
Received: September 19, 2023. Revised: November 4, 2023. 356

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

Utilizing Probability Distribution for Selecting Optimal and Minimal Replicas to

Achieving Fault Tolerance in a Distributed System

Mahdi S. Almhanna1* Ahmed M. Al-Salih1 Tariq A. Murshedi1 Rafah M. Almuttairi2

 1Department of Information Networks, College of Information Technology, University of Babylon, Babylon, Iraq
2Collage of Information Technology Engineering, Al-Zahraa University for Women, 56001, Karbala, Iraq

* Corresponding author’s Email: mahdi.almhanna@uobabylon.edu.iq

Abstract: This paper highlights the importance of efficient task distribution and robust fault tolerance in network

systems. It emphasizes the limitations of relying on a fixed resource quantity and proposes task replication as a solution

to improve data availability. The introduced algorithm dynamically determines the optimal number of replicas based

on network history, response time, and joint probability of successful servers, aiming to minimize task failure rates.

The algorithm's advancements in grid scheduling lie in optimal resource management, fault-aware job placement,

adaptability to changing conditions, and efficient fault tolerance through redundancy planning. The algorithm

outperforms three other algorithms, showcasing significant enhancements.

Keywords: Grid computing, Replication, Distributed systems cloud computing.

1. Introduction

The utilization of computing allows organizations

to integrate geographically dispersed resources from

different administrative regions into a unified system.

This consolidation facilitates the resolution of large-

scale problems across scientific, human, and social

domains [1-5]. These resources include diverse

components like computers, storage, peripherals, and

applications. To cater to the heterogeneous and

dynamically changing nature of network resources, a

middleware layer needs to be implemented to provide

essential services to users.

Network computing environments are susceptible

to various failures and outages, primarily due to the

abnormal characteristics of the network infrastructure.

Failures can manifest in different ways [6, 7],

including computer failures, connection issues,

network bottlenecks, excessive power consumption,

software malfunctions caused by workload, potential

software deletions, and other factors arising from the

diversity of networks and applications. So, ensuring

fault tolerance is essential for maintaining

uninterrupted network operation and delivering

reliable services.

In essence, reliable applications within the

network should be capable of automatically

mitigating failures with minimal losses, while

maintaining performance and quality of service

(QoS) [8-10]. In simpler terms, the network should

have the ability to minimize and overcome failures,

ensuring uninterrupted functionality. Fault tolerance

in the network empowers it to continue operating

even in the presence of significant errors or failures,

without disrupting overall functionality.

Furthermore, handling failures can be achieved

through scheduling strategies in resource scheduling.

When done prior to scheduling resources, it is called

proactive orientation; otherwise, it is termed post-

active [11, 12]. The post-active approach is relatively

easier to implement as it utilizes job monitoring

techniques, while the proactive method works with

probabilities and requires more information about

network resources. If the proactive method, such as

replication, is used, all failure-handling decisions

must be made before the task begins, thereby

reducing the probability of failure and increasing

mailto:mahdi.almhanna@uobabylon.edu.iq

Received: September 19, 2023. Revised: November 4, 2023. 357

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

Table 1. Examples of fault tolerance

System Fault Tolerance Method

Distributed Computer failures
Redundancy and

replication

File servers Connection issues
Load balancing and

failover

Cloud
Network

bottlenecks

Traffic shaping and

prioritization

Database
Excessive power

consumption

Power backup and

redundancy

Web server
Software

malfunctions

Graceful

degradation and

error handling

Network
Potential software

deletions

Continuous

monitoring and

backups

Cluster Hardware failures
Automatic failover

and fault detection

High-

performance

computing

Workload-

induced software

malfunctions

Dynamic resource

allocation and load

balancing

Data storage Disk failures

RAID (Redundant

Array of

Independent Disks)

Communication
Packet loss and

corruption

Error detection and

correction

techniques

productivity. Table 1 provides some examples of

fault tolerance.

In grid systems, mechanisms for achieving fault

tolerance can be classified into three categories [13].

The first category, known as task replication [10],

[14], involves duplicating the same task and

executing it on multiple independent resources to

safeguard against failures at a single point.

The second category is referred to as Checkpoint

redundancy [15]. It involves periodically saving the

state of the running function to maintain stability.

This saved state can be used later in case of any errors,

allowing the system to resume execution from the last

stored point instead of starting from the beginning.

The final category is Adaptive, which combines

checkpointing and symmetrical copies to accomplish

the task. The adaptive approach significantly

enhances the performance of distributed systems by

achieving optimal parameters for both throughput

and fault tolerance.

This paper focuses on the first category, task

replication, to establish a proactive scheduling

system that is resilient to errors. The goal is to

determine the minimum number of replicas required

for each task.

2. Problem definition:

"In this study, we propose an algorithm that

determines the number of replicas based on the

specific type of tasks to be performed, rather than

using a fixed number for all job offerings. By

employing variable replicas, we aim to optimize

resource utilization and enhance the overall

efficiency of the system."

The problem is about optimizing resource

utilization and enhancing system efficiency in a

network environment with dynamic and diverse

resources by determining the appropriate number of

replicas for different types of tasks. The current issue

is identified as inefficient resource use due to a fixed

or random number of replicas for all tasks, leading to

network overload with a minimum number of tasks

that need to be executed. The proposed solution

involves adapting the number of replicas based on the

specific task requirements to achieve optimization

and efficiency.

3. Related work

Detecting and predicting faults in a system before

they occur is a crucial objective in system design. It

involves preventing or avoiding errors that could lead

to problems like deadlock and implementing

recovery strategies. These strategies can be

implemented through replication, improvement

techniques, or a combination of both. The probability

of failure at a single source is higher compared to

failure at multiple sources simultaneously. The need

to restart jobs from the beginning can be eliminated

by implementing replication. This avoids wasting

effort and time in the process, as a failure in one

source does not result in a network breakdown, and

the system can continue providing services.

During task implementation, the system stores all

the relevant information and data at each

development stage, creating checkpoints as specific

reference points. If a failure occurs, the system can

retrieve the stored information and resume work from

that checkpoint, saving effort and time. However,

there is a potential problem of unintentional or

continuous repetition, which can exacerbate the issue.

In this research, the replication mechanism will

be employed with a focus on minimizing the

utilization of resources in replicas to optimize time

and reduce system expenses.

K. Srinivasa, G. Siddesh, and S. Cherian [16]

propose a middleware approach in the network where

each node holds a copy of the task, and

communication between nodes occurs through the

TCP/IP protocol.

Received: September 19, 2023. Revised: November 4, 2023. 358

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

In [17], J. Abawajy introduced a distributed

scheduling algorithm that integrates scheduling and

replication features. The approach involves

partitioning the network into smaller segments, each

comprising a set of sites managed by a dedicated

scheduler. These scheduling managers serve as

backups for one another. Each user benefits from a

set number of replicas. Abawajy's paper considers the

possibility of faults and sets a limit on the maximum

fraction of faulty processors within a specific cluster.

Additionally, the paper assumes the advance

identifiability of the suitable number of replicas. The

job placement algorithm has a drawback related to

potential inefficiency in resource utilization and

responsiveness, particularly in the context of resource

reservation and site selection. Here are the key

drawbacks:

• Resource underutilization and inefficiency:

The algorithm reserves a fixed number of sites for

job execution, even if the total available sites (RR)

are less than nn. This can lead to underutilization of

resources; as potentially suitable sites may remain

idle due to the fixed reservation policy.

The approach of reserving n−Rn−R sites that are

expected to finish soon may not always result in the

best resource allocation, potentially causing idle time

for resources that could have been utilized for other

tasks.

• Lack of dynamic adaptability:

The algorithm lacks flexibility in dynamically

adapting to changing conditions, such as varying

resource availability or workload. The fixed

reservation of nn sites may not be suitable for

dynamic workloads or changing resource conditions.

• Potential latency and responsiveness issues:

The algorithm does not have a mechanism to

handle urgent job requests efficiently. If the home

SRM cannot find nn candidate sites, it still proceeds

with scheduling the job. This may introduce delays or

affect the responsiveness of the system, especially for

critical or time-sensitive jobs.

• Suboptimal backup selection:

The algorithm designates one of the nn SRMs as

a backup home SRM. However, the criteria for

selecting this backup SRM are not specified. This

lack of defined criteria may lead to suboptimal

choices for backup, potentially affecting fault

tolerance and system reliability.

M. Chetepen and colleagues [18] introduce a

heuristic scheduling approach that utilizes function

replication and real-time network state information to

rearrange unsuccessful tasks, rather than relying

solely on scheduled job data. The algorithm

discussed focuses on replicating computational tasks

dynamically, aiming to reduce task completion times.

It operates in iterations, selecting the longest-waiting

task with fewer than a specified number of replicas

for distribution. The algorithm considers available

resources and replica counts in site selection, aiming

for efficient task allocation. A load-based metric is

used to assess the workload of a site or resource. Two

variations of the algorithm, adaptive task replication

(ATR) and failure detection (FD), adapt to changing

grid loads and handle resource failures, respectively.

A combined approach, FDATR, merges adaptive

replication with failed task rescheduling, improving

resource utilization and task completion efficiency.

The described algorithm for task replication and

distribution in grid systems presents several potential

drawbacks:

• Static replica counting:

The algorithm employs a predefined fixed

number of replicas (LL) for tasks. However, this

static approach may not be optimal for varying task

requirements or changing system conditions. Task

replication needs may vary based on task

characteristics, resource availability, or load.

• Resource load metrics:

The algorithm uses a simplistic load calculation

based on the number of tasks and million instructions

per second (MIPS). This approach may oversimplify

the actual load on resources, ignoring other crucial

factors like memory usage, I/O operations, or

network congestion.

• Limited task information:

The algorithm considers only basic task

information such as task processing time and replica

count. More comprehensive task information, such as

task dependencies, could aid in better scheduling

decisions and potentially improve overall system

efficiency.

• Potential resource overloading:

 The algorithm may select resources based on

being "least loaded" without considering the absolute

capacity of the resources. This can lead to

overloading resources that are already close to their

maximum capacity, impacting task performance and

system stability.

• Fault resilience:

The algorithm does not explicitly address fault

tolerance or recovery strategies. In grid systems

where resource failures are common, lacking a robust

fault handling mechanism can result in job failures

and decreased system reliability.

Received: September 19, 2023. Revised: November 4, 2023. 359

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

• Limited adaptability:

The algorithm may struggle to adapt to highly

dynamic and bursty workloads. Rapid changes in

load conditions can make it challenging for the

algorithm to efficiently manage task distribution and

replication.

• Performance impact of replication:

While task replication can enhance reliability, it

may also introduce additional processing and

communication overhead, potentially impacting the

overall performance and efficiency of the system.

C. Jiang et al. [19] suggest a fault-tolerant scheduling

algorithm that considers the trust level of resources

and the security of users. The number of copies is

determined based on the variable security level of the

network. The algorithm does not explicitly outline a

method to determine the number of replicas for fault

tolerance. However, it does suggest reserving sites

for future placement of replicas, which implies a

mechanism to potentially have multiple replicas. The

drawback of the Scheduler's operation:

• Reliance on fault rate alone: The scheduler

primarily relies on the fault rate to determine the

most reliable resource. While this is a valuable

metric, considering only fault rates may

oversimplify the system's reliability. Other

factors impacting reliability, like hardware

quality, network stability, or software robustness,

should also be considered for a more

comprehensive assessment of resource reliability.

• Response time as a secondary factor: The

algorithm considers response time but does not

emphasize its importance. Response time is

crucial for user satisfaction and meeting job

deadlines. A resource with a low fault rate but a

significantly higher response time may not

always be the best choice, especially for time-

sensitive jobs.

• Assumption of homogeneous resources: The

algorithm assumes that resources are

homogeneous in terms of their fault rates. In real-

world scenarios, resources can have varying fault

rates due to different hardware, software

configurations, or network conditions. Failing to

consider resource heterogeneity may lead to

suboptimal resource allocations.

• Lack of dynamic adaptability: The algorithm

does not account for dynamic changes in fault

rates or resource conditions. A resource's fault

rate can change over time due to various factors.

An adaptive approach that updates fault rates

dynamically would provide a more accurate

reflection of resource reliability.

• Absence of redundancy planning: The

algorithm does not incorporate redundancy

planning to mitigate failures. Introducing

redundancy or backup solutions for critical jobs

can enhance fault tolerance and reduce the impact

of resource failures.

• Scalability challenges: The approach may face

challenges in scaling to a large number of

resources and jobs. As the grid scales up, the

computational complexity of calculating

scheduling indicators and sorting in the SI matrix

may increase significantly, potentially affecting

the scheduler's efficiency.

4. Proposed work vs. related work

Aspect
Proposed

Algorithm

[17]J.

Abawajy

[18]M.

Chetepen

et al.

[19]C.

Jiang et

al.

Purpose

Achieve

fault

tolerance

through

resource

replication

and

scheduling

optimizatio

n

Integrate

schedulin

g and

replicatio

n, limit

faulty

processor

s within

clusters

Replicate

tasks

dynamicall

y, reduce

task

completion

times

Consider

trust level

and

security

for fault-

tolerant

scheduling

Input

Job

informatio

n, QoS

requiremen

ts, resource

failure

history

Job

informati

on, QoS

requirem

ents,

resource

failure

history

Job

informatio

n, real-time

network

state, task

replication

count

Job

informatio

n, security

level

Output

List of

selected

resources

for each

job based

on fault

rates and

response

times

List of

reserved

sites for

job

execution

, backup

scheduler

assignme

nt

List of

replicas

and

redistribute

d tasks

based on

load and

replica

count

Reserve

sites for

potential

replica

placement

Key

Drawbac

ks

Depending

on the

history

informatio

n may be a

Suboptima

l backup

selection.

Resource

underutili

zation

and

inefficien

cy - Lack

of

dynamic

adaptabil

Static

replica

counting -

Simplistic

resource

load

metrics -

Limited

task

Reliance

on fault

rate alone -

Response

time as a

secondary

factor -

Assumptio

n of

Received: September 19, 2023. Revised: November 4, 2023. 360

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

Aspect
Proposed

Algorithm

[17]J.

Abawajy

[18]M.

Chetepen

et al.

[19]C.

Jiang et

al.

ity -

Potential

latency

and

responsiv

eness

issues -

Suboptim

al backup

selection

informatio

n -

Potential

resource

overloadin

g - Lack of

fault

resilience -

Limited

adaptabilit

y -

Performan

ce impact

of

replication

homogene

ous

resources -

Lack of

dynamic

adaptabilit

y -

Absence

of

redundanc

y planning

-

Scalability

challenges

Consider

ation of

Fault

Rate

Yes Yes Yes Yes

Consider

ation of

Respons

e Time

Yes Yes Yes Yes

Adaptabi

lity to

Workloa

d

Changes

Limited

adaptabilit

y due to

fixed

reservation

policy

Limited

adaptabil

ity due to

fixed

reservati

on policy

Limited

adaptabilit

y due to

static

replica

counting

Lack of

dynamic

adaptabilit

y

Redunda

ncy

Planning

Yes,

through

replication

of tasks

and

selection of

backup

resources

Yes,

through

the

assignme

nt of a

backup

scheduler

Yes,

through

adaptive

replication

and failed

task

reschedulin

g

Yes,

through

replica

placement

Load

Metrics

for

Resource

Allocatio

n

Yes Yes Yes No

Consider

ation of

Resource

Heteroge

neity

Yes No No No

Scalabilit

y

Consider

ations

Scalability

challenges

due to

computatio

nal

complexity

Scalabilit

y

challenge

s due to

computat

ional

Scalability

challenges

due to

computatio

nal

complexity

Scalability

challenges

due to

computati

onal

Aspect
Proposed

Algorithm

[17]J.

Abawajy

[18]M.

Chetepen

et al.

[19]C.

Jiang et

al.

complexi

ty

complexit

y

5. The aim of the proposed work

Due to the dynamic and diverse nature of network

resources, the likelihood of failures in the network

environment is high. As a result, performing

functions in such an environment requires more time

[20], leading to network failures. Furthermore, when

available resources fail, the system needs additional

time to search for alternative resources suitable for

executing these tasks.

Many algorithms that rely on symmetrical copies

employ a fixed number of identical versions [21].

This approach leads to the inefficient use of resources

for the same task, resulting in a network that becomes

overloaded with a minimum number of tasks that

need to be executed.

In this study, we propose an algorithm that

determines the number of replicas based on the

specific type of tasks to be performed, rather than

using a fixed number for all job offerings. By

employing variable replicas, we aim to optimize

resource utilization and enhance the overall

efficiency of the system.

6. Methods

6.1 Backup resources selection

The resource information server (RIS) is a system

or component responsible for storing and managing

historical data related to resource loads. It acts as a

central repository that keeps track of information

such as the usage, availability, and performance of

various resources within a network or system. The

RIS collects and maintains this data over time,

allowing it to be accessed and utilized for various

purposes such as resource allocation, load balancing,

performance optimization, and decision-making

processes. By analyzing the historical resource load

data, the RIS enables a better understanding and

management of resources, aiding in efficient resource

utilization and overall system performance.

The backup resources will be chosen based on the

requested number of replicas for the jobs. This

ensures that if one resource fails, the network can still

finish the job using an alternative resource. The

selection of these resources in the discussed research

paper relies on factors like response time and

resource load. The Resource Information Server

Received: September 19, 2023. Revised: November 4, 2023. 361

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

(RIS) is tasked with storing the historical data of

resource loads. This data is specifically defined as:

𝐿𝐻𝑗 =
𝑇𝐶𝑗

𝑆𝑗
 (1)

Where LHj is the load history of resource j, TCj

is the instructions acts completed by resource j, and

Sj is the rapidity of the resource j measured in

seconds for a million instruction operations.

6.2 Scheduling system.

The architectural engineering of the grid

scheduler (GS) is designed to accommodate a group

of units, which include the following components:

User interface: This interface allows users to

submit their tasks to the network. The received tasks

are then directed to the available network resources

[22-25].

Resource information server (RIS): One of the

network resources is the RIS, which collects

information about other resources, such as memory

size and details about the central processing unit. This

information is used by the GS to make informed

decisions regarding task scheduling.

Fault handler (FH): The grid scheduler

incorporates a fault-tolerant structure by utilizing the

Fault Handler component. It handles cases of system

failures and ensures reliable operation.

Fig. 1 demonstrates that the scheduling of

resources, which are distributed across different

geographical regions, is managed by a central

management unit. It is important to note that each

resource may exhibit different behavior when it

comes to failures. Therefore, it is necessary to have a

processor capable of handling errors when they occur.

If the actual outcome deviates from the expected

result, indicating a failure, relevant information about

the failure is stored in the resource services (RIS).

This information can be leveraged in future task

implementations.

7. Proposed system.

The proposed system incorporates proactive

scheduling to mitigate failures and minimize their

impact. In the event of a failure, the system takes

measures to minimize its effects. This is achieved by

creating multiple replicas on different resources and

executing them simultaneously. As a result, if one

resource fails, it does not hinder the execution of

tasks on the remaining resources, ensuring

uninterrupted progress.

Figure. 1 Proposed system architecture

Once any replica completes its execution, all

other replicas are terminated, and the network

resources are released accordingly. The system

determines the minimum number of replicas required

for each task based on its understanding of the

resources' tendency to fail. This approach helps

reduce the adverse effects of failures on the network.

Furthermore, the system focuses on selecting a

suitable group of resources for task execution. It

considers factors such as the response time of these

resources, which includes the time required for

transferring the task from the scheduler to the

resource, waiting time in the queue, implementation

time, and result transfer time from the resource back

to the scheduler. By prioritizing resources with

efficient response times, the system aims to optimize

task execution.

The job scheduling process revolves around

selecting a job from the job queue based on the

desired user service quality. Subsequently, the

resource information server (RIS) is consulted to

acquire a suitable list of resources that meet the user's

quality of service criteria [26].

The primary function of the resource information

server (RIS) is to furnish a list of resources along with

their estimated response times for task completion.

This list is then organized by the scheduler based on

the response times of each server. The server with the

highest rank is chosen as the primary server

responsible for executing the function.

However, there is a possibility that the primary

resource may encounter a failure during task

execution. To address this situation, the system

implements a replication phase where certain

resources from the available roster are designated as

duplicates of the task. These resources are known as

backup or reserve resources. There are two methods

to improve performance:

Received: September 19, 2023. Revised: November 4, 2023. 362

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

By executing a job simultaneously on multiple

resources, the response time to complete the task on

the first resource serves as the benchmark. This

response time may vary depending on server loads,

requests, network conditions, and server capacity.

Implementing the task on multiple resources has the

potential to enhance the system's response time.

Employing repeated functions can help mitigate

failures. It is sufficient to complete the

implementation of a single replica to accomplish the

task. This minimizes the impact of failure that may

occur if there is only one replica.

Determining the number of replicas is critical.

Increasing the number can significantly reduce the

likelihood of task failure, but it also results in higher

resource consumption and increased response time.

On the other hand, an inadequate number of replicas

may lead to task failure. Therefore, selecting the

appropriate number of identical replicas should be

proportional to both cases mentioned above. This

ensures a high likelihood of task implementation

while minimizing the impact on network stability.

7.1 Adaptive job replication

The main objective of the proposed algorithm is

to determine the optimal number of replicas, which

depends on the likelihood of resources experiencing

failures. This relationship follows proportion: as the

number of resource failures increases, the need for

more replicas becomes higher, whereas as the number

of resource failures decreases, the need for more

replicas decreases as well.

As a result, the optimal number of replicas can be

derived by analyzing the frequency of resource

failures, which can be computed based on historical

data. This number will vary depending on the type of

task assigned to each resource.

Let's assume that "Nf" represents the count of

failures experienced by a resource during the

execution of its assigned tasks, and "Ns" denotes the

count of successful completions by the resource.

Whenever a resource fails to complete its assigned

task, the value of "Nf" increments by one, and the

task originally assigned to that resource is reassigned

to another suitable resource within the network.

Conversely, if the resource successfully completes its

task, the value of "Ns" increases by one. Therefore,

the propensity of resources to fail, denoted as "FTj,"

can be expressed as follows:

𝐹𝑇𝑗 =
𝑁𝑓

𝑁𝑠+𝑁𝑓
× 100% (2)

Thus, the possible success of the mission's

implementation for resource j can be as follows:

𝐵𝑗 = 1 − 𝐹𝑇𝑗 (3)

Assuming that the resources R1, R2, ..., RN are

dedicated to task j, then the inclination rate for failure

in these resources is:

𝐹𝑇𝑛 =
∑ 𝐹𝑇𝑗𝑁

𝑗=1

𝑁
× 100% (4)

The number of replicas of the task, k, was

determined to be commensurate with the value of

FTn. The minimum number of replicas should be at

least one, and the number of resources available and

suitable for the task should not exceed N.

Accordingly, the highest limit of the number of

replicas will be N. Thus, the possible success of the

mission's implementation for all resources combined

can be as follows:

𝐵𝑛 = 1 − 𝐹𝑇𝑛 (5)

7.2 Binomial probability distribution

The binomial probability distribution is a discrete

probability distribution that describes the number of

successes in a fixed number of independent Bernoulli

trials, where each trial has only two possible

outcomes: success or failure. The distribution is

named after the binomial coefficient, which appears

in the formula for calculating the probabilities.

The binomial probability distribution is

characterized by two parameters:

1, The number of trials, denoted as "n," represents

the fixed number of independent trials or experiments.

2, The probability of success on a single trial,

denoted as "p," which represents the probability of

the desired outcome occurring in each individual trial.

Using these parameters, the probability of

obtaining exactly "k" successes in "n" trials can be

calculated using the following formula:

𝑃(𝑋 = 𝑘) = 𝐶(𝑛, 𝑘) × 𝑝𝑘 × (1 − 𝑝)𝑛 − 𝑘 (6)

Where:

P(X = k) is the probability of obtaining exactly

"k" successes.

C(n, k) is the binomial coefficient, also known as

"n choose k," which represents the number of ways to

choose "k" successes from "n" trials. It can be

calculated as

 C(n, k) =
𝑛!

k! × (n − k)!
 (7)

Received: September 19, 2023. Revised: November 4, 2023. 363

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

Table 2. RTT in ms for 20 servers

R1 R2 R3 R4 R5 R6 R7 R8 R9 R1

0

15

9

16

9

17

5

17

5

19

0

21

0

20

0

19

0

15

0

13

2

R1

1

R1

2

R1

3

R1

4

R1

5

R1

6

R1

7

R1

8

R1

9

R2

0

14

5

23

5

21

2

16

0

11

2

10

00

99

12

3

19

1

10

2

Table 3. RTT for remaining servers

R1 R2 R3 R4 R7 R8 R9 R10

159 169

175

175

200 190 150 132

R11 R14 R15 R17 R18 R19 R20

145 160

112

99

123 191

102

p^k represents the probability of "k" successes

occurring, and (1 - p)^(n - k) represents the

probability of "n - k" failures occurring.

The binomial probability distribution is often

used in various applications, such as analyzing the

success/failure outcomes of experiments, estimating

the likelihood of events with two possible outcomes,

and conducting hypothesis testing.

7.3 Joint probability

Refers to the probability that two events will both

occur. In other words, joint probability is the

likelihood of two events occurring together.

A joint probability is the probability of one or

more independent events occurring simultaneously

and is represented as P(A∩B) or P(A and B).

It can be calculated by multiplying the individual

probabilities of the events: P(A) * P(B).

A joint probability is used to determine the

likelihood of multiple events coinciding, but it does

not provide information about causation or influence

between the events.

Statisticians utilize joint probability to understand

the probability of two or more events occurring

together, considering their independent probabilities.

However, it does not capture the relationship or

influence between these events.

Section 4.7. explains the algorithm employed to

decide the number of replicas for every submitted

task involves a comparison between the values of

"Bj" and "Bn" starting with the first resource on the

dedicated list.

If "Bj > = Bn" an additional replica is added. The

new list "Bt = Bt + Bj ",

The algorithm stops if it is "Bt > Bj."

8. Proposed algorithm.

The following steps outline the proposed

algorithm:

❖ Receive tasks submitted by the user.

❖ For each task:

❖ Request "FT" for all resources from the Fault

handler.

❖ Request "LH" for all resources from the Resource

Information Server.

❖ Send packets to the servers in the obtained list to

calculate the Round-Trip Time (RTT).

❖ Select a list of servers with the highest response

time from the Resource Information Server.

❖ Calculate FTj, Bj, FTn, and Bn for all resources

in the grid with the highest response time.

❖ If Bj > = Bn, add resource j to the new list "Bt";

otherwise, do not take any action.

❖ Arrange the resources in descending order based

on their failure percentage.

❖ Calculate the average probability of successful

resources using a binomial distribution.

❖ Count the number of replicas for the tasks.

❖ Define backup resources.

❖ End.

The algorithm continues these steps until the

condition "Bt > Bj" is met. When this condition is

satisfied, the algorithm stops, and the resulting list

"Bt" represents the selected resources that satisfy the

failure probability criteria.

9. Case study

Assume that we have 20 resources R1, R2..., R20,

as shown in Table 2. First, calculate the LH (using

formula 1) for each server and neglect the servers that

have more than medium. (according to Microsoft [25]

CPU utilization < = 66% and memory utilization < =

62%).

The summation of round trip time for all servers

is 4129 ms, therefore the mean will be 206.45 ms.

The second step is to neglect all the servers that

have round trip more than the mean so the result is

shown in Table 3.

The following Fig. 2 represents the response time

of all resources before any of them are excluded,

while Fig. 3 represents those with a higher response

time.

Third, Calculate FTj, Bj, FTn, and Bn, for all 15

resources in Table 3. such that, if Bj > Bn, then add

resource j to the list otherwise no action, do the

procedure to all the 15 resources of step two.

Received: September 19, 2023. Revised: November 4, 2023. 364

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

Figure. 2 Round trip time for all resources

Figure. 3 Excluding all resources that have more value

than average

Assume that "Nf" represents the count of failures

experienced by a resource while executing its

assigned tasks is 5, and "Ns" denotes the count of

successful completions by the resource is 45.

𝑝𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 𝑡𝑜 𝑓𝑎𝑖𝑙 = 𝐹𝑇𝑗 =
5

5 + 45
× 100%

= 10%

𝐵𝑗 = 1 − 𝐹𝑇𝑗 =1-10/100 = 0.9

So, in the same way, the calculation of the

tendency to failure is calculated using Formula 2 for

all the remaining resources, suppose the tendency to

failure of these resources is as follows in Table (4):

then the summation of the tendency to failure of these

resources is 122%, so the average is 0.8%, the discard

all the server having a tendency to failure more than

the average such as shown in Table 5.

Then the inclination rate for failure in these

resources is 122/15 = 8.1%, then discard all the

resources having more than this value as shown in

Table 6.

After that will check the remaining resources to

calculate the probability of failure using binomial

distribution and arrange them descending as shown in

Table 6.

Table 4. FT for 15 servers

R1 R2 R3 R4 R7 R8 R9 R10

10% 5% 7% 4% 15% 20% 9% 5%

R11 R14 R15 R17 R18 R19 R20

4% 20% 11% 2% 1% 7% 2%

Table 5. FT for 9 servers

R2 R3 R4 R1

0

R1

1

R1

7

R1

8

R1

9

R2

0

5

%

7

%

4

%

5% 4% 2% 1% 7% 2%

Table 6. Descending FT for 9 servers

R1

8

R2

0

R1

7

R4 R1

1

R2 R1

0

R3 R1

9

1% 2% 2% 4

%

4% 5

%

5% 7

%

7%

𝐹𝑇𝑛 =
∑ 𝐹𝑇𝑗𝑁

𝑗=1

𝑁
× 100% = 122/15 × 100% = 8,1%

The total number of servers available is 9, if we

use only 0ne servers, then the probability of failure is

0.01. and 0.00000004 for using two servers, for three

servers is 6.4E-17, and for four servers is 6.55E-28,

Therefore, the possible success of the mission's

implementation using formula 5 is 0.99, 0.99999996,

1, and 1, respectively, as shown

The statement describes the calculation process

for determining the success probability in a

distributed system. It considers scenarios where all

servers fail to complete their assigned tasks. The goal

is to find the probability of at least one server

succeeding in completing its job.

To calculate this probability, the following steps

are taken:

First, the calculation considers the situation

where all servers fail to complete their tasks. This is

important to understand the complementary scenario

to the desired outcome (at least one server

succeeding).

Formula 5 is used to compute the success

probability. This formula takes into account the

probability of success for individual servers and

calculates the probability of having at least one

success among multiple servers.

The reason for this approach is that for the

distributed system to achieve fault tolerance, it should

be capable of successfully completing tasks even if

0%

20%

40%

60%

80%

100%

RTT AVG

Ti
m

e

servers

159
152.13333

33

169
0

175

0

175

0

200

0

190

0

150

0

132

0

145

0

160

0

112

0

99

0

123

0

191

0

102

0

RTT AVG
Round trip time (ms)

Received: September 19, 2023. Revised: November 4, 2023. 365

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

some servers fail. By calculating the probability of at

least one server succeeding, the system can be

assessed for its ability to handle failures while still

accomplishing its assigned jobs. So,

For one server use (R18), P(x=0) = 1C0 p0 q1-0

= 1! / 1! 0! × (99/100)0 × (1 /100)1 = 0.01.

Then the success probability for R18 using

formula 5 is

𝐵𝑛 = 1-0.01= 0.99.

The joint probability of failure for the first two

servers (R18, R20) is 1% × 2% = 0.0002

P(x=0) = 2C0 p0 q2-0 = 2! / 2! 0! × (99.98/100)0× (0.02

/100)2 = 0.00000004.

Then the success probability for both of them using

formula 5 is

𝐵𝑛 = 1- 0.00000004 = 0.99999996 = close to 1

The joint probability of failure for the first three

servers (R18, R20, R17) is 1% × 2% × 2% =

0.000004

P(x=0) = 3C0 p0 q3-0 = 3! / 3! 0! × (0.999936)0×

(0.000004)3 = 6.4E-17 = close to 0.

Then the success probability for all three servers (R18,

R20, R7) using formula 5 is

𝐵𝑛 = 1- 0 = 1

The joint probability of failure for the first four

servers (R18, R20, R17, R4) is 1% × 2% × 2% × 4%

= 0.00000016.

P(x=0) = 3C0 p0 q3-0 = 3! / 3! 0! × (0.99999984)0 ×

(0.00000016)4 = 6.55E-28 = very close to 0.

Then the success probability for all four servers (R18,

R20, R17, R4) using formula 5 is

𝐵𝑛 = 1- 0 = 1

The algorithm stops working because when

adding one more server (R4) the probability of failure

becomes close to zero. also, it is noted that each of

the above resources shown in Table 6 represents a

high probability of success in implementing the task,

Accordingly, only two resources can be satisfied to

represent the resources of the replication, and the first

three are the best of these resources, due to the high

possibility of carrying out this task.

Result and discussıon.

Independent events refer to occurrences that do

not influence each other. When event Q is considered

independent of event K, it means that the probability

of event Q happening is unaffected by the occurrence

of event K.

If Q and K are independent events in a random

experiment, the probability of both events occurring

simultaneously, denoted as P(Q⋂K), can be

calculated by multiplying their individual

probabilities, represented as P(Q) and P(K):

𝐏(𝐐⋂𝐊) = 𝐏(𝐐) × 𝐏(𝐊) (8)

In the case of multiple independent events, let's

say Q1, Q2, ..., Qn, associated with a random

experiment. The probability of all these events

happening simultaneously, represented as

P(Q1⋂Q2⋂Q3⋯⋂Qn), can be calculated by

multiplying the individual probabilities of each

event:

 𝐏(𝐐𝟏⋂𝐐𝟐⋂𝐐𝟑 ⋯ ⋂𝐐𝐧) = 𝐏(𝐐𝟏) × 𝐏(𝐐𝟐) ×
 𝐏(𝐐𝟑) × . . .× 𝐏(𝐐𝐧). (9)

The likelihood of successfully accomplishing the

task increases with additional resources, but this

approach has drawbacks due to resource

consumption, network instability, and potential

network collapse [27, 28].

To ensure fault tolerance, at least one replica

should be added. For instance, when considering the

first two servers, the probability of both failing

simultaneously is incredibly low (0.00000004)

according to the binomial probability distribution.

Individually, the first server's failure probability is

0.01, and the second server's failure probability is

0.02, with respective success probabilities of 0.99

and 0.98. Therefore, their joint probability of failure

is 0.01 * 0.02 = 0.0002.

On the other hand, when there are three working

servers, the probability of all of them failing together

is nearly zero, and their individual failure

probabilities are 0.01, 0.02, and 0.02. Combining

these probabilities using joint probability gives a

failure rate of 0.01 * 0.02 * 0.02 = 0.000004.

From the above explanation, it becomes evident

that as the number of servers increases, the

probability of failure significantly decreases,

approaching close to zero. For instance, with only

two servers, the failure rate was 0.0002, but with the

addition of another server, it decreased to 0.000004.

When a fourth server is added, the tendency towards

failure becomes exceptionally low, almost reaching

zero. Fig. 4 illustrates the failure probability of joint

Received: September 19, 2023. Revised: November 4, 2023. 366

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

Figure. 4 Failure probability of joint servers

Figure. 5 Success probability of joint servers

Figure. 6 Failure probability of binomial probability

Figure. 7 Success probability binomial probability

servers, while Fig. 5 represents the probability of

their success.

By applying Eq. (6) we can deduce the

probability of successful execution of the task for all

servers. Fig. 6 illustrates the Failure probability of

binomial probability and from Fig. 7 it turns out that

the best case is to choose only three servers for

execution since the probability of execution on one of

them will be very high and close to the confirmed

execution of the task, therefore, execution with a

minimum number of resources, the result is not

consuming system resources and ensuring execution

with a high probability of task execution.

10. Result and discussion

The proposed system introduces proactive

scheduling techniques to address failures and

minimize their impact on task execution within the

network. This section discusses the key results and

the effectiveness of the system in achieving its

objectives.

10.1 Mitigating failures through replication

The system's proactive approach to mitigating

failures involves creating multiple replicas of tasks

on different resources and executing them

simultaneously. This redundancy ensures that if one

resource fails during task execution, it does not

disrupt the progress of the tasks on the remaining

resources. This strategy effectively minimizes the

impact of failures and maintains uninterrupted task

execution.

Additionally, the system incorporates an

intelligent approach to determining the minimum

number of replicas required for each task. It analyzes

historical data on resource failures to assess the

likelihood of failures occurring. This adaptive job

replication strategy ensures that an appropriate

number of replicas are created, balancing the need for

failure mitigation with resource efficiency.

10.2 Resource selection for task execution

The system goes further to optimize task

execution by selecting resources based on their

response times. Factors such as the time required for

transferring tasks to resources, queue waiting times,

implementation times, and result transfer times are

considered. By prioritizing resources with efficient

response times, the system aims to enhance overall

task execution efficiency.

10.3 Adaptive job replication

The algorithm used to determine the optimal

number of replicas for each task demonstrates a data-

driven approach. It considers the historical failure

rates of resources and adapts the replication strategy

accordingly. This ensures that resources with a higher

likelihood of failure receive more replicas, reducing

the risk of task failure.

0

0.005

0.01

0.015

S1 S2 S3 S4

jo
in

t
p

ro
b

ab
ili

ty

Servers

Failure probability of joint servers

0.99 0.99980.999996
0.9999998

4

0 0

0

0.5

1

1.5

S1 S1-2 S1-3 S1-4

fa
lia

r
P

ro
b

ab
ili

ty

Success probability of joint servers

0.01
0.0000000

4 0 0

-0.01

0

0.01

0.02

S1 S1-2 S1-3 S1-4

P
ro

b
ab

ili
ty

 o
f

su
cc

es
s

success probability of joint servers

Servers

0.99

0.9999999
6 1 1

0.98
0.985

0.99
0.995

1
1.005

1.01

S1 S1-2 S1-3 S1-4

P
ro

b
ab

ili
ty

 o
f

su
cc

es
s

success probability of joint servers

Received: September 19, 2023. Revised: November 4, 2023. 367

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

10.4 Binomial probability distribution

The use of the binomial probability distribution to

calculate the probability of task success is a

statistically sound approach. It takes into account the

number of replicas and the historical failure rates to

estimate the likelihood of successful task execution.
This method provides a solid foundation for decision-

making regarding replication levels.

10.5 Joint probability

While joint probability is discussed, it's essential

to clarify that this concept is not directly applied to

the algorithm but is mentioned to explain the

probability of two events occurring together. It's a

theoretical concept and does not play a direct role in

the replication decision-making process.

10.6 Effectiveness of the proposed algorithm

The proposed algorithm effectively combines

historical data on resource failures, response times,

and statistical methods to determine the optimal

number of replicas for each task. By doing so, it

ensures a high likelihood of task implementation

while minimizing the impact on network stability.

This proactive approach significantly reduces the risk

of task failures and improves overall network

reliability.

11. Conclusion

To avoid errors and minimize time and effort

wasted in redoing tasks, most existing methods

utilize a fixed number of resources, disregarding the

task's type and size. Despite the abundance of

resources, the selection process lacks careful

consideration, resulting in uncertain outcomes during

implementation.

This paper introduces a fault-tolerant strategy for

scheduling functions in cloud/grid computing. The

proposed approach specifically focuses on

intentionally choosing a specific number of resources

based on their known response times. This deliberate

selection leads to exceptional performance by

minimizing the impact on network resources and

ensuring uninterrupted task execution. Consequently,

the number of resources needed for task execution is

reduced, significantly increasing the probability of

completing tasks and approaching a level close to

certainty.

By executing tasks on meticulously selected

resources with known response times, highly

favorable outcomes are achieved. This approach

optimizes performance, reduces resource utilization,

enables seamless task completion with minimal

disruption, and maintains network efficiency.

Consequently, the probability of successfully

executing tasks becomes significantly high, reaching

a level that approaches certainty.

Conflicts of interest

There is no conflict of interest regarding the

publication of this paper

Authors' contributions are as follows:

Mahdi S. Almhanna conceptualized the

methodology, authored the primary manuscript, and

created all figures except (Figures 1, 2, and 3), as well

as all tables.

Tariq A. Murshedi offered valuable insights into

the proposed methodology, generated Figures 1, 2,

and 3, and reviewed the manuscript.

Ahmed M. Al-Salih contributed to the concept of

incorporating Joint Probability in section 4.6. • Rafah

M. Almuttairi conducted the experiments,

meticulously reviewed and enhanced the English

language across the manuscript, and oversaw its

development at various stages.

Acknowledgements

The authors express their gratitude to the editors

and reviewers for their valuable and constructive

feedback. Additionally, we would like to extend our

thanks and appreciation to the University of Babylon

and the College of Information Technology for their

unwavering support of the staff.

References

[1] A. Mohammed, “A fault-tolerant scheduling

system for computational grids”, Computers &

Electrical Engineering, Vol. 11, No.2, pp. 115-

121, 2012.

[2] M. S. Almhanna, “Minimizing replica idle time”,

In: Proc. of 2017 Annual Conference on New

Trends in Information & Communications

Technology Applications (NTICT), pp. 128-131,

2017, doi: 10.1109/NTICT.2017.7976134.

[3] R. M. Almuttairi, R. Wankar, A. Negi, R. R.

Chillarige, and M. S. Almahna, “New replica

selection technique for binding replica sites in

Data Grids”, In: Proc. of 2010 1st International

Conference on Energy, Power and Control

(EPC-IQ), pp. 187-194, 2010.

[4] K. H. Anun and M. S. Almhanna, “Web Server

Load Balancing Based on Number of Client

Connections on Docker Swarm”, In: Proc. of

2021 2nd Information Technology To Enhance

Received: September 19, 2023. Revised: November 4, 2023. 368

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

e-learning and Other Application, pp. 70-75,

2021, doi: 10.1109/IT ELA

52201.2021.9773748.

[5] S. A. Abbas and M. S. Almhanna, “Distributed

Denial of Service Attacks Detection System by

Machine Learning Based on Dimensionality

Reduction”, J. Phys.: Conf. Ser.1804012136,

Vol. 1804, No. 1, pp. 012136, 2021, doi:

10.1088/17426596/1804/1/012136.

[6] S. S. Sathya and K. S. Babu, “Survey of fault-

tolerant techniques for the grid”, Computer

Science Review, Vol. 4, No. 2, pp. 101-120, 2010.

[7] Q. Zheng and B. Veeravalli, “On the design of

communication-aware fault-tolerant scheduling

algorithms for precedence constrained tasks in

grid computing systems with dedicated

communication devices”, J. Parallel and

Distributed Computing, Vol. 69, pp. 282-294,

2009.

[8] J. Singh, “An Optimal Resource Provisioning

Scheme Using QoS in Cloud Computing Based

Upon the Dynamic Clustering and Self-

Adaptive Hybrid Optimization Algorithm”,

International Journal of Intelligent Engineering

and Systems, Vol. 15, No. 3, 2022, doi:

10.22266/ijies2022.0630.13.

[9] P. Kumari and P. Kaur, “A survey of fault

tolerance in cloud computing”, Journal of King

Saud University - Computer and Information

Sciences, Vol. 33, Issue 10, pp. 1159-1176, 2021.

[10] F. Khan, K. Qureshi, and B. Nazir,

“Performance evolution of fault tolerance

techniques in grid computing system”, J.

Computing, and Electrical Engineering, Vol. 36,

pp. 1110-1122, 2010.

[11] L. Yao, X. Wang, Q. Z. Sheng, S. Dustdar, and

S. Zhang, “Recommendations on the Internet of

Things: Requirements, Challenges, and

Directions”, IEEE Internet Computing, Vol. 23,

No. 3, pp. 46-54, 2019, doi:

10.1109/MIC.2019.2909607.

[12] A. Litke, K. Tserpes, K. Dolkas, and T. H.

Varvarigou, “A Task Replication and Fair

Resource Management Scheme for Fault

Tolerant Grids”, In: Proc. of Advances in Grid

Computing - EGC 2005, Vol. 3470, pp. 1022-

1031, 2005.

[13] S. Christian, Specification and Analytical

Evaluation of Heterogeneous Dynamic Quorum-

Based Data Replication Schemes, Springer Link,

pp.13-79,2012.

[14] S. W. Kwak, K. H. You, and J. M. Yang,

“Checkpoint Management with Double Modular

Redundancy Based on the Probability of Task

Completion”, Journal of Computer Science and

Technology, Vol. 2, pp. 273-280, 2012.

[15] K. G. Srinivasa, G. M. Siddesh, and S. Cherian,

“Fault-tolerant middleware for grid computing”,

In: Proc. of 12th IEEE International Conference

on High Performance Computing and

Communications, Melbourne, Australia, pp.

635-640, Sep. 1-3, 2010б.

[16] J. H. Abawajy, “Fault-tolerant scheduling policy

for grid computing systems”, In: Proc. of 18th

International Parallel and Distributed

Processing Symposium, Santa Fe, NM, USA, pp.

238-244, 2004, doi:

10.1109/IPDPS.2004.1303290.

[17] M. Chetepen, B. Dhoedt, F. Cleays, and P. V.

Rolleghem, “Evaluation of replication and

rescheduling heuristics for gird systems with

varying resource availability”, In: Proc. of 18th

International Conference on Parallel and

Distributed Computing Systems, Anaheim, CA,

USA, pp. 622-627, Nov. 13-15, 2006.

[18] C. Jiang and D. H. Zhou, “Fault detection and

identification for uncertain linear time-delay

systems”, Computers and Chemical

Engineering, Vol. 30, No. 2, pp. 228–242, 2005.

[19] M. Amoon, “A fault-tolerant scheduling system

for computational grids”, Computers &

Electrical Engineering, Vol. 38, No. 2, pp. 399-

412, 2012.

[20] S. Song, Y. Kwok, and K. Hwang, “Risk-

Resilient Heuristics and Genetic Algorithms for

Security-Assured Grid Job Scheduling”, IEEE

Transactions on Computers, Vol. 55, No. 6,

pp.703-719, 2006.

[21] Y. Zhang and N. Lu, “Parameter Selection for a

Centralized Thermostatically Controlled

Appliances Load Controller Used for Intra-Hour

Load Balancing”, IEEE Transactions on Smart

Grid, Vol. 4, No. 4, pp. 2100-2108, 2013, doi:

10.1109/TSG.2013.2258950.

[22] S. Jaber, Y. Ali, and N. Ibrahim, “An Automated

Task Scheduling Model Using a Multi-objective

Improved Cuckoo Optimization Algorithm”,

International Journal of Intelligent Engineering

and Systems, Vol. 15, No. 1, 2022, doi:

10.22266/ijies2022.0228.27.

[23] A. S. Kadhim and M. E. ManaaHybrid, “Load-

balancing algorithm for distributed fog

computing in the Internet of Things

environment”, Bulletin of Electrical

Engineering and Informatics, Vol. 11, No. 6, pp.

3462-3470, 2022, doi: 10.11591/eei.v11i6.4127.

[24] https://devblogs.microsoft.com/premier-

developer/calculating-server-capacity-and-

planning-for-future-user-growth/

https://jcst.ict.ac.cn/
https://jcst.ict.ac.cn/
https://devblogs.microsoft.com/premier-developer/calculating-server-capacity-and-planning-for-future-user-growth/
https://devblogs.microsoft.com/premier-developer/calculating-server-capacity-and-planning-for-future-user-growth/
https://devblogs.microsoft.com/premier-developer/calculating-server-capacity-and-planning-for-future-user-growth/

Received: September 19, 2023. Revised: November 4, 2023. 369

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024 DOI: 10.22266/ijies2024.0229.32

[25] K. Sreenu and S. Malempati, “Multiple

Resource Attributes and Conditional Logic

Assisted Task Scheduling in Cloud Computing”,

International Journal of Intelligent Engineering

and Systems, Vol. 16, No. 3, pp. 677-690, 2023,

doi: 10.22266/ijies2023.0630.54.

[26] M. S. Almhanna, F. S. A. Turaihi, and T. A.

Murshedi, “Reducing waiting and idle time for a

group of jobs in the grid Computing”, Bulletin of

Electrical Engineering and Informatics, Vol. 12,

No. 5, pp. 3115-3123, 2023.

[27] A. M. A. A. Muqarm, “Naseer Ali Hussies,

Dynamic Cost-Optimized Resources

Management and Task Scheduling with

Deadline Constraint for Mobile Crowd Sensing

Environment International”, Journal of

Intelligent Engineering and Systems, Vol. 16,

No. 3, 2023, doi: 10.22266/ijies2023.0630.16.

