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Abstract: Cloud computing is a decentralized platform that efficiently allows user applications to utilize various 

resources. However, it faces challenges in task scheduling (TS) and load balancing (LB). To address these issues, 

several metaheuristic algorithms have been developed. One such algorithm is a hybrid TS algorithm that uses long 

short-term memory (LSTM) to determine task runtime reliability, tuna swarm optimization (TSO) to schedule optimal 

tasks with high expected runtime, and the VIKOR technique to backfill remaining tasks. Despite these efforts, the TS 

among nodes is unbalanced, leading to overloaded or under-loaded Physical Machines (PMs) and high energy 

consumption. To tackle these problems, this article proposes a hybrid TSLB algorithm to achieve balanced energy 

utilization and load fairness among PMs in heterogeneous cloud networks. The TSO algorithm is used to select optimal 

tasks and virtual machines (VMs) for migration to suitable PMs. The selection of optimal tasks is based on the fitness 

function of all VMs, while the selection of optimal VMs for migration is determined by the fitness function of all PMs 

in the network. This approach ensures the best mapping correlation between selected tasks and VMs, resulting in 

effective load distribution. Simulation results show that the LSTM-TSLBTSO-VIKOR algorithm achieves a makespan 

of 2700 seconds, a mean resource utilization ratio (RUR) of 0.97, a degree of imbalance (DoI) of 0.03, a throughput 

of 0.86 tasks/sec, memory usage of 26.9MB, a bandwidth of 187MBps, energy consumption of 95KWh, one VM 

migration, and a load fairness of 1.23 for 1000 tasks. These results outperform the LSTM-TSTSO-VIKOR, CMODLB, 

APDPSO, LBPSGORA, and GWOLB algorithms. 

Keywords: Cloud computing, Task scheduling, Load balancing, Tuna swarm optimization, VM migration, Physical 

machine. 

 

 

1. Introduction 

The importance of cloud computing has grown in 

recent years across many sectors. Cloud services are 

provided over the internet on an "on-demand" basis, 

meaning that users can obtain the resources they need 

when they need them [1, 2]. It might also manage a 

diverse set of services, depending on the kinds of 

applications and designs its users need. It uses shared 

hardware and software and is paid for as it is used. 

Infrastructure as a service (IaaS) is one model for 

managing computing resources such as servers, data 

centers, and VMs. It provides a virtual server in the 

cloud, where data can be processed and stored [3]. 

Because cloud resources are housed on VMs, users 

can connect to servers in their local area. The cost 

relies on the agreement between the subscriber and 

the CSPs (Cloud Service Providers) [4]. It also makes 

it simpler for CSPs to provide their customers with 

servers that are equipped with powerful computing 

capabilities that can be used to access applications 

hosted in the cloud [5, 6]. 

The VM makes use of the cloud's resources, like 

storage space and processing power, to function. 

Therefore, the cloud system has an uneven 

distribution of resources, and certain VMs are unable 

to access the resources they require [7]. To reduce 

idle time, the VM must respond quickly after the task 

has been sent to the cloud for processing. However, 

for stability and optimal resource utilization, tasks 

should be distributed among all VMs concurrently 

using TS algorithms [8]. Therefore, it is crucial to 

determine the distribution to ensure that not all tasks 
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are assigned to a single VM, which could lead to the 

unavailability or imbalance of other VMs. To avoid 

this, a schedule needs to include aspects like 

makespan, costs, and resources.  

Achieving appropriate outcomes under a variety 

of task restrictions, like execution deadlines, 

guarantees efficient use of available resources [9]. 

First-come-first-serve (FCFS), maximum-minimum 

(Max-Min), and other similar strategies have been 

used to address TS difficulties by various academics 

[10-11]. However, because of TS's multimodal 

behavior, such approaches have the potential problem 

of being misleading in local minima. Metaheuristic 

algorithms have recently gained a lot of popularity as 

a means to quickly and efficiently locate a near-ideal 

solution to the TS dilemma. To get near-ideal 

solutions and provide trade-offs to CSPs, various 

metaheuristic techniques have dealt with TS 

challenges utilizing single or multiple criteria [12]. 

Among many others, the TS using modified grey 

wolf optimization (TSMGWO) can help VMs save 

costs and make better use of their resources by 

discovering near-ideal solutions while dealing with 

conflicting criteria [13]. However, this technique 

merely attempts to optimize system throughput, 

resource utilization, and task distribution between 

VMs; other parameters, including memory and 

bandwidth use, are required to increase TS ability. 

As a result, based on the memory and bandwidth 

constraints for efficient TS, a hybrid TSA was 

suggested that utilizes both the linear matching 

method and backfilling [14]. To forecast the task's 

runtime reliability, the LSTM network was used as a 

meta-learner. The tasks were separated into 

predictable and unpredictable queues. A plan-based 

scheduling method based on TSO was used to 

schedule tasks with longer predicted runtimes. The 

other tasks were backfilled using the VIKOR 

approach. The RUR of predicted tasks among newly 

submitted tasks was monitored and used to 

dynamically adjust the percentage of CPU cores 

reserved for backfilling. On the other hand, it still did 

not consider the energy utilization of data centers like 

PMs, which may be over-utilized or under-utilized 

according to the number of tasks scheduled. 

Therefore, in this manuscript, VM migration is 

proposed together with the LSTM-TSO-VIKOR-

based TS in heterogeneous cloud networks. The main 

aim of this study is to efficiently trade-off energy 

utilization and load fairness among PMs. The 

contribution of this new algorithm is applying the 

TSO algorithm for simultaneous TS and VM 

migration in cloud platforms. The TSO can 

concurrently choose the optimal tasks and optimal 

VMs to migrate to the most appropriate PMs. VM 

migration is optimized based on the fitness function 

of all PMs, which discovers the best mapping 

correlation between elected VMs to be matched to the 

most appropriate PM. This results in reducing energy 

utilization and balancing load among every PM in the 

network. 

The rest of the sections are formatted as follows: 

Section 2 reviews related works. Section 3 describes 

the proposed technique, and section 4 presents its 

simulation findings. Section 5 summarizes the study 

and gives future scope. 

2. Literature survey 

The LB is crucial in cloud systems to alleviate the 

utilization of computing resources during TS. This 

section reviews different LB via VM migration 

models using metaheuristic algorithms in cloud 

platforms developed these days. 

Negi et al. [15] developed a Clustering-based 

Multiple Objective Dynamic Load Balancing 

(CMODLB) method to balance the load among VMs 

and PMs in the cloud platform. Initially, an artificial 

neural network-based load balancing (ANN-LB) was 

used to cluster VMs into underloaded and overloaded 

categories. Then, the Technique of Order Preference 

by Similarity to the Ideal Solution with Particle 

Swarm Optimization (TOPSIS-PSO) was employed 

to schedule runtime tasks. Additionally, an interval 

Type-2 fuzzy logic system (IT2FLS) was utilized to 

migrate the optimal VM from the overloaded PMs. 

However, the energy efficiency of the method was 

poor, and the RUR was ineffective when dealing with 

storage-intensive tasks. 

Miao et al. [16] developed a novel PSO-based 

static LB scheme called adaptive Pbest discrete PSO 

(APDPSO) on a cloud platform. However, this 

scheme only considered the static LB issue, which 

impacts VM RUR and memory consumption when 

performing multiple tasks. Mirmohseni et al. [17] 

presented an LBPSGORA (LB with particle swarm 

genetic optimization and resource allocation) 

algorithm to reduce energy usage in cloud networks. 

However, the algorithm did not consider reliability 

and response periods, resulting in poor load fairness.  

Hung et al. [18] used gene expression 

programming (GEP) to create symbolic regression 

models that define the performance of VMs, which 

are then used to predict the loads of VM hosts after 

LB. The genetic algorithm is then used to consider 

the current and future loads of VM hosts to find the 

best VM-VM host assignment for VM migration. 

However, this approach has a high RUR, which leads 

to degradation in LB performance. Chourasia &  
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Table 1. List of notations 

Notations Description 

𝑃𝑀 Physical machine 

𝑛  Number of PMs 

𝑉𝑀  Virtual machine 

𝑚 Number of VMs 

𝑉𝐿̅̅̅̅
𝑖𝑗   Mean load of 𝑗𝑡ℎ VM in 𝑖𝑡ℎ PM 

𝐶𝑈𝑗  CPU utilization of 𝑗𝑡ℎ VM 

𝑀𝑈𝑗  Memory utilization of 𝑗𝑡ℎ VM 

𝐵𝑈𝑗   Bandwidth utilization of 𝑗𝑡ℎ VM 

𝑃𝐿̅̅̅̅
𝑖  Mean load of 𝑖𝑡ℎ PM 

𝜎𝑖 Standard variation for 𝑖𝑡ℎ PM 

𝑃𝐿̅̅̅̅  Mean load of all PMs 

𝐹𝑖 Fitness of each tuna swarm 

𝜏𝑖   Tuna swarm parameter 

𝛼 Relative importance between 𝜏𝑖 

𝛽 Relative importance between weight 𝜂𝑖 

𝐸𝑋𝐵𝑖  Additional network bandwidth available 

for 𝑃𝑀𝑖  

𝑅𝐴𝑀(𝑎) Amount of RAM currently used by 𝑉𝑀𝑎 

𝑅𝐴𝑀(𝑢) Amount of RAM currently used by 𝑉𝑀𝑢 

𝐶𝑈𝑉𝑀𝑗
 Required CPU utilization for 𝑗𝑡ℎ VM 

𝑀𝑈𝑉𝑀𝑗
 Required memory utilization for 𝑗𝑡ℎ VM 

𝐸𝑋𝐵𝑉𝑀𝑗
 Required additional bandwidth for 𝑗𝑡ℎ 

VM 

𝑆𝑇𝑉𝑀𝑗
 Required storage size for 𝑗𝑡ℎ VM 

𝐶𝑈𝑃𝑀𝑖
 Required CPU utilization for 𝑖𝑡ℎ PM 

𝑀𝑈𝑃𝑀𝑖
 Required memory utilization for 𝑖𝑡ℎ PM 

𝐸𝑋𝐵𝑃𝑀𝑖
 Required additional bandwidth for 𝑖𝑡ℎ PM 

𝑆𝑇𝑃𝑀𝑖
 Required storage size for 𝑖𝑡ℎ PM 

𝑁𝑃 Tuna population 

𝑖𝑡𝑟𝑚𝑎𝑥   Maximum number of iterations 

𝑃𝑇𝑗   Number of predictable tasks 

𝛼1, 𝛼2, 𝑝  TSO parameters 

 

Silakari [19] developed an integrated adaptive neuro-

fuzzy inference system-polynomial neural network 

(ANFIS-PNN) and memory-based grey wolf 

optimization (GWO) for optimal LB. However, the 

number of VM migrations was still high since the 

considered objective functions were not efficient. 

Asghari et al. [20] presented a parallel SARSA 

reinforcement learning and genetic algorithm for TS, 

resource distribution, and LB in cloud platforms. 

First, a smart agent was applied to schedule tasks 

during the training phase. After that, all resources 

were allocated to an agent by choosing the most 

suitable set of tasks to increase resource utilization. 

The genetic algorithm was used to find the globally 

best solutions, such as task deadlines, by calculating 

the fitness function, resulting in improved LB. 

However, the makespan was low due to the longer 

scheduling period it took. 

He et al. [21] presented an improved genetic ant 

colony optimization (ACO) algorithm to achieve LB 

in a cloud platform. However, the load fairness was 

degraded when increasing the number of tasks. Sefati 

et al. [22] presented the GWO algorithm according to 

resource reliability to sustain appropriate load-

balancing. Initially, the GWO algorithm was applied 

to discover the unemployed or busy nodes. Then, 

each node’s threshold and fitness function was 

computed to maintain a balanced load across each 

VM in a cloud platform. But it needs other parameters 

along with the reliability to balance load among the 

dependent tasks adaptively. 

Jena et al. [23] developed a new dynamic LB 

method among VMs by hybridizing Modified PSO 

and improved Q-learning (QMPSO). The velocity of 

MPSO was adjusted using the gbest and pbest values, 

which were determined by the optimal action formed 

by the improved Q-learning. Additionally, the 

waiting interval for tasks was optimized to balance 

the load among VMs and tradeoff among task 

priorities. But the load balance among dependent 

tasks was not effective, resulting in a high RUR. 

From the literature, it is addressed that the 

previous researchers mostly focused on separate 

algorithms for both TS and LB in cloud computing. 

But those algorithms have many drawbacks like high 

computational complexity, trapping into local optima, 

and limited objective functions, which limit the 

system performance. In contrast with previous 

studies, the LSTM-TSLBTSO-VIKOR algorithm is a 

new hybrid method to concurrently achieve both TS 

and LB in cloud computing. It can balance the energy 

utilization and load among all PMs in the network 

based on different objective functions. 

3. Proposed methodology 

This section describes the proposed VM 

migration along with TS in cloud computing. First, 

the LSTM is applied to predict task runtime reliability, 

which helps in separating tasks into predictable and 

unpredictable. Then, the TSO is used to schedule the 

tasks with higher expected runtime reliability, 

whereas other tasks are backfilled by the VIKOR 

technique [14]. In this study, the TSO is also used to 

find the most optimal VM to migrate to the most 

appropriate PMs for balancing scheduled tasks 

(loads). The notations utilized in this study are 

outlined in Table 1. 

3.1 Problem statement 

In cloud platform, all PMs have distinct quantity 

of VMs. The group of each PM in datacenter is 

denoted by 𝑃𝑀 = {𝑃𝑀1, 𝑃𝑀2, … , 𝑃𝑀𝑛} , where 𝑛  
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Figure. 1 Schematic representation of: (a) balanced and (b) unbalanced cloud network scenarios 

 

 
Figure. 2 Overview of proposed hybrid TSLB algorithm 

 

refers to the quantity of PMs and the group of each 

VM in datacenter is denoted by 𝑉𝑀 =
{𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑚}, where 𝑚 refers to the quantity 

of VMs. A balanced and unbalanced cloud network 

is illustrated in Fig. 1, where the tasks are scheduled 

to each VM in each PM to achieve LB in balanced 

cloud network and the tasks are scheduled to a certain 

PM to make it overloaded in the unbalanced cloud 

network. 

The key objective is to lessen energy utilization 

and increase the resource utilization, as well as to 

maintain a balanced load among all PMs within a 

cloud network. Without balancing the loads, the 

network can increase makespan and energy 

utilization for completing its tasks. To avoid this 

issue, a hybrid TSLB algorithm is proposed using the 

TSO algorithm, which is portrayed in Fig. 2. 

3.2 Load balancing using TSO 

In TSO, tuna swarm can compute the standard 

variation (𝜎)  for all PMs to discover under and 

overloaded PMs. It must discover the load of all PMs 

based on the load (scheduled tasks) of VMs deployed 

into it. The mean load of 𝑗𝑡ℎ VM in 𝑖𝑡ℎ PM (𝑉𝐿̅̅̅̅
𝑖𝑗) is 

determined by 

 

𝑉𝐿̅̅̅̅
𝑖𝑗 = 𝐶𝑈𝑗 + 𝑀𝑈𝑗 + 𝐵𝑈𝑗                 (1) 

 

In Eq. (1), 𝐶𝑈𝑗 , 𝑀𝑈𝑗 and 𝐵𝑈𝑗 are the utilization of 

CPU, memory, and bandwidth of 𝑗𝑡ℎ  VM, 

correspondingly. The mean load of 𝑖𝑡ℎ PM (𝑃𝐿̅̅̅̅
𝑖) and 

standard variation for 𝑖𝑡ℎ PM (𝜎𝑖) is computed by 

 

𝑃𝐿̅̅̅̅
𝑖 =

∑ 𝑉𝐿̅̅̅̅ 𝑖𝑗
𝑚
𝑗=1

𝑚
, ∀𝑉𝑀1, … , 𝑉𝑀𝑚 ∈ 𝑃𝑀𝑖  (2) 
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𝜎𝑖 = √
1

𝑛
∑ (𝑃𝐿̅̅̅̅ − 𝑃𝐿̅̅̅̅

𝑖)2𝑛
𝑖=1                (3) 

 

In Eq. (3), 𝑛 denotes the number of all PMs and 

𝑃𝐿̅̅̅̅  denotes the mean load of all PMs, which is 

determined by 

 

𝑃𝐿̅̅̅̅ =
1

𝑛
∑ 𝑃𝐿̅̅̅̅

𝑖
𝑛
𝑖=1     (4) 

 

If 𝜎𝑖 is less than a minimum threshold, then 𝑃𝑀𝑖 

is under-loaded host. If 𝜎𝑖 is greater than a maximum 

threshold, then 𝑃𝑀𝑖 is over-loaded host. Threshold is 

calculated as follows: 

A minimum threshold is the lowest 𝑃𝐿̅̅̅̅
𝑖  among 

each PM and the maximum threshold is equivalent to 

𝑃𝐿̅̅̅̅
𝑖. Once the under or over-loaded PMs, tuna swarm 

makes its swings in knowledge base to update each 

swarm about its outcomes. At this step, the 

knowledge base applies TSO to organize hosts by Eq. 

(5) and considers energy utilization for all PMs. After 

that, the new host’s list is used to discover the 

appropriate PM among each hosts to execute VM 

migration from it. 

The TSO determines its fitness (𝐹𝑖)  based on 

over or under-loaded PMs as: 

 

𝐹𝑖 =
(𝜏𝑖)𝛼∗(𝜂𝑖)𝛽

∑ (𝜏𝑖)𝛼∗(𝜂𝑖)𝛽𝑚
𝑖=1

             (5) 

𝐹𝑖 =
(

1

𝜏𝑖
)

𝛼

∗(𝜂𝑖)𝛽

∑ (
1

𝜏𝑖
)

𝛼

∗(𝜂𝑖)𝛽𝑚
𝑖=1

            (6) 

 

In Eqs. (5) and (6), 𝛼  and 𝛽  provides relative 

importance between tuna swarm 𝜏𝑖 , and weight 𝜂𝑖 . 

The tuna swarm parameter 𝜏𝑖 is defined by the load 

of 𝑃𝑀𝑖. 

So, the most appropriate 𝑃𝑀𝑖 is chosen and used 

in migration state to inform each tuna by knowledge 

base. After, the tuna chooses the appropriate VM to 

be migrated to the other PM by the minimum 

migration interval strategy, which is the amount of 

RAM used by the VM divided by the additional 

network bandwidth available for 𝑃𝑀𝑖 as: 

 
𝑅𝐴𝑀(𝑎)

𝐸𝑋𝐵𝑖
≤

𝑅𝐴𝑀(𝑢)

𝐸𝑋𝐵𝑖
, ∀𝑎, 𝑢 ∈ 𝑉𝑀𝑗               (7) 

In Eq. (7), 𝑉𝑀𝑗  is group of VMs currently 

allocated to 𝑃𝑀𝑖 and 𝐸𝑋𝐵𝑖 is the additional network 

bandwidth available for 𝑃𝑀𝑖 . The parameters 

𝑅𝐴𝑀(𝑎)  and 𝑅𝐴𝑀(𝑢)  are the amount of RAM 

currently used by 𝑉𝑀𝑎  and 𝑉𝑀𝑢 , correspondingly. 

Then, the TSO determines fitness function to 

discover the optimal mapping correlation between 

chosen VMs to be matched to the most appropriate 

PM, which compatible with the list of PMs from 

knowledge base as: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑉𝑀𝑗, 𝑃𝑀𝑖) =
𝐶𝑈𝑃𝑀𝑖

−𝐶𝑈𝑉𝑀𝑗

𝐶𝑈𝑉𝑀𝑗

∙  

𝑀𝑈𝑃𝑀𝑖
−𝑀𝑈𝑉𝑀𝑗

𝑀𝑈𝑉𝑀𝑗

∙
𝐸𝑋𝐵𝑃𝑀𝑖

−𝐸𝑋𝐵𝑉𝑀𝑗

𝐸𝑋𝐵𝑉𝑀𝑗

∙
𝑆𝑇𝑃𝑀𝑖

−𝑆𝑇𝑉𝑀𝑗

𝑆𝑇𝑉𝑀𝑗

   (8) 

 

In Eq. (8), 𝐶𝑈𝑉𝑀𝑗
, 𝑀𝑈𝑉𝑀𝑗

, 𝐸𝑋𝐵𝑉𝑀𝑗
 and 𝑆𝑇𝑉𝑀𝑗

 

are the VM’s parameters (i.e., CPU use, memory, 

bandwidth and storage size, correspondingly), which 

VM requests, as well as 𝐶𝑈𝑃𝑀𝑖
, 𝑀𝑈𝑃𝑀𝑖

, 𝐸𝑋𝐵𝑃𝑀𝑖
 and 

𝑆𝑇𝑃𝑀𝑖
 are the PM’s parameters (i.e., CPU use, 

memory, bandwidth and storage size, 

correspondingly), which PM has. 

At last, tuna swarm consider its data about VM 

which can be migrated and appropriate PM to migrate 

VM to it by knowledge base. The tuna swarm 

executes migration by moving the VM to the 

appropriate PM. Algorithm 1 describes the TS and 

VM migration using TSO to achieve LVB in cloud 

network. 

Algorithm 1 Task Scheduling and VM Migration 

using TSO for Load Balancing 

Input: Tuna population size (𝑁𝑃) , maximum 

iteration (𝑖𝑡𝑟𝑚𝑎𝑥), the number of predictable tasks 

(𝑃𝑇𝑗), 𝑗 ∈ {1, … , 𝐽}, the number of VMs (𝑉𝑀𝑚) and 

the number of PMs (𝑃𝑀𝑛)  

Output: Set of optimal predictable task 

schedules, Optimal VMs to be migrated to the most 

appropriate PMs 

1. Begin 

2. Generate the initial population of tunas 

𝑆𝑖
𝑖𝑛𝑖 (𝑖 = 1, … , 𝑁𝑃) randomly; 

3. Set free parameters 𝑎 and 𝑧; 

4. 𝒘𝒉𝒊𝒍𝒆(𝑡 < 𝑖𝑡𝑟𝑚𝑎𝑥)  

5.    Compute the fitness value 𝑓  of all tunas 

based on the makespan, resource utilization, 

throughput, DoI, memory use, and bandwidth 

use; 

6.    Modify the location and value of the best 

tuna 𝑆𝑏𝑒𝑠𝑡
𝑡 ; 

7.    𝒇𝒐𝒓(𝑎𝑙𝑙 𝑡𝑢𝑛𝑎𝑠) 

8.       Modify TSO parameters 𝛼1, 𝛼2, 𝑝; 

9.       𝒊𝒇(𝑟𝑎𝑛𝑑 < 𝑧) 

10.          Modify 𝑆𝑖
𝑡+1; 

11.       𝒆𝒍𝒔𝒆 𝒊𝒇(𝑟𝑎𝑛𝑑 ≥ 𝑧) 

12.          𝒊𝒇(𝑟𝑎𝑛𝑑 < 0.5) 

13.             Modify the location 𝑆𝑖
𝑡+1; 

14.          𝒆𝒍𝒔𝒆 𝒊𝒇(𝑟𝑎𝑛𝑑 ≥ 0.5) 

15.             Modify the location 𝑆𝑖
𝑡+1; 

16.          𝒆𝒏𝒅 𝒊𝒇 



Received:  October 8, 2023.     Revised: November 15, 2023.                                                                                          488 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.42 

 

17.       𝒆𝒏𝒅 𝒊𝒇 

18.    𝒆𝒏𝒅 𝒇𝒐𝒓 

19.    Find the best tuna 𝑆𝑏𝑒𝑠𝑡 in the search space, 

and the optimal fitness value (𝑓(𝑆𝑏𝑒𝑠𝑡)); 

20.    Obtain the optimal set of predictable 

schedules; 

21.    Calculate the standard variance 𝜎𝑖 using Eq. 

(3); 

22.    Discover over and under-loaded PMs; 

23.    Calculate fitness of over and under-loaded 

PMs using Eqns. (5) and (6); 

24.    Calculate the fitness of each VM using Eq. 

(8); 

25.    Elect the most optimal VMs and PMs for 

VM migration; 

26. 𝒆𝒏𝒅 𝒘𝒉𝒊𝒍𝒆  

27. End 

4. Simulation result  

This section presents the LSTM-TSLBTSO-

VIKOR’s efficiency by modeling it in CloudSim API 

3.0.3 tool. The cloud network is constructed using the 

parameters listed in [14]. Also, the performance of 

the proposed algorithm is evaluated against the 

contemporary algorithms: LSTM-TSTSO-VIKOR 

[14], CMODLB [15], APDPSO [16], LBPSGORA 

[17] and GWOLB [22] regarding different metrics. 

To do this, the considered existing algorithms are also 

modeled using the parameters in [14]. 

4.1 Makespan 

It is the total period needed from submitting a task 

to the end of the task by the user. 

In Fig. 3, a comparison of proposed and existing 

TSLB algorithms is plotted in terms of makespan. It 

is addressed that the LSTM-TSLBTSO-VIKOR 

algorithm reduces the makespan by 22.64%, 20.49%, 

17.15%, 12.05% and 7.31% compared to the 

CMODLB, APDPSO, LBPSGORA, GWOLB and 

LSTM-TSTSO-VIKOR algorithms, respectively for 

1000 tasks. This is due to the contribution of both LB 

and TS, which decreases the completion period and 

assists in reducing makespan. 

4.2 Mean resource utilization ratio 

The mean RUR is calculated as the fraction of the 

mean makespan to the highest makespan of the cloud 

network. 

Fig. 4 illustrates the comparison of proposed and 

existing TSLB algorithms in terms of mean RUR. It  

 

 
Figure. 3 Makespan vs. No. of tasks 

 

 
Figure. 4 Mean RUR vs. No. of tasks 

 

 
Figure. 5 DoI vs. No. of tasks 

 

is noted that the mean RUR of LSTM-TSLBTSO-

VIKOR is increased up to 27.63%, 21.25%, 11.49%, 

6.59% and 3.19% compared to the CMODLB, 

APDPSO, LBPSGORA, GWOLB and LSTM-

TSTSO-VIKOR algorithms, respectively for 1000 

tasks. This is because of balancing load among all 

PMs in the network effectively. 

4.3 Degree-of-imbalance 

It is also known as the execution time, which 

measures the inequity of workload dissemination 

among VMs as per their abilities. 

In Fig. 5, DoI results are compared between 

proposed and existing TSLB algorithms. It analyzes 

that the LSTM-TSLBTSO-VIKOR lessens DoI by 

82.35%, 76.92%, 70%, 62.5% and 40% compared to 

the CMODLB, APDPSO, LBPSGORA, GWOLB 

and LSTM-TSTSO-VIKOR algorithms, respectively 

for 1000 tasks. The contribution of TS and LB can  
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Figure. 6 Throughput vs. No. of tasks 

 

 
Figure. 7 Memory utilization vs. No. of tasks 

 

reduce the execution time by scheduling predictable 

and unpredictable tasks with balanced load 

conditions in the cloud. 

4.4 Throughput 

It determines the quantity of tasks executed per 

interval. 

Fig. 6 plots the throughput achieved by the 

proposed and existing TSLB algorithms. It shows 

that the LSTM-TSLBTSO-VIKOR improves the 

throughput by 43.33%, 28.36%, 21.13%, 13.16% and 

7.5% compared to the CMODLB, APDPSO, 

LBPSGORA, GWOLB and LSTM-TSTSO-VIKOR 

algorithms, respectively for 1000 tasks. This realizes 

the proposed algorithm can enhance the throughput 

by simultaneously performing TS and LB. 

4.5 Memory utilization 

It is the maximum memory requirement of each 

VM for task execution. 

Fig. 7 portrays the memory utilization of different 

TSLB algorithms in cloud networks. It indicates that 

the LSTM-TSLBTSO-VIKOR decreases the 

memory utilization up to 32.07%, 29.21%, 26.5%, 

20.88% and 10.33% compared to the CMODLB, 

APDPSO, LBPSGORA, GWOLB and LSTM-

TSTSO-VIKOR algorithms, respectively for 1000 

tasks. This is because of integrating both TS and LB 

using TSO algorithm in cloud computing. 

 
Figure. 8 Bandwidth utilization vs. No. of tasks 

 

 
Figure. 9 Energy utilization vs. No. of tasks 

4.6 Bandwidth utilization 

It is the maximum bandwidth requirement of each 

VM for task execution. 

Fig. 8 depicts the bandwidth utilization of 

different TSLB algorithms in cloud platforms. It is 

noted that the bandwidth use of LSTM-TSLBTSO-

VIKOR is minimized by 20.43%, 19.05%, 15.77%, 

13.02% and 3.61% compared to the CMODLB, 

APDPSO, LBPSGORA, GWOLB and LSTM-

TSTSO-VIKOR algorithms, respectively for 1000 

tasks. 

4.7 Energy utilization 

It is the overall energy consumption by PMs at a 

given period. 

Fig. 9 shows a comparison of energy utilization 

of PMs using different TSLB algorithms in cloud 

platforms. It observes that the LSTM-TSLBTSO-

VIKOR minimizes the energy usage up to 45.71%, 

40.63%, 34.93%, 28.57% and 18.8% compared to the 

CMODLB, APDPSO, LBPSGORA, GWOLB and 

LSTM-TSTSO-VIKOR algorithms, respectively for 

1000 tasks. This is achieved by involving effective 

LB and TS using TSO, which helps to balance load 

among PMs by migrating optimal VMs to the most 

appropriate PM, resulting in less energy utilization. 

4.8 Number of VM migration 

It is the number of migrations created in the VM 

migration phase. 
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Figure. 10 No. of VM migrations vs. No. of tasks 

 

 
Figure. 11 Load fairness vs. network load 

 

A comparison of number of VM migrations 

against varied number of tasks for different TSLB 

algorithms is plotted in Fig. 10. It is noted that the 

LSTM-TSLBTSO-VIKOR has a minimum number 

of VM migrations compared to the other algorithms. 

The LSTM-TSLBTSO-VIKOR is better than 

CMODLB, APDPSO, LBPSGORA, GWOLB and 

LSTM-TSTSO-VIKOR by about 91.67%, 90%, 

85.71%, 80% and 75%, respectively for 1000 tasks. 

This is because of TSO simultaneously schedules the 

optimal tasks to VMs and chooses the most optimal 

VM to migrate to the most appropriate PM for 

achieving LB. 

4.9 Load fairness 

It depends on the completion period of all tasks 

and calculated as: 

 

𝐿𝐹 =
(∑ 𝐶𝑇𝑡

𝑁
𝑡=1 )2

𝑁 ∑ (𝐶𝑇𝑡)2𝑁
𝑡=1

⁄               (9) 

 

In Eq. (9), 𝐶𝑇𝑡 denotes the completion period of 

task 𝑡  and 𝑁  denotes the total number of tasks. It 

determines the network fairness with respect to the 

load. 

Fig. 11 illustrates the load fairness against 

different network loads for proposed and existing 

TSLB algorithms. It is addressed that the LSTM-

TSLBTSO-VIKOR rises the load fairness up to 

13.89%, 11.82%, 6.96%, 5.13% and 2.5% compared 

to the CMODLB, APDPSO, LBPSGORA, GWOLB 

and LSTM-TSTSO-VIKOR, respectively for 100% 

network load. Due to the combination of both TS and 

LB, the LSTM-TSLBTSO-VIKOR is reliable for 

heavy network load, resulting in more effective LB in 

contrast with the existing algorithms. 

5. Conclusion 

In this study, the LSTM-TSLBTSO-VIKOR 

algorithm was developed to perform TS and VM 

migration concurrently for LB in cloud computing. 

The TSO was used to schedule optimal tasks and 

select the best VMs to migrate to the most suitable 

PMs. This approach ensures that energy utilization 

and load fairness are balanced among all available 

PMs in the network. To evaluate the performance of 

the algorithm, simulations were conducted using 

different metrics and varied tasks. The results 

demonstrated that the LSTM-TSLBTSO-VIKOR 

algorithm achieved improved mean RUR and 

throughput, as well as reduced makespan, DoI, 

memory use, bandwidth use, energy consumption, 

and the number of VM migrations compared to 

previous TSLB algorithms. Specifically, the 

simulation results showed that the LSTM-

TSLBTSO-VIKOR algorithm achieved a makespan 

of 2700 seconds, a mean RUR of 0.97, a DoI of 0.03, 

a throughput of 0.86 tasks/sec, memory usage of 

26.9MB, a bandwidth of 187MBps, energy usage of 

95KWh, one VM migration, and a load fairness of 

1.23 for 1000 tasks. 
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