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Abstract: This paper highlights the importance of efficient task distribution and robust fault tolerance in network 

systems. It emphasizes the limitations of relying on a fixed resource quantity and proposes task replication as a solution 

to improve data availability. The introduced algorithm dynamically determines the optimal number of replicas based 

on network history, response time, and joint probability of successful servers, aiming to minimize task failure rates. 

The algorithm's advancements in grid scheduling lie in optimal resource management, fault-aware job placement, 

adaptability to changing conditions, and efficient fault tolerance through redundancy planning. The algorithm 

outperforms three other algorithms, showcasing significant enhancements. 
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1. Introduction 

The utilization of computing allows organizations 

to integrate geographically dispersed resources from 

different administrative regions into a unified system. 

This consolidation facilitates the resolution of large-

scale problems across scientific, human, and social 

domains [1-5]. These resources include diverse 

components like computers, storage, peripherals, and 

applications. To cater to the heterogeneous and 

dynamically changing nature of network resources, a 

middleware layer needs to be implemented to provide 

essential services to users. 

Network computing environments are susceptible 

to various failures and outages, primarily due to the 

abnormal characteristics of the network infrastructure. 

Failures can manifest in different ways [6, 7], 

including computer failures, connection issues, 

network bottlenecks, excessive power consumption, 

software malfunctions caused by workload, potential 

software deletions, and other factors arising from the 

diversity of networks and applications. So, ensuring 

fault tolerance is essential for maintaining 

uninterrupted network operation and delivering 

reliable services. 

In essence, reliable applications within the 

network should be capable of automatically 

mitigating failures with minimal losses, while 

maintaining performance and quality of service 

(QoS) [8-10]. In simpler terms, the network should 

have the ability to minimize and overcome failures, 

ensuring uninterrupted functionality. Fault tolerance 

in the network empowers it to continue operating 

even in the presence of significant errors or failures, 

without disrupting overall functionality. 

Furthermore, handling failures can be achieved 

through scheduling strategies in resource scheduling. 

When done prior to scheduling resources, it is called 

proactive orientation; otherwise, it is termed post-

active [11, 12]. The post-active approach is relatively 

easier to implement as it utilizes job monitoring 

techniques, while the proactive method works with 

probabilities and requires more information about 

network resources. If the proactive method, such as 

replication, is used, all failure-handling decisions 

must be made before the task begins, thereby 

reducing the probability of failure and increasing  
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Table 1. Examples of fault tolerance 

System Fault Tolerance Method 

Distributed Computer failures 
Redundancy and 

replication 

File servers Connection issues 
Load balancing and 

failover 

Cloud 
Network 

bottlenecks 

Traffic shaping and 

prioritization 

Database 
Excessive power 

consumption 

Power backup and 

redundancy 

Web server 
Software 

malfunctions 

Graceful 

degradation and 

error handling 

Network 
Potential software 

deletions 

Continuous 

monitoring and 

backups 

Cluster Hardware failures 
Automatic failover 

and fault detection 

High-

performance 

computing 

Workload-

induced software 

malfunctions 

Dynamic resource 

allocation and load 

balancing 

Data storage Disk failures 

RAID (Redundant 

Array of 

Independent Disks) 

Communication 
Packet loss and 

corruption 

Error detection and 

correction 

techniques 

 

productivity. Table 1 provides some examples of 

fault tolerance. 

In grid systems, mechanisms for achieving fault 

tolerance can be classified into three categories [13].  

The first category, known as task replication [10], 

[14], involves duplicating the same task and 

executing it on multiple independent resources to 

safeguard against failures at a single point. 

The second category is referred to as Checkpoint 

redundancy [15]. It involves periodically saving the 

state of the running function to maintain stability. 

This saved state can be used later in case of any errors, 

allowing the system to resume execution from the last 

stored point instead of starting from the beginning. 

The final category is Adaptive, which combines 

checkpointing and symmetrical copies to accomplish 

the task. The adaptive approach significantly 

enhances the performance of distributed systems by 

achieving optimal parameters for both throughput 

and fault tolerance. 

This paper focuses on the first category, task 

replication, to establish a proactive scheduling 

system that is resilient to errors. The goal is to 

determine the minimum number of replicas required 

for each task. 

2. Problem definition: 

"In this study, we propose an algorithm that 

determines the number of replicas based on the 

specific type of tasks to be performed, rather than 

using a fixed number for all job offerings. By 

employing variable replicas, we aim to optimize 

resource utilization and enhance the overall 

efficiency of the system." 

The problem is about optimizing resource 

utilization and enhancing system efficiency in a 

network environment with dynamic and diverse 

resources by determining the appropriate number of 

replicas for different types of tasks. The current issue 

is identified as inefficient resource use due to a fixed 

or random number of replicas for all tasks, leading to 

network overload with a minimum number of tasks 

that need to be executed. The proposed solution 

involves adapting the number of replicas based on the 

specific task requirements to achieve optimization 

and efficiency. 

3. Related work 

Detecting and predicting faults in a system before 

they occur is a crucial objective in system design. It 

involves preventing or avoiding errors that could lead 

to problems like deadlock and implementing 

recovery strategies. These strategies can be 

implemented through replication, improvement 

techniques, or a combination of both. The probability 

of failure at a single source is higher compared to 

failure at multiple sources simultaneously. The need 

to restart jobs from the beginning can be eliminated 

by implementing replication. This avoids wasting 

effort and time in the process, as a failure in one 

source does not result in a network breakdown, and 

the system can continue providing services. 

During task implementation, the system stores all 

the relevant information and data at each 

development stage, creating checkpoints as specific 

reference points. If a failure occurs, the system can 

retrieve the stored information and resume work from 

that checkpoint, saving effort and time. However, 

there is a potential problem of unintentional or 

continuous repetition, which can exacerbate the issue. 

In this research, the replication mechanism will 

be employed with a focus on minimizing the 

utilization of resources in replicas to optimize time 

and reduce system expenses. 

K. Srinivasa, G. Siddesh, and S. Cherian [16] 

propose a middleware approach in the network where 

each node holds a copy of the task, and 

communication between nodes occurs through the 

TCP/IP protocol. 
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In [17], J. Abawajy introduced a distributed 

scheduling algorithm that integrates scheduling and 

replication features. The approach involves 

partitioning the network into smaller segments, each 

comprising a set of sites managed by a dedicated 

scheduler. These scheduling managers serve as 

backups for one another. Each user benefits from a 

set number of replicas. Abawajy's paper considers the 

possibility of faults and sets a limit on the maximum 

fraction of faulty processors within a specific cluster. 

Additionally, the paper assumes the advance 

identifiability of the suitable number of replicas. The 

job placement algorithm has a drawback related to 

potential inefficiency in resource utilization and 

responsiveness, particularly in the context of resource 

reservation and site selection. Here are the key 

drawbacks: 

 

• Resource underutilization and inefficiency: 

The algorithm reserves a fixed number of sites for 

job execution, even if the total available sites (RR) 

are less than nn. This can lead to underutilization of 

resources; as potentially suitable sites may remain 

idle due to the fixed reservation policy. 

The approach of reserving n−Rn−R sites that are 

expected to finish soon may not always result in the 

best resource allocation, potentially causing idle time 

for resources that could have been utilized for other 

tasks. 

• Lack of dynamic adaptability: 

The algorithm lacks flexibility in dynamically 

adapting to changing conditions, such as varying 

resource availability or workload. The fixed 

reservation of nn sites may not be suitable for 

dynamic workloads or changing resource conditions. 

• Potential latency and responsiveness issues: 

The algorithm does not have a mechanism to 

handle urgent job requests efficiently. If the home 

SRM cannot find nn candidate sites, it still proceeds 

with scheduling the job. This may introduce delays or 

affect the responsiveness of the system, especially for 

critical or time-sensitive jobs. 

• Suboptimal backup selection: 

The algorithm designates one of the nn SRMs as 

a backup home SRM. However, the criteria for 

selecting this backup SRM are not specified. This 

lack of defined criteria may lead to suboptimal 

choices for backup, potentially affecting fault 

tolerance and system reliability. 

 

M. Chetepen and colleagues [18] introduce a 

heuristic scheduling approach that utilizes function 

replication and real-time network state information to 

rearrange unsuccessful tasks, rather than relying 

solely on scheduled job data. The algorithm 

discussed focuses on replicating computational tasks 

dynamically, aiming to reduce task completion times. 

It operates in iterations, selecting the longest-waiting 

task with fewer than a specified number of replicas 

for distribution. The algorithm considers available 

resources and replica counts in site selection, aiming 

for efficient task allocation. A load-based metric is 

used to assess the workload of a site or resource. Two 

variations of the algorithm, adaptive task replication 

(ATR) and failure detection (FD), adapt to changing 

grid loads and handle resource failures, respectively. 

A combined approach, FDATR, merges adaptive 

replication with failed task rescheduling, improving 

resource utilization and task completion efficiency. 

The described algorithm for task replication and 

distribution in grid systems presents several potential 

drawbacks: 

 

• Static replica counting: 

The algorithm employs a predefined fixed 

number of replicas (LL) for tasks. However, this 

static approach may not be optimal for varying task 

requirements or changing system conditions. Task 

replication needs may vary based on task 

characteristics, resource availability, or load. 

• Resource load metrics: 

The algorithm uses a simplistic load calculation 

based on the number of tasks and million instructions 

per second (MIPS). This approach may oversimplify 

the actual load on resources, ignoring other crucial 

factors like memory usage, I/O operations, or 

network congestion. 

• Limited task information: 

The algorithm considers only basic task 

information such as task processing time and replica 

count. More comprehensive task information, such as 

task dependencies, could aid in better scheduling 

decisions and potentially improve overall system 

efficiency. 

• Potential resource overloading: 

 The algorithm may select resources based on 

being "least loaded" without considering the absolute 

capacity of the resources. This can lead to 

overloading resources that are already close to their 

maximum capacity, impacting task performance and 

system stability. 

• Fault resilience: 

The algorithm does not explicitly address fault 

tolerance or recovery strategies. In grid systems 

where resource failures are common, lacking a robust 

fault handling mechanism can result in job failures 

and decreased system reliability. 
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•     Limited adaptability: 

The algorithm may struggle to adapt to highly 

dynamic and bursty workloads. Rapid changes in 

load conditions can make it challenging for the 

algorithm to efficiently manage task distribution and 

replication. 

• Performance impact of replication: 

While task replication can enhance reliability, it 

may also introduce additional processing and 

communication overhead, potentially impacting the 

overall performance and efficiency of the system. 

 

C. Jiang et al. [19] suggest a fault-tolerant scheduling 

algorithm that considers the trust level of resources 

and the security of users. The number of copies is 

determined based on the variable security level of the 

network. The algorithm does not explicitly outline a 

method to determine the number of replicas for fault 

tolerance. However, it does suggest reserving sites 

for future placement of replicas, which implies a 

mechanism to potentially have multiple replicas. The 

drawback of the Scheduler's operation: 

 

• Reliance on fault rate alone: The scheduler 

primarily relies on the fault rate to determine the 

most reliable resource. While this is a valuable 

metric, considering only fault rates may 

oversimplify the system's reliability. Other 

factors impacting reliability, like hardware 

quality, network stability, or software robustness, 

should also be considered for a more 

comprehensive assessment of resource reliability. 

• Response time as a secondary factor: The 

algorithm considers response time but does not 

emphasize its importance. Response time is 

crucial for user satisfaction and meeting job 

deadlines. A resource with a low fault rate but a 

significantly higher response time may not 

always be the best choice, especially for time-

sensitive jobs. 

• Assumption of homogeneous resources: The 

algorithm assumes that resources are 

homogeneous in terms of their fault rates. In real-

world scenarios, resources can have varying fault 

rates due to different hardware, software 

configurations, or network conditions. Failing to 

consider resource heterogeneity may lead to 

suboptimal resource allocations. 

• Lack of dynamic adaptability: The algorithm 

does not account for dynamic changes in fault 

rates or resource conditions. A resource's fault 

rate can change over time due to various factors. 

An adaptive approach that updates fault rates 

dynamically would provide a more accurate 

reflection of resource reliability. 

• Absence of redundancy planning: The 

algorithm does not incorporate redundancy 

planning to mitigate failures. Introducing 

redundancy or backup solutions for critical jobs 

can enhance fault tolerance and reduce the impact 

of resource failures. 

• Scalability challenges: The approach may face 

challenges in scaling to a large number of 

resources and jobs. As the grid scales up, the 

computational complexity of calculating 

scheduling indicators and sorting in the SI matrix 

may increase significantly, potentially affecting 

the scheduler's efficiency. 

4. Proposed work vs. related work 

Aspect 
Proposed 

Algorithm 

[17]J. 

Abawajy 

[18]M. 

Chetepen 

et al. 

[19]C. 

Jiang et 

al. 

Purpose 

Achieve 

fault 

tolerance 

through 

resource 

replication 

and 

scheduling 

optimizatio

n 

Integrate 

schedulin

g and 

replicatio

n, limit 

faulty 

processor

s within 

clusters 

Replicate 

tasks 

dynamicall

y, reduce 

task 

completion 

times 

Consider 

trust level 

and 

security 

for fault-

tolerant 

scheduling 

Input 

Job 

informatio

n, QoS 

requiremen

ts, resource 

failure 

history 

Job 

informati

on, QoS 

requirem

ents, 

resource 

failure 

history 

Job 

informatio

n, real-time 

network 

state, task 

replication 

count 

Job 

informatio

n, security 

level 

Output 

List of 

selected 

resources 

for each 

job based 

on fault 

rates and 

response 

times 

List of 

reserved 

sites for 

job 

execution

, backup 

scheduler 

assignme

nt 

List of 

replicas 

and 

redistribute

d tasks 

based on 

load and 

replica 

count 

Reserve 

sites for 

potential 

replica 

placement 

Key 

Drawbac

ks 

Depending 

on the 

history 

informatio

n may be a 

Suboptima

l backup 

selection. 

Resource 

underutili

zation 

and 

inefficien

cy - Lack 

of 

dynamic 

adaptabil

Static 

replica 

counting - 

Simplistic 

resource 

load 

metrics - 

Limited 

task 

Reliance 

on fault 

rate alone - 

Response 

time as a 

secondary 

factor - 

Assumptio

n of 
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Aspect 
Proposed 

Algorithm 

[17]J. 

Abawajy 

[18]M. 

Chetepen 

et al. 

[19]C. 

Jiang et 

al. 

ity - 

Potential 

latency 

and 

responsiv

eness 

issues - 

Suboptim

al backup 

selection 

informatio

n - 

Potential 

resource 

overloadin

g - Lack of 

fault 

resilience - 

Limited 

adaptabilit

y - 

Performan

ce impact 

of 

replication 

homogene

ous 

resources - 

Lack of 

dynamic 

adaptabilit

y - 

Absence 

of 

redundanc

y planning 

- 

Scalability 

challenges 

Consider

ation of 

Fault 

Rate 

Yes Yes Yes Yes 

Consider

ation of 

Respons

e Time 

Yes Yes Yes Yes 

Adaptabi

lity to 

Workloa

d 

Changes 

Limited 

adaptabilit

y due to 

fixed 

reservation 

policy 

Limited 

adaptabil

ity due to 

fixed 

reservati

on policy 

Limited 

adaptabilit

y due to 

static 

replica 

counting 

Lack of 

dynamic 

adaptabilit

y 

Redunda

ncy 

Planning 

Yes, 

through 

replication 

of tasks 

and 

selection of 

backup 

resources 

Yes, 

through 

the 

assignme

nt of a 

backup 

scheduler 

Yes, 

through 

adaptive 

replication 

and failed 

task 

reschedulin

g 

Yes, 

through 

replica 

placement 

Load 

Metrics 

for 

Resource 

Allocatio

n 

Yes Yes Yes No 

Consider

ation of 

Resource 

Heteroge

neity 

Yes No No No 

Scalabilit

y 

Consider

ations 

Scalability 

challenges 

due to 

computatio

nal 

complexity 

Scalabilit

y 

challenge

s due to 

computat

ional 

Scalability 

challenges 

due to 

computatio

nal 

complexity 

Scalability 

challenges 

due to 

computati

onal 

Aspect 
Proposed 

Algorithm 

[17]J. 

Abawajy 

[18]M. 

Chetepen 

et al. 

[19]C. 

Jiang et 

al. 

complexi

ty 

complexit

y 

5. The aim of the proposed work 

Due to the dynamic and diverse nature of network 

resources, the likelihood of failures in the network 

environment is high. As a result, performing 

functions in such an environment requires more time 

[20], leading to network failures. Furthermore, when 

available resources fail, the system needs additional 

time to search for alternative resources suitable for 

executing these tasks. 

Many algorithms that rely on symmetrical copies 

employ a fixed number of identical versions [21]. 

This approach leads to the inefficient use of resources 

for the same task, resulting in a network that becomes 

overloaded with a minimum number of tasks that 

need to be executed. 

In this study, we propose an algorithm that 

determines the number of replicas based on the 

specific type of tasks to be performed, rather than 

using a fixed number for all job offerings. By 

employing variable replicas, we aim to optimize 

resource utilization and enhance the overall 

efficiency of the system. 

6. Methods 

6.1 Backup resources selection 

The resource information server (RIS) is a system 

or component responsible for storing and managing 

historical data related to resource loads. It acts as a 

central repository that keeps track of information 

such as the usage, availability, and performance of 

various resources within a network or system. The 

RIS collects and maintains this data over time, 

allowing it to be accessed and utilized for various 

purposes such as resource allocation, load balancing, 

performance optimization, and decision-making 

processes. By analyzing the historical resource load 

data, the RIS enables a better understanding and 

management of resources, aiding in efficient resource 

utilization and overall system performance. 

The backup resources will be chosen based on the 

requested number of replicas for the jobs. This 

ensures that if one resource fails, the network can still 

finish the job using an alternative resource. The 

selection of these resources in the discussed research 

paper relies on factors like response time and 

resource load. The Resource Information Server 



Received:  September 19, 2023.     Revised: November 4, 2023.                                                                                     361 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.32 

 

(RIS) is tasked with storing the historical data of 

resource loads. This data is specifically defined as: 

 

𝐿𝐻𝑗 =
𝑇𝐶𝑗

𝑆𝑗
                                                    (1) 

 

Where LHj is the load history of resource j, TCj 

is the instructions acts completed by resource j, and 

Sj is the rapidity of the resource j measured in 

seconds for a million instruction operations. 

6.2 Scheduling system. 

The architectural engineering of the grid 

scheduler (GS) is designed to accommodate a group 

of units, which include the following components: 

User interface: This interface allows users to 

submit their tasks to the network. The received tasks 

are then directed to the available network resources 

[22-25]. 

Resource information server (RIS): One of the 

network resources is the RIS, which collects 

information about other resources, such as memory 

size and details about the central processing unit. This 

information is used by the GS to make informed 

decisions regarding task scheduling. 

Fault handler (FH): The grid scheduler 

incorporates a fault-tolerant structure by utilizing the 

Fault Handler component. It handles cases of system 

failures and ensures reliable operation. 

Fig. 1 demonstrates that the scheduling of 

resources, which are distributed across different 

geographical regions, is managed by a central 

management unit. It is important to note that each 

resource may exhibit different behavior when it 

comes to failures. Therefore, it is necessary to have a 

processor capable of handling errors when they occur. 

If the actual outcome deviates from the expected 

result, indicating a failure, relevant information about 

the failure is stored in the resource services (RIS). 

This information can be leveraged in future task 

implementations. 

7. Proposed system.  

The proposed system incorporates proactive 

scheduling to mitigate failures and minimize their 

impact. In the event of a failure, the system takes 

measures to minimize its effects. This is achieved by 

creating multiple replicas on different resources and 

executing them simultaneously. As a result, if one 

resource fails, it does not hinder the execution of 

tasks on the remaining resources, ensuring 

uninterrupted progress. 

 
Figure. 1 Proposed system architecture 

 

Once any replica completes its execution, all 

other replicas are terminated, and the network 

resources are released accordingly. The system 

determines the minimum number of replicas required 

for each task based on its understanding of the 

resources' tendency to fail. This approach helps 

reduce the adverse effects of failures on the network. 

Furthermore, the system focuses on selecting a 

suitable group of resources for task execution. It 

considers factors such as the response time of these 

resources, which includes the time required for 

transferring the task from the scheduler to the 

resource, waiting time in the queue, implementation 

time, and result transfer time from the resource back 

to the scheduler. By prioritizing resources with 

efficient response times, the system aims to optimize 

task execution. 

The job scheduling process revolves around 

selecting a job from the job queue based on the 

desired user service quality. Subsequently, the 

resource information server (RIS) is consulted to 

acquire a suitable list of resources that meet the user's 

quality of service criteria [26]. 

The primary function of the resource information 

server (RIS) is to furnish a list of resources along with 

their estimated response times for task completion. 

This list is then organized by the scheduler based on 

the response times of each server. The server with the 

highest rank is chosen as the primary server 

responsible for executing the function. 

However, there is a possibility that the primary 

resource may encounter a failure during task 

execution. To address this situation, the system 

implements a replication phase where certain 

resources from the available roster are designated as 

duplicates of the task. These resources are known as 

backup or reserve resources. There are two methods 

to improve performance: 



Received:  September 19, 2023.     Revised: November 4, 2023.                                                                                     362 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.32 

 

By executing a job simultaneously on multiple 

resources, the response time to complete the task on 

the first resource serves as the benchmark. This 

response time may vary depending on server loads, 

requests, network conditions, and server capacity. 

Implementing the task on multiple resources has the 

potential to enhance the system's response time. 

Employing repeated functions can help mitigate 

failures. It is sufficient to complete the 

implementation of a single replica to accomplish the 

task. This minimizes the impact of failure that may 

occur if there is only one replica. 

Determining the number of replicas is critical. 

Increasing the number can significantly reduce the 

likelihood of task failure, but it also results in higher 

resource consumption and increased response time. 

On the other hand, an inadequate number of replicas 

may lead to task failure. Therefore, selecting the 

appropriate number of identical replicas should be 

proportional to both cases mentioned above. This 

ensures a high likelihood of task implementation 

while minimizing the impact on network stability. 

7.1 Adaptive job replication 

The main objective of the proposed algorithm is 

to determine the optimal number of replicas, which 

depends on the likelihood of resources experiencing 

failures. This relationship follows proportion: as the 

number of resource failures increases, the need for 

more replicas becomes higher, whereas as the number 

of resource failures decreases, the need for more 

replicas decreases as well. 

As a result, the optimal number of replicas can be 

derived by analyzing the frequency of resource 

failures, which can be computed based on historical 

data. This number will vary depending on the type of 

task assigned to each resource. 

Let's assume that "Nf" represents the count of 

failures experienced by a resource during the 

execution of its assigned tasks, and "Ns" denotes the 

count of successful completions by the resource. 

Whenever a resource fails to complete its assigned 

task, the value of "Nf" increments by one, and the 

task originally assigned to that resource is reassigned 

to another suitable resource within the network. 

Conversely, if the resource successfully completes its 

task, the value of "Ns" increases by one. Therefore, 

the propensity of resources to fail, denoted as "FTj," 

can be expressed as follows: 

 

𝐹𝑇𝑗 =
𝑁𝑓

𝑁𝑠+𝑁𝑓
× 100%                                 (2) 

 

Thus, the possible success of the mission's 

implementation for resource j can be as follows: 

 

𝐵𝑗 = 1 − 𝐹𝑇𝑗                                            (3) 

 

Assuming that the resources R1, R2, ..., RN are 

dedicated to task j, then the inclination rate for failure 

in these resources is: 

 

𝐹𝑇𝑛 =
∑ 𝐹𝑇𝑗𝑁

𝑗=1

𝑁
× 100%                                 (4) 

 

The number of replicas of the task, k, was 

determined to be commensurate with the value of 

FTn. The minimum number of replicas should be at 

least one, and the number of resources available and 

suitable for the task should not exceed N. 

Accordingly, the highest limit of the number of 

replicas will be N. Thus, the possible success of the 

mission's implementation for all resources combined 

can be as follows: 

 

𝐵𝑛 = 1 − 𝐹𝑇𝑛                                                (5) 

7.2 Binomial probability distribution 

The binomial probability distribution is a discrete 

probability distribution that describes the number of 

successes in a fixed number of independent Bernoulli 

trials, where each trial has only two possible 

outcomes: success or failure. The distribution is 

named after the binomial coefficient, which appears 

in the formula for calculating the probabilities. 

The binomial probability distribution is 

characterized by two parameters: 

1, The number of trials, denoted as "n," represents 

the fixed number of independent trials or experiments. 

2, The probability of success on a single trial, 

denoted as "p," which represents the probability of 

the desired outcome occurring in each individual trial. 

Using these parameters, the probability of 

obtaining exactly "k" successes in "n" trials can be 

calculated using the following formula: 

 

𝑃(𝑋 =  𝑘) =  𝐶(𝑛, 𝑘) ×  𝑝𝑘 ×  (1 −  𝑝)𝑛 − 𝑘     (6) 

 

Where: 

P(X = k) is the probability of obtaining exactly 

"k" successes. 

C(n, k) is the binomial coefficient, also known as 

"n choose k," which represents the number of ways to 

choose "k" successes from "n" trials. It can be 

calculated as 

 

 C(n, k) =  
𝑛!

k! × (n − k)!
                                   (7) 
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Table 2. RTT in ms for 20 servers 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R1

0 

15

9 

16

9 

 

17

5 

 

17

5 

 

19

0 

 

21

0  

20

0  

19

0  

15

0 

13

2 

 

R1

1 

R1

2 

R1

3 

R1

4 

R1

5 

R1

6 

R1

7 

R1

8 

R1

9 

R2

0 

14

5  

23

5 

 

21

2  

16

0 

 

11

2 

 

10

00 

99 

 

12

3  

19

1 

 

10

2  

 
Table 3. RTT for remaining servers 

R1 R2 R3 R4 R7 R8 R9 R10 

159 169 

 

175 

 

175 

 

200  190  150 132 

 

R11 R14 R15 R17 R18 R19 R20 

145  160 

 

112 

 

99 

 

123  191 

 

102  

 

p^k represents the probability of "k" successes 

occurring, and (1 - p)^(n - k) represents the 

probability of "n - k" failures occurring. 

The binomial probability distribution is often 

used in various applications, such as analyzing the 

success/failure outcomes of experiments, estimating 

the likelihood of events with two possible outcomes, 

and conducting hypothesis testing. 

7.3 Joint probability 

Refers to the probability that two events will both 

occur. In other words, joint probability is the 

likelihood of two events occurring together. 

A joint probability is the probability of one or 

more independent events occurring simultaneously 

and is represented as P(A∩B) or P(A and B). 

It can be calculated by multiplying the individual 

probabilities of the events: P(A) * P(B). 

A joint probability is used to determine the 

likelihood of multiple events coinciding, but it does 

not provide information about causation or influence 

between the events. 

Statisticians utilize joint probability to understand 

the probability of two or more events occurring 

together, considering their independent probabilities. 

However, it does not capture the relationship or 

influence between these events. 

Section 4.7. explains the algorithm employed to 

decide the number of replicas for every submitted 

task involves a comparison between the values of 

"Bj" and "Bn" starting with the first resource on the 

dedicated list.  

If "Bj > = Bn" an additional replica is added. The 

new list "Bt = Bt + Bj ", 

The algorithm stops if it is "Bt > Bj." 

8. Proposed algorithm. 

The following steps outline the proposed 

algorithm: 

 

❖ Receive tasks submitted by the user. 

❖ For each task:  

❖ Request "FT" for all resources from the Fault 

handler.  

❖ Request "LH" for all resources from the Resource 

Information Server.  

❖ Send packets to the servers in the obtained list to 

calculate the Round-Trip Time (RTT).  

❖ Select a list of servers with the highest response 

time from the Resource Information Server.  

❖ Calculate FTj, Bj, FTn, and Bn for all resources 

in the grid with the highest response time.  

❖ If Bj > = Bn, add resource j to the new list "Bt"; 

otherwise, do not take any action. 

❖ Arrange the resources in descending order based 

on their failure percentage. 

❖ Calculate the average probability of successful 

resources using a binomial distribution. 

❖ Count the number of replicas for the tasks. 

❖ Define backup resources. 

❖ End. 

 
The algorithm continues these steps until the 

condition "Bt > Bj" is met. When this condition is 

satisfied, the algorithm stops, and the resulting list 

"Bt" represents the selected resources that satisfy the 

failure probability criteria. 

9. Case study 

Assume that we have 20 resources R1, R2..., R20, 

as shown in Table 2. First, calculate the LH (using 

formula 1) for each server and neglect the servers that 

have more than medium. (according to Microsoft [25] 

CPU utilization < = 66% and memory utilization < = 

62%). 

The summation of round trip time for all servers 

is 4129 ms, therefore the mean will be 206.45 ms. 

The second step is to neglect all the servers that 

have round trip more than the mean so the result is 

shown in Table 3. 

The following Fig. 2 represents the response time 

of all resources before any of them are excluded, 

while Fig. 3 represents those with a higher response 

time. 

Third, Calculate FTj, Bj, FTn, and Bn, for all 15 

resources in Table 3. such that, if Bj > Bn, then add 

resource j to the list otherwise no action, do the 

procedure to all the 15 resources of step two. 



Received:  September 19, 2023.     Revised: November 4, 2023.                                                                                     364 

International Journal of Intelligent Engineering and Systems, Vol.17, No.1, 2024           DOI: 10.22266/ijies2024.0229.32 

 

 
Figure. 2 Round trip time for all resources 

 

 
Figure. 3 Excluding all resources that have more value 

than average 

 

Assume that "Nf" represents the count of failures 

experienced by a resource while executing its 

assigned tasks is 5, and "Ns" denotes the count of 

successful completions by the resource is 45. 

 

𝑝𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 𝑡𝑜 𝑓𝑎𝑖𝑙 =  𝐹𝑇𝑗 =
5

5 + 45
× 100% 

= 10% 

 

𝐵𝑗 = 1 − 𝐹𝑇𝑗   =1-10/100 =   0.9 

 

So, in the same way, the calculation of the 

tendency to failure is calculated using Formula 2 for 

all the remaining resources, suppose the tendency to 

failure of these resources is as follows in Table (4): 

then the summation of the tendency to failure of these 

resources is 122%, so the average is 0.8%, the discard 

all the server having a tendency to failure more than 

the average such as shown in Table 5. 

Then the inclination rate for failure in these 

resources is 122/15 = 8.1%, then discard all the 

resources having more than this value as shown in 

Table 6. 

After that will check the remaining resources to 

calculate the probability of failure using binomial 

distribution and arrange them descending as shown in 

Table 6.  

 

Table 4. FT for 15 servers 

R1 R2 R3 R4 R7 R8 R9 R10 

10% 5% 7% 4% 15% 20% 9% 5% 

R11 R14 R15 R17 R18 R19 R20 

4% 20% 11% 2% 1% 7% 2% 

 
Table 5. FT for 9 servers 

R2 R3 R4 R1

0 

R1

1 

R1

7 

R1

8 

R1

9 

R2

0 

5

% 

7

% 

4

% 

5% 4% 2% 1% 7% 2% 

 
Table 6. Descending FT for 9 servers 

R1

8 

R2

0 

R1

7 

R4 R1

1 

R2 R1

0 

R3 R1

9 

1% 2% 2% 4

% 

4% 5

% 

5% 7

% 

7% 

 

𝐹𝑇𝑛 =
∑ 𝐹𝑇𝑗𝑁

𝑗=1

𝑁
× 100%   = 122/15 × 100% = 8,1%  

 

The total number of servers available is 9, if we 

use only 0ne servers, then the probability of failure is 

0.01. and 0.00000004 for using two servers, for three 

servers is 6.4E-17, and for four servers is 6.55E-28,  

Therefore, the possible success of the mission's 

implementation using formula 5 is 0.99, 0.99999996, 

1, and 1, respectively, as shown  

The statement describes the calculation process 

for determining the success probability in a 

distributed system. It considers scenarios where all 

servers fail to complete their assigned tasks. The goal 

is to find the probability of at least one server 

succeeding in completing its job. 

To calculate this probability, the following steps 

are taken: 

First, the calculation considers the situation 

where all servers fail to complete their tasks. This is 

important to understand the complementary scenario 

to the desired outcome (at least one server 

succeeding). 

Formula 5 is used to compute the success 

probability. This formula takes into account the 

probability of success for individual servers and 

calculates the probability of having at least one 

success among multiple servers. 

The reason for this approach is that for the 

distributed system to achieve fault tolerance, it should 

be capable of successfully completing tasks even if 

0%
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some servers fail. By calculating the probability of at 

least one server succeeding, the system can be 

assessed for its ability to handle failures while still 

accomplishing its assigned jobs. So, 

For one server use (R18), P(x=0) = 1C0 p0 q1-0 

= 1! / 1! 0! × (99/100)0 × (1 /100)1 = 0.01. 

Then the success probability for R18 using 

formula 5 is  

 

𝐵𝑛 = 1-0.01= 0.99. 

 

The joint probability of failure for the first two 

servers (R18, R20) is 1% × 2% = 0.0002 

 

P(x=0) = 2C0 p0 q2-0 = 2! / 2! 0! × (99.98/100)0× (0.02 

/100)2 = 0.00000004. 

 

Then the success probability for both of them using 

formula 5 is  

 

𝐵𝑛 = 1- 0.00000004 = 0.99999996 = close to 1 

 

The joint probability of failure for the first three 

servers (R18, R20, R17) is 1% ×  2% ×  2% = 

0.000004 

P(x=0) = 3C0 p0 q3-0 = 3! / 3! 0! × (0.999936)0× 

(0.000004)3 = 6.4E-17 = close to 0. 

Then the success probability for all three servers (R18, 

R20, R7) using formula 5 is  

 

𝐵𝑛 = 1- 0 = 1 

 

The joint probability of failure for the first four 

servers (R18, R20, R17, R4) is 1% × 2% × 2% × 4% 

= 0.00000016. 

 

P(x=0) = 3C0 p0 q3-0 = 3! / 3! 0! × (0.99999984)0 × 

(0.00000016)4 = 6.55E-28 = very close to 0. 

 

Then the success probability for all four servers (R18, 

R20, R17, R4) using formula 5 is  

 

𝐵𝑛 = 1- 0 = 1 

 

The algorithm stops working because when 

adding one more server (R4) the probability of failure 

becomes close to zero. also, it is noted that each of 

the above resources shown in Table 6 represents a 

high probability of success in implementing the task, 

Accordingly, only two resources can be satisfied to 

represent the resources of the replication, and the first 

three are the best of these resources, due to the high 

possibility of carrying out this task. 

Result and discussıon. 

Independent events refer to occurrences that do 

not influence each other. When event Q is considered 

independent of event K, it means that the probability 

of event Q happening is unaffected by the occurrence 

of event K. 

If Q and K are independent events in a random 

experiment, the probability of both events occurring 

simultaneously, denoted as P(Q⋂K), can be 

calculated by multiplying their individual 

probabilities, represented as P(Q) and P(K):  

 

𝐏(𝐐⋂𝐊) =  𝐏(𝐐) ×  𝐏(𝐊)                             (8) 

 

In the case of multiple independent events, let's 

say Q1, Q2, ..., Qn, associated with a random 

experiment. The probability of all these events 

happening simultaneously, represented as 

P(Q1⋂Q2⋂Q3⋯⋂Qn), can be calculated by 

multiplying the individual probabilities of each 

event: 

 

 𝐏(𝐐𝟏⋂𝐐𝟐⋂𝐐𝟑 ⋯ ⋂𝐐𝐧) =  𝐏(𝐐𝟏) ×  𝐏(𝐐𝟐) ×
 𝐏(𝐐𝟑) × . . .×  𝐏(𝐐𝐧).    (9) 

 

The likelihood of successfully accomplishing the 

task increases with additional resources, but this 

approach has drawbacks due to resource 

consumption, network instability, and potential 

network collapse [27, 28]. 

To ensure fault tolerance, at least one replica 

should be added. For instance, when considering the 

first two servers, the probability of both failing 

simultaneously is incredibly low (0.00000004) 

according to the binomial probability distribution. 

Individually, the first server's failure probability is 

0.01, and the second server's failure probability is 

0.02, with respective success probabilities of 0.99 

and 0.98. Therefore, their joint probability of failure 

is 0.01 * 0.02 = 0.0002. 

On the other hand, when there are three working 

servers, the probability of all of them failing together 

is nearly zero, and their individual failure 

probabilities are 0.01, 0.02, and 0.02. Combining 

these probabilities using joint probability gives a 

failure rate of 0.01 * 0.02 * 0.02 = 0.000004. 

From the above explanation, it becomes evident 

that as the number of servers increases, the 

probability of failure significantly decreases, 

approaching close to zero. For instance, with only 

two servers, the failure rate was 0.0002, but with the 

addition of another server, it decreased to 0.000004. 

When a fourth server is added, the tendency towards 

failure becomes exceptionally low, almost reaching 

zero. Fig. 4 illustrates the failure probability of joint  
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Figure. 4 Failure probability of joint servers 

 

 
Figure. 5 Success probability of joint servers 

 

 
Figure. 6 Failure probability of binomial probability 

 

 
Figure. 7 Success probability binomial probability 

 

servers, while Fig. 5 represents the probability of 

their success. 

By applying Eq. (6) we can deduce the 

probability of successful execution of the task for all 

servers. Fig. 6 illustrates the Failure probability of 

binomial probability and from Fig. 7 it turns out that 

the best case is to choose only three servers for 

execution since the probability of execution on one of 

them will be very high and close to the confirmed 

execution of the task, therefore, execution with a 

minimum number of resources, the result is not 

consuming system resources and ensuring execution 

with a high probability of task execution. 

10. Result and discussion 

The proposed system introduces proactive 

scheduling techniques to address failures and 

minimize their impact on task execution within the 

network. This section discusses the key results and 

the effectiveness of the system in achieving its 

objectives. 

10.1 Mitigating failures through replication 

The system's proactive approach to mitigating 

failures involves creating multiple replicas of tasks 

on different resources and executing them 

simultaneously. This redundancy ensures that if one 

resource fails during task execution, it does not 

disrupt the progress of the tasks on the remaining 

resources. This strategy effectively minimizes the 

impact of failures and maintains uninterrupted task 

execution. 

Additionally, the system incorporates an 

intelligent approach to determining the minimum 

number of replicas required for each task. It analyzes 

historical data on resource failures to assess the 

likelihood of failures occurring. This adaptive job 

replication strategy ensures that an appropriate 

number of replicas are created, balancing the need for 

failure mitigation with resource efficiency. 

10.2 Resource selection for task execution 

The system goes further to optimize task 

execution by selecting resources based on their 

response times. Factors such as the time required for 

transferring tasks to resources, queue waiting times, 

implementation times, and result transfer times are 

considered. By prioritizing resources with efficient 

response times, the system aims to enhance overall 

task execution efficiency. 

10.3 Adaptive job replication 

The algorithm used to determine the optimal 

number of replicas for each task demonstrates a data-

driven approach. It considers the historical failure 

rates of resources and adapts the replication strategy 

accordingly. This ensures that resources with a higher 

likelihood of failure receive more replicas, reducing 

the risk of task failure. 
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10.4 Binomial probability distribution 

The use of the binomial probability distribution to 

calculate the probability of task success is a 

statistically sound approach. It takes into account the 

number of replicas and the historical failure rates to 

estimate the likelihood of successful task execution. 
This method provides a solid foundation for decision-

making regarding replication levels. 

10.5 Joint probability 

While joint probability is discussed, it's essential 

to clarify that this concept is not directly applied to 

the algorithm but is mentioned to explain the 

probability of two events occurring together. It's a 

theoretical concept and does not play a direct role in 

the replication decision-making process. 

10.6 Effectiveness of the proposed algorithm 

The proposed algorithm effectively combines 

historical data on resource failures, response times, 

and statistical methods to determine the optimal 

number of replicas for each task. By doing so, it 

ensures a high likelihood of task implementation 

while minimizing the impact on network stability. 

This proactive approach significantly reduces the risk 

of task failures and improves overall network 

reliability. 

11. Conclusion 

To avoid errors and minimize time and effort 

wasted in redoing tasks, most existing methods 

utilize a fixed number of resources, disregarding the 

task's type and size. Despite the abundance of 

resources, the selection process lacks careful 

consideration, resulting in uncertain outcomes during 

implementation. 

This paper introduces a fault-tolerant strategy for 

scheduling functions in cloud/grid computing. The 

proposed approach specifically focuses on 

intentionally choosing a specific number of resources 

based on their known response times. This deliberate 

selection leads to exceptional performance by 

minimizing the impact on network resources and 

ensuring uninterrupted task execution. Consequently, 

the number of resources needed for task execution is 

reduced, significantly increasing the probability of 

completing tasks and approaching a level close to 

certainty. 

By executing tasks on meticulously selected 

resources with known response times, highly 

favorable outcomes are achieved. This approach 

optimizes performance, reduces resource utilization, 

enables seamless task completion with minimal 

disruption, and maintains network efficiency. 

Consequently, the probability of successfully 

executing tasks becomes significantly high, reaching 

a level that approaches certainty. 
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