. No. of tasks

is noted that the mean RUR of LSTM-TSLBTSO-

VIKOR is increased up to 27.63%, 21.25%, 11.49%,

6.59% and 3.19% compared to the CMODLB,

APDPSO, LBPSGORA, GWOLB and LSTM-

TSTSO-VIKOR algorithms, respectively for 1000

tasks. This is because of balancing load among all

PMs in the network effectively.

4.3 Degree-of-imbalance

It is also known as the execution time, which

measures the inequity of workload dissemination

among VMs as per their abilities.

In Fig. 5, DoI results are compared between

proposed and existing TSLB algorithms. It analyzes

that the LSTM-TSLBTSO-VIKOR lessens DoI by

82.35%, 76.92%, 70%, 62.5% and 40% compared to

the CMODLB, APDPSO, LBPSGORA, GWOLB

and LSTM-TSTSO-VIKOR algorithms, respectively

for 1000 tasks. The contribution of TS and LB can

Received: October 8, 2023. Revised: November 15, 2023. 489

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.42

Figure. 6 Throughput vs. No. of tasks

Figure. 7 Memory utilization vs. No. of tasks

reduce the execution time by scheduling predictable

and unpredictable tasks with balanced load

conditions in the cloud.

4.4 Throughput

It determines the quantity of tasks executed per

interval.

Fig. 6 plots the throughput achieved by the

proposed and existing TSLB algorithms. It shows

that the LSTM-TSLBTSO-VIKOR improves the

throughput by 43.33%, 28.36%, 21.13%, 13.16% and

7.5% compared to the CMODLB, APDPSO,

LBPSGORA, GWOLB and LSTM-TSTSO-VIKOR

algorithms, respectively for 1000 tasks. This realizes

the proposed algorithm can enhance the throughput

by simultaneously performing TS and LB.

4.5 Memory utilization

It is the maximum memory requirement of each

VM for task execution.

Fig. 7 portrays the memory utilization of different

TSLB algorithms in cloud networks. It indicates that

the LSTM-TSLBTSO-VIKOR decreases the

memory utilization up to 32.07%, 29.21%, 26.5%,

20.88% and 10.33% compared to the CMODLB,

APDPSO, LBPSGORA, GWOLB and LSTM-

TSTSO-VIKOR algorithms, respectively for 1000

tasks. This is because of integrating both TS and LB

using TSO algorithm in cloud computing.

Figure. 8 Bandwidth utilization vs. No. of tasks

Figure. 9 Energy utilization vs. No. of tasks

4.6 Bandwidth utilization

It is the maximum bandwidth requirement of each

VM for task execution.

Fig. 8 depicts the bandwidth utilization of

different TSLB algorithms in cloud platforms. It is

noted that the bandwidth use of LSTM-TSLBTSO-

VIKOR is minimized by 20.43%, 19.05%, 15.77%,

13.02% and 3.61% compared to the CMODLB,

APDPSO, LBPSGORA, GWOLB and LSTM-

TSTSO-VIKOR algorithms, respectively for 1000

tasks.

4.7 Energy utilization

It is the overall energy consumption by PMs at a

given period.

Fig. 9 shows a comparison of energy utilization

of PMs using different TSLB algorithms in cloud

platforms. It observes that the LSTM-TSLBTSO-

VIKOR minimizes the energy usage up to 45.71%,

40.63%, 34.93%, 28.57% and 18.8% compared to the

CMODLB, APDPSO, LBPSGORA, GWOLB and

LSTM-TSTSO-VIKOR algorithms, respectively for

1000 tasks. This is achieved by involving effective

LB and TS using TSO, which helps to balance load

among PMs by migrating optimal VMs to the most

appropriate PM, resulting in less energy utilization.

4.8 Number of VM migration

It is the number of migrations created in the VM

migration phase.

Received: October 8, 2023. Revised: November 15, 2023. 490

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.42

Figure. 10 No. of VM migrations vs. No. of tasks

Figure. 11 Load fairness vs. network load

A comparison of number of VM migrations

against varied number of tasks for different TSLB

algorithms is plotted in Fig. 10. It is noted that the

LSTM-TSLBTSO-VIKOR has a minimum number

of VM migrations compared to the other algorithms.

The LSTM-TSLBTSO-VIKOR is better than

CMODLB, APDPSO, LBPSGORA, GWOLB and

LSTM-TSTSO-VIKOR by about 91.67%, 90%,

85.71%, 80% and 75%, respectively for 1000 tasks.

This is because of TSO simultaneously schedules the

optimal tasks to VMs and chooses the most optimal

VM to migrate to the most appropriate PM for

achieving LB.

4.9 Load fairness

It depends on the completion period of all tasks

and calculated as:

𝐿𝐹 =
(∑ 𝐶𝑇𝑡

𝑁
𝑡=1)2

𝑁 ∑ (𝐶𝑇𝑡)2𝑁
𝑡=1

⁄ (9)

In Eq. (9), 𝐶𝑇𝑡 denotes the completion period of

task 𝑡 and 𝑁 denotes the total number of tasks. It

determines the network fairness with respect to the

load.

Fig. 11 illustrates the load fairness against

different network loads for proposed and existing

TSLB algorithms. It is addressed that the LSTM-

TSLBTSO-VIKOR rises the load fairness up to

13.89%, 11.82%, 6.96%, 5.13% and 2.5% compared

to the CMODLB, APDPSO, LBPSGORA, GWOLB

and LSTM-TSTSO-VIKOR, respectively for 100%

network load. Due to the combination of both TS and

LB, the LSTM-TSLBTSO-VIKOR is reliable for

heavy network load, resulting in more effective LB in

contrast with the existing algorithms.

5. Conclusion

In this study, the LSTM-TSLBTSO-VIKOR

algorithm was developed to perform TS and VM

migration concurrently for LB in cloud computing.

The TSO was used to schedule optimal tasks and

select the best VMs to migrate to the most suitable

PMs. This approach ensures that energy utilization

and load fairness are balanced among all available

PMs in the network. To evaluate the performance of

the algorithm, simulations were conducted using

different metrics and varied tasks. The results

demonstrated that the LSTM-TSLBTSO-VIKOR

algorithm achieved improved mean RUR and

throughput, as well as reduced makespan, DoI,

memory use, bandwidth use, energy consumption,

and the number of VM migrations compared to

previous TSLB algorithms. Specifically, the

simulation results showed that the LSTM-

TSLBTSO-VIKOR algorithm achieved a makespan

of 2700 seconds, a mean RUR of 0.97, a DoI of 0.03,

a throughput of 0.86 tasks/sec, memory usage of

26.9MB, a bandwidth of 187MBps, energy usage of

95KWh, one VM migration, and a load fairness of

1.23 for 1000 tasks.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, methodology, software,

validation, Ramya; formal analysis, investigation,

Samundeeswari; resources, data curation, writing—

original draft preparation, Ramya; writing—review

and editing, Ramya; visualization; supervision,

Samundeeswari.

References

[1] S. Bharany, S. Sharma, O. I. Khalaf, G. M.

Abdulsahib, A. S. Al Humaimeedy, T. H.

Aldhyani, and H. Alkahtani, “A Systematic

Survey on Energy-Efficient Techniques in

Sustainable Cloud Computing”, Sustainability,

Vol. 14, No. 10, p. 6256, 2022.

[2] M. Abdullahi, M. A. Ngadi, S. I. Dishing and S.

I. M. Abdulhamid, “An Adaptive Symbiotic

Organisms Search for Constrained Task

Scheduling in Cloud Computing”, Journal of

Received: October 8, 2023. Revised: November 15, 2023. 491

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.42

Ambient Intelligence and Humanized

Computing, Vol. 14, No. 7, pp. 8839-8850, 2023.

[3] A. Rahimikhanghah, M. Tajkey, B. Rezazadeh

and A. M. Rahmani, “Resource Scheduling

Methods in Cloud and Fog Computing

Environments: A Systematic Literature

Review”, Cluster Computing, Vol. 25, pp. 911-

945, 2022.

[4] N. S. Lohitha and M. Pounambal, “Integrated

Publish/Subscribe and Push-Pull Method for

Cloud Based IoT Framework for Real Time Data

Processing”, Measurement: Sensors, Vol. 27, p.

100699, 2023.

[5] A. Rashid and A. Chaturvedi, “Cloud

Computing Characteristics and Services: A

Brief Review”, International Journal of

Computer Sciences and Engineering, Vol. 7, No.

2, pp. 421-426, 2019.

[6] F. K. Parast, C. Sindhav, S. Nikam, H. I. Yekta,

K. B. Kent, and S. Hakak, “Cloud Computing

Security: A Survey of Service-Based Models”,

Computers & Security, Vol. 114, p. 102580,

2022.

[7] H. Kaur and A. Anand, “Review and Analysis of

Secure Energy Efficient Resource Optimization

Approaches for Virtual Machine Migration in

Cloud Computing”, Measurement: Sensors, Vol.

24, p. 100504, 2022.

[8] A. S. Abohamama, A. El-Ghamry and E.

Hamouda, “Real-Time Task Scheduling

Algorithm for IoT-Based Applications in the

Cloud–Fog Environment”, Journal of Network

and Systems Management, Vol. 30, No. 4, p. 54,

2022.

[9] D. A. Shafiq, N. Z. Jhanjhi and A. Abdullah,

“Load Balancing Techniques in Cloud

Computing Environment: A Review”, Journal

of King Saud University-Computer and

Information Sciences, Vol. 34, No. 7, pp. 3910-

3933, 2022.

[10] R. Ghafari, F. H. Kabutarkhani and N. Mansouri,

“Task Scheduling Algorithms for Energy

Optimization in Cloud Environment: A

Comprehensive Review”, Cluster Computing,

Vol. 25, No. 2, pp. 1035-1093, 2022.

[11] P. Mukherjee, P. K. Pattnaik, T. Swain and A.

Datta, “Task Scheduling Algorithm Based on

Multi Criteria Decision Making Method for

Cloud Computing Environment:

TSABMCDMCCE”, Open Computer Science,

Vol. 9, No. 1, pp. 279-291, 2019.

[12] E. H. Houssein, A. G. Gad, Y. M. Wazery and P.

N. Suganthan, “Task Scheduling in Cloud

Computing Based on Meta-Heuristics: Review,

Taxonomy, Open Challenges, and Future

Trends”, Swarm and Evolutionary Computation,

Vol. 62, p. 100841, 2021.

[13] D. Alsadie, “TSMGWO: Optimizing Task

Schedule Using Multi-Objectives Grey Wolf

Optimizer for Cloud Data Centers”, IEEE

Access, Vol. 9, pp. 37707-37725, 2021.

[14] B. Ramya and E. S. Samundeeswari, “Amended

Hybrid Scheduling for Cloud Computing with

Real-Time Reliability Forecasting”,

International Journal of Computer Networks

and Applications, Vol. 10, No. 3, pp. 310-324,

2023.

[15] S. Negi, M. M. S. Rauthan, K. S. Vaisla and N.

Panwar, “CMODLB: An Efficient Load

Balancing Approach in Cloud Computing

Environment”, The Journal of Supercomputing,

Vol. 77, pp. 8787-8839, 2021.

[16] Z. Miao, P. Yong, Y. Mei, Y. Quanjun and X.

Xu, “A Discrete PSO-Based Static Load

Balancing Algorithm for Distributed

Simulations in a Cloud Environment”, Future

Generation Computer Systems, Vol. 115, pp.

497-516, 2021.

[17] S. M. Mirmohseni, A. Javadpour and C. Tang,

“LBPSGORA: Create Load Balancing with

Particle Swarm Genetic Optimization Algorithm

to Improve Resource Allocation and Energy

Consumption in Clouds Networks”,

Mathematical Problems in Engineering, Vol.

2021, pp. 1-15, 2021.

[18] L. H. Hung, C. H. Wu, C. H. Tsai and H. C.

Huang, “Migration-Based Load Balance of

Virtual Machine Servers in Cloud Computing by

Load Prediction Using Genetic-Based Methods”,

IEEE Access, Vol. 9, pp. 49760-49773, 2021.

[19] U. Chourasia and S. Silakari, “Adaptive Neuro

Fuzzy Interference and PNN Memory Based

Grey Wolf Optimization Algorithm for Optimal

Load Balancing”, Wireless Personal

Communications, Vol. 119, pp. 3293-3318,

2021.

[20] A. Asghari, M. K. Sohrabi and F. Yaghmaee,

“Task Scheduling, Resource Provisioning, and

Load Balancing on Scientific Workflows Using

Parallel SARSA Reinforcement Learning

Agents and Genetic Algorithm”, The Journal of

Supercomputing, Vol. 77, pp. 2800-2828, 2021.

[21] J. He, “Cloud Computing Load Balancing

Mechanism Taking into Account Load

Balancing Ant Colony Optimization Algorithm”,

Computational Intelligence and Neuroscience,

Vol. 2022, pp. 1-10, 2022.

[22] S. Sefati, M. Mousavinasab and R. Zareh

Farkhady, “Load Balancing in Cloud Computing

Environment Using the Grey Wolf Optimization

Received: October 8, 2023. Revised: November 15, 2023. 492

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.42

Algorithm Based on the Reliability:

Performance Evaluation”, The Journal of

Supercomputing, Vol. 78, No. 1, pp. 18-42, 2022.
[23] U. K. Jena, P. K., Das and M. R. Kabat,

“Hybridization of Meta-Heuristic Algorithm for

Load Balancing in Cloud Computing

Environment”, Journal of King Saud University-

Computer and Information Sciences, Vol. 34,

No. 6, pp. 2332-2342, 2022.

